JPH01116081A - Manufacture of thin functional ceramics film - Google Patents

Manufacture of thin functional ceramics film

Info

Publication number
JPH01116081A
JPH01116081A JP27181987A JP27181987A JPH01116081A JP H01116081 A JPH01116081 A JP H01116081A JP 27181987 A JP27181987 A JP 27181987A JP 27181987 A JP27181987 A JP 27181987A JP H01116081 A JPH01116081 A JP H01116081A
Authority
JP
Japan
Prior art keywords
thin film
substrate
salts
ceramics film
functional ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27181987A
Other languages
Japanese (ja)
Inventor
Seiichiro Noguchi
野口 精一郎
Akishi Ueno
晃史 上野
Akio Ota
昭男 太田
Kuniyuki Koyama
小山 晋之
Takeshi Miki
健 三木
Takao Ogawa
隆雄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOROIDO RES KK
Original Assignee
KOROIDO RES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOROIDO RES KK filed Critical KOROIDO RES KK
Priority to JP27181987A priority Critical patent/JPH01116081A/en
Publication of JPH01116081A publication Critical patent/JPH01116081A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To manufacture a thin functional ceramics film by simple equipment by forming an aqueous or organic-solvent solution of inorganometallic salts and organometallic salts, dispersing the above solution into fine drops in a heating atmosphere to carry out thermal decomposition, and the depositing the above on a substrate. CONSTITUTION:One or >=two kinds among inorganometallic salts and/or organometallic salts soluble in water or organic solvents (alcohol, acetone, etc.) are dissolved in water or organic solvents. Further, the metallic elements include the elements located on the left side of a line connecting B and At in a long period-type periodic table, excluding hydrogen, and also include the various elements located on the line connecting B and At. Subsequently, the resulting solution is dispersed into fine drops in a heating atmosphere and deposited, in the course of or directly after the thermal decomposition of solutes, on a substrate. By this method, the thin functional ceramics film can be obtained by simple equipment at a low running costs.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、機能性セラミックス薄膜の製造方法に関し、
より詳しくは導電薄膜、抵抗薄膜、磁性薄膜、圧電薄膜
等の電磁気的機能を有する薄膜、フォトマスク、無反射
・反射膜、選択吸収膜等の光学的機能を有する薄膜、及
び耐食性、耐摩耗膜、耐熱膜等の機械的・化学的機能を
有する薄膜のような機能性セラミックス薄膜を製造する
方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing a functional ceramic thin film,
More specifically, thin films with electromagnetic functions such as conductive thin films, resistive thin films, magnetic thin films, piezoelectric thin films, thin films with optical functions such as photomasks, non-reflective/reflective films, selective absorption films, and corrosion-resistant and wear-resistant films. , relates to a method for producing a functional ceramic thin film such as a thin film having mechanical and chemical functions such as a heat-resistant film.

(従来の技術) 機能性セラミックス薄膜は通常基板上に形成されるが、
この薄膜は前述したように種々の機能を有するものが製
造可能であり、その製造方法として多くのものが知られ
ている。それらの製造方法としては、物理的方法、化学
的方法、それらを組み合せた物理化学的方法に大別され
る。
(Conventional technology) Functional ceramic thin films are usually formed on a substrate,
As described above, this thin film can be manufactured to have various functions, and many methods for manufacturing the same are known. Their manufacturing methods are broadly classified into physical methods, chemical methods, and physicochemical methods that are a combination of these methods.

物理的方法をさらに大別すると、主なものは物理蒸着法
(PVD)であり、物理蒸着法の代表的なもに、通常I
 X 1O−6Torrより気圧の低い高真空で薄膜材
料を加熱蒸発させ、蒸発粒子を基板上に堆積させて薄膜
を形成させる熱蒸着法、別名真空蒸着法、抵抗加熱、高
周波加熱あるいは電子衝撃による加熱により、薄膜材料
あるいはその構成物質を、アルゴンなどの不活性ガスあ
るいは酸素、窒素などの活性ガスを含む真空中へ蒸発さ
せ、DC放電、RF放電、電子衝撃などによってイオン
化して電解で加速し、そのままあるいは雰囲気ガスと反
応させて基板に堆積させるイオンブレーティング法、加
速されたイオンによってターゲットから原子状、分子状
にはねとばされる物質と基板上に堆積させるスパッタ法
があり、その性分子線エピタキシー、静電スプレイング
、各種コーティング法等がある。
If physical methods are further classified, the main one is physical vapor deposition (PVD).
X A thermal evaporation method, also known as a vacuum evaporation method, in which a thin film material is heated and evaporated in a high vacuum with a pressure lower than 10-6 Torr, and the evaporated particles are deposited on a substrate to form a thin film, resistance heating, high frequency heating, or heating by electron impact. The thin film material or its constituent substances are evaporated into a vacuum containing an inert gas such as argon or an active gas such as oxygen or nitrogen, ionized by DC discharge, RF discharge, electron impact, etc., and accelerated by electrolysis. There are ion blasting methods in which materials are deposited on a substrate as they are or by reacting with atmospheric gas, and sputtering methods in which materials are deposited on a substrate with materials that are blown away from the target in atomic or molecular form by accelerated ions. Examples include epitaxy, electrostatic spraying, and various coating methods.

また、化学的方法の代表的なものに、気体状の原料を気
相又は基板表面で化学反応させ薄膜を形成させる化学蒸
着法がある。
Further, a typical chemical method is a chemical vapor deposition method in which a thin film is formed by chemically reacting gaseous raw materials in the gas phase or on the surface of a substrate.

前両者を組み合わせた物理化学的方法の代表的なものに
、プラズマ化学蒸着法、レーザー光化学蒸着等がある。
Typical physicochemical methods that combine the above methods include plasma chemical vapor deposition, laser photochemical vapor deposition, and the like.

(発明が解決しようとする問題点) 前述のように、機能性セラミックス薄膜の製造方法とし
て種々の方法が提案され、実用化されているが、これら
の方法では大型の付帯設備を要するもの、高真空系を要
するもの、ランニングコストが高いもの、多成分系のセ
ラミックスを得ようとする場合に均一の薄膜が形成され
ない等、種々の問題点があり、簡便な装置で、ランニン
グコストも安く、多成分系のものでも均一組成の薄膜が
得られる製造方法の開発が望まれている。
(Problems to be Solved by the Invention) As mentioned above, various methods have been proposed and put into practical use as methods for producing functional ceramic thin films, but these methods require large auxiliary equipment or are expensive. There are various problems such as those that require a vacuum system, those that have high running costs, and the inability to form a uniform thin film when trying to obtain multi-component ceramics. It is desired to develop a manufacturing method that can obtain a thin film with a uniform composition even if it is based on a component type.

(問題点を解決するための手段) 本発明者らは、上記のような問題点を解決するために研
究を行った結果、簡便な装置でランニングコストも安く
、多成分系のセラミックスでも容易に機能性セラミック
ス薄膜の製造が出来ることを見出し、本発明を完成した
(Means for Solving the Problems) As a result of research conducted by the present inventors to solve the above problems, the present inventors have found that a simple device has low running costs and can be easily applied to multi-component ceramics. We have discovered that it is possible to produce functional ceramic thin films, and have completed the present invention.

すなわち、本発明は、セラミックス薄膜の製造方法にお
いて、水もしくは有機溶媒に可溶な1種または2種以上
の無機金属塩及び/又は有機金属塩を水及び/又は有機
溶媒の溶液とし、これを加熱雰囲気中に微小満状に分散
せしめ、溶質の熱分解過程中あるいは直後に基板上に機
能性セラミックスを堆積することを特徴とする機能性セ
ラミックス薄膜の製造方法である。
That is, the present invention provides a method for producing a ceramic thin film, in which one or more inorganic metal salts and/or organic metal salts soluble in water or an organic solvent are dissolved in water and/or an organic solvent. This is a method for producing a functional ceramic thin film, which is characterized in that the functional ceramic is dispersed in a heated atmosphere in microscopic shapes and deposited on a substrate during or immediately after the thermal decomposition process of a solute.

本発明で用いる無機金属塩及び有機金属塩を構成する金
属元素としては、金属元素(長周期型周期表においてホ
ウ素とアスクチンを結ぶ線の左側に位置する元素で水素
を除くもの)のみならず、半金属元素(長周期型周期表
においてホウ素とアスクチンを結ぶ線上に位置する諸元
素)を包含するものとする。具体的には金属元素として
、ベリリウム、マグネシウム、アルミニウム、カルシウ
ム、バリウム、ストロンチウム、チタン、バナジウム、
クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛
、イツトリウム、ランタン、ヨーロピウム、ジルコニウ
ム、銀、カドミウム、錫、ノ1フニウム、ランタンへタ
ングステンなどが挙げられ、また半金属元素としてほう
素、けい素などが挙げられる。
The metal elements constituting the inorganic metal salt and organic metal salt used in the present invention include not only metal elements (elements located to the left of the line connecting boron and ascutin in the long-period table, excluding hydrogen), but also It includes semimetallic elements (elements located on the line connecting boron and ascutin in the long periodic table). Specifically, metal elements include beryllium, magnesium, aluminum, calcium, barium, strontium, titanium, vanadium,
Examples include chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, lanthanum, europium, zirconium, silver, cadmium, tin, nitride, lanthanum, and tungsten, as well as semimetallic elements such as boron and silicon. Examples include.

これらの金属元素から成る無機金属塩としては、塩化物
、臭化物、よう化物等の/%ロゲン化物、硝酸塩、硫酸
塩、はう酸塩、炭酸塩、りん酸塩、チオシアン酸塩、チ
オ硫酸塩等が用いられる。また、有機金属塩としては酢
酸塩、ラウリル酸塩、ステアリン酸塩、しゆう酸塩等の
カルボン酸の塩、金属アルコキシドの他、β−ジケトン
やβ−ケトエステル、β−ケトアミン、アルカノールア
ミン、エチレンジアミン等と金属元素とのキレート等も
用いられる。上記金属塩は複塩であってもかまわない。
Inorganic metal salts composed of these metal elements include chlorides, bromides, iodides, nitrates, sulfates, phosphates, carbonates, phosphates, thiocyanates, and thiosulfates. etc. are used. In addition, organic metal salts include salts of carboxylic acids such as acetate, laurate, stearate, and oxalate, metal alkoxides, β-diketones, β-ketoesters, β-ketoamines, alkanolamines, and ethylenediamines. Chelates of etc. and metal elements are also used. The above metal salt may be a double salt.

無機金属塩は一般に水によく溶解する。無機金属塩又は
有機金属塩を溶解する溶媒は、使用する金属塩の溶解度
、反応性等から適宜選定され、使用する金属塩を溶解し
、著しい反応を起こさないものであれば特に制限はなく
、水、各種有機溶媒、あるいはそれらの混合物を使用す
ることができるが、装置の簡素化、ランニングコストの
低減のためには無機金属塩と水を主体とする溶媒の組合
せが好ましい。有機溶媒としてはアルコール、アセトン
やベンゼン等の炭化水素系の溶媒が用いられる。
Inorganic metal salts generally dissolve well in water. The solvent for dissolving the inorganic metal salt or organic metal salt is appropriately selected based on the solubility, reactivity, etc. of the metal salt used, and is not particularly limited as long as it dissolves the metal salt used and does not cause a significant reaction. Water, various organic solvents, or mixtures thereof can be used, but in order to simplify the apparatus and reduce running costs, a combination of an inorganic metal salt and a solvent mainly composed of water is preferred. As the organic solvent, a hydrocarbon solvent such as alcohol, acetone, or benzene is used.

この金属塩の溶液を空間中に微小満状に分散させる方法
としては特に制限はないが、二流体ノズル、加圧式ノズ
ル等の一般的な噴霧器を用いる方法、ディスクを回転さ
せて遠心力で液滴を飛散形成させる方法、超音波振動子
で液面を振動させて液滴を発生させる方法が例示される
。この微小滴状に分散させた溶液は必要に応じて適当な
キャリヤーガスを使用して加熱雰囲気中に導入されるが
、この加熱雰囲気については溶質が熱分解される温度に
加熱されれば特に制限はなく、ヒーター加熱、赤外線加
熱等任意の方法を採用することができる。
There are no particular restrictions on the method of dispersing this metal salt solution in a minute shape in the space, but methods include using a general sprayer such as a two-fluid nozzle or a pressurized nozzle, or using a rotating disc to disperse the liquid using centrifugal force. Examples include a method of forming droplets by scattering, and a method of generating droplets by vibrating the liquid surface with an ultrasonic vibrator. This solution dispersed in the form of microdroplets is introduced into a heated atmosphere using a suitable carrier gas if necessary, but this heating atmosphere is particularly limited if it is heated to a temperature at which the solute is thermally decomposed. Instead, any method such as heater heating, infrared heating, etc. can be used.

加熱雰囲気としては酸化性ガス、不活性ガス等が用いら
れるが、酸化物系のセラミックス薄膜を形成するさいに
は空気、酸素の酸化雰囲気を用いるのが好ましい。
As the heating atmosphere, an oxidizing gas, an inert gas, etc. are used, but when forming an oxide-based ceramic thin film, it is preferable to use an oxidizing atmosphere of air or oxygen.

溶液の滴状粒子は加熱雰囲気を通過するさいに、溶媒が
蒸発して溶質微粒子となり、さらにその溶質微粒子は加
熱により熱分解されてセラミックス微粒子となり、加熱
雰囲気中もしくは加熱雰囲気直後に置いた基板上に堆積
される。この基板としては必要な耐熱性を有し、形成さ
れる機能性セラミックスと好ましくない相互作用をしな
いものであり、かつ同セラミックスとの密着性がよいも
のであれば何でもよく、形成される機能性セラミックス
に応じて適宜選定されるが、各種セラミックス基板、ガ
ラス材料等が一般的である。
When the droplet-like particles of the solution pass through a heated atmosphere, the solvent evaporates and becomes solute particles, which are then thermally decomposed by heating to become ceramic particles, which are then deposited on a substrate placed in or immediately after the heating atmosphere. is deposited in Any substrate can be used as this substrate as long as it has the necessary heat resistance, does not interact unfavorably with the functional ceramic to be formed, and has good adhesion to the functional ceramic. Although it is appropriately selected depending on the ceramic, various ceramic substrates, glass materials, etc. are common.

この基板を加熱雰囲気中あるいは加熱雰囲気直後に固定
しておき、薄膜を形成させるバッチ方式によって生産す
ることもできるし、また多数の基板を移動させて連続的
に薄膜を形成させる連続方式によって生産することもで
きる。
This substrate can be produced by a batch method in which the substrate is fixed in or immediately after the heating atmosphere to form a thin film, or it can be produced by a continuous method in which a large number of substrates are moved and a thin film is continuously formed. You can also do that.

基板上に形成される薄膜の緻密性は、主として加熱雰囲
気の温度、基板の位置によって決定され、加熱雰囲気温
度が高い程、基板と加熱雰囲気の細孔温度域との距離が
短い程より焼結が進んだ緻密な膜が形成され、その基板
の位置は要求される緻密さの程度により適宜設定される
。薄膜は形成後に焼結させてその緻密性を向上させるよ
うにしてもよい。
The density of the thin film formed on the substrate is mainly determined by the temperature of the heating atmosphere and the position of the substrate.The higher the heating atmosphere temperature is, the shorter the distance between the substrate and the pore temperature range of the heating atmosphere, the more sintered A dense film is formed, and the position of the substrate is appropriately set depending on the degree of density required. The thin film may be sintered after formation to improve its density.

また、膜厚は、液滴の生成速度、キャリヤーガスの流通
速度、固定式の基板であれば、その接触時間、連続式で
あればその移動速度によって決定され、簡単な操作条件
の設定によりセラミックス薄膜の緻密性、膜厚を任意に
コントロ゛−ルできる。
In addition, the film thickness is determined by the droplet generation rate, the carrier gas flow rate, the contact time for a fixed type substrate, and the movement speed for a continuous type. The density and thickness of the thin film can be controlled as desired.

前記液滴の生成速度は、液滴の生成を二流体ノズルなど
で行う場合には液の供給流量により、また超音波噴霧器
により行う場合には超音波振動子の振幅や周波数によっ
て制御することができる。
The droplet generation speed can be controlled by the supply flow rate of the liquid when the droplets are generated using a two-fluid nozzle, or by the amplitude and frequency of the ultrasonic vibrator when the droplets are generated using an ultrasonic atomizer. can.

本発明によるときには基板がおかれた加熱雰囲気あるい
はその直後における温度はそれほど高くなくても十分緻
密なセラミックス薄膜が得られ、その温度は通常のセラ
ミックス微粉末を加圧成形したものを焼結するに要する
温度よりかなり低くてすむ。それは本発明においてはセ
ラミックス薄膜が熱分解により生成されるために焼結し
易いことによりるものと考えられる。
According to the present invention, a sufficiently dense ceramic thin film can be obtained even if the temperature in the heated atmosphere in which the substrate is placed or immediately after it is not so high, and the temperature is high enough to sinter a pressure-molded ceramic fine powder. The temperature is much lower than the required temperature. This is thought to be due to the fact that in the present invention, the ceramic thin film is generated by thermal decomposition and is therefore easily sintered.

本発明によれば、導電薄膜、抵抗薄膜、磁性薄膜、圧電
薄膜等電磁気的機能を有する薄膜を製造することができ
、例えば酸化錫からなる導電薄膜、酸化鉄からなる磁性
薄膜、あるいはチタン酸バリウムからなる圧電性薄膜を
製造することができる。
According to the present invention, thin films having electromagnetic functions such as conductive thin films, resistive thin films, magnetic thin films, and piezoelectric thin films can be manufactured, such as conductive thin films made of tin oxide, magnetic thin films made of iron oxide, or barium titanate thin films. A piezoelectric thin film consisting of

さらに、無機金属塩及び/又は有機金属塩を構成する金
属元素として、希土類元素の1種又は2種以上、アルカ
リ土類金属の1種又は2種以上及び銅からなる3成分を
用いてセラミックス薄膜を製造するときには超電導性を
有する薄膜を得ることができる。その他、フォトマスク
、無反射・反射膜、選択吸収膜等の光学的機能を有する
薄膜、アルミナ又はマグネシアからなる耐食性、耐摩耗
膜、耐熱膜等の機械的・化学的機能を有する薄膜を製造
することができる。
Furthermore, a ceramic thin film is produced using three components consisting of one or more rare earth elements, one or more alkaline earth metals, and copper as metal elements constituting the inorganic metal salt and/or organic metal salt. When manufacturing a thin film with superconductivity, it is possible to obtain a thin film with superconductivity. In addition, we manufacture thin films with optical functions such as photomasks, non-reflective/reflective films, and selective absorption films, and thin films with mechanical and chemical functions such as corrosion-resistant, wear-resistant, and heat-resistant films made of alumina or magnesia. be able to.

実施例 以下、実施例によって本発明を具体的に説明する。本発
明はこれらの実施例のみに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained using examples. The present invention is not limited only to these examples.

実施例1 原料溶液として硝酸イツトリウム、硝酸バリウム及び硝
酸銅の混合水溶液を用い、イツトリウム、バリウム、銅
のモル比は1:2:3とし、前記水溶液中の全金属イオ
ンのモル濃度は0.04 mol/ 1とした。
Example 1 A mixed aqueous solution of yttrium nitrate, barium nitrate, and copper nitrate was used as a raw material solution, the molar ratio of yttrium, barium, and copper was 1:2:3, and the molar concentration of all metal ions in the aqueous solution was 0.04. It was set to mol/1.

液滴の発生のために超音波噴霧を用い、超音波振動子の
振動数を1.5MHzとした。キャリヤーガスに酸素ガ
スを用い、その流量を15β/ minとし、生じた液
滴をこのキャリヤーガスにより加熱雰囲気中に送った。
Ultrasonic atomization was used to generate droplets, and the frequency of the ultrasonic vibrator was 1.5 MHz. Oxygen gas was used as a carrier gas at a flow rate of 15β/min, and the resulting droplets were sent into a heated atmosphere using this carrier gas.

加熱雰囲気は長さ1mの管状炉により構成し、その中央
部における温度は950℃とした。基板としては直径2
0mm、厚さ1mmの円形のアルミナペレットを用い、
このアルミナペレットはシリカコーティングしておく。
The heating atmosphere was composed of a 1 m long tubular furnace, and the temperature at the center thereof was 950°C. Diameter 2 for the board
Using circular alumina pellets with a diameter of 0 mm and a thickness of 1 mm,
This alumina pellet is coated with silica.

この基板を管状炉の中央部におき、この上にセラミック
薄膜を形成し、この形成を2時間を行った。管状炉中央
部の加熱温度と時間との関係を第1図に示す。
This substrate was placed in the center of a tube furnace, and a ceramic thin film was formed thereon for 2 hours. FIG. 1 shows the relationship between heating temperature at the center of the tube furnace and time.

生成した薄膜は緻密な焼結膜であった。その薄膜の厚さ
をBPMAで測定したところ5μmであった。
The produced thin film was a dense sintered film. The thickness of the thin film was measured using BPMA and was found to be 5 μm.

薄膜の電導性を四端子法で測定したところ、室温で7.
3 mΩ・0m177°にで4.1mΩ’ amであっ
た。
When the conductivity of the thin film was measured using the four-probe method, it was found to be 7.
It was 4.1 mΩ' am at 3 mΩ・0m177°.

実施例2 基板の位置を管状炉の出口に置いた以外は実施例1と同
様にして薄膜を形成した。
Example 2 A thin film was formed in the same manner as in Example 1 except that the substrate was placed at the outlet of the tube furnace.

焼結があまり進行していない粉末状物質が基板上に堆積
した薄膜が形成した。この薄膜を第2図に示した温度条
件下で熱処理して焼結させた。生成した薄膜は緻密な焼
結膜であり、その厚さは4.5μmであった。薄膜の電
導性を測定したところ、室温で7.6mΩ’ amであ
り、77°にで4.3mΩ” amであった。
A thin film was formed on the substrate of a powdery material with little progress in sintering. This thin film was heat treated and sintered under the temperature conditions shown in FIG. The produced thin film was a dense sintered film, and its thickness was 4.5 μm. The conductivity of the thin film was measured to be 7.6 mΩ' am at room temperature and 4.3 mΩ'' am at 77°.

(発明の効果) この発明によれば簡便な装置でランニングコストが安く
、機能性セラミックス薄膜を得ることができ、かつ多成
分系セラミックスの場合でも均一な組成のセラミックス
薄膜が得られる。また、この発明では高真空系を要しな
いし、そのため付帯装置も小型でよいし、種々の用途の
機能性セラミックス薄膜が得られる。
(Effects of the Invention) According to the present invention, a functional ceramic thin film can be obtained with a simple device at low running cost, and even in the case of multi-component ceramics, a ceramic thin film with a uniform composition can be obtained. Further, the present invention does not require a high vacuum system, and therefore the accessory equipment can be small-sized, and functional ceramic thin films for various uses can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1.2における管状炉中央部の加熱温
度と時間との関係を示すものであり、第2図は実施例2
における基板の熱処理温度と時間との関係を示すもので
ある。 代理人弁理士(8107)佐々木 清隆 、−31図 02だスフ゛ロー 第2図 2力゛スフ゛ロー
Fig. 1 shows the relationship between heating temperature and time at the center of the tube furnace in Example 1.2, and Fig. 2 shows the relationship between heating temperature and time in the central part of the tube furnace in Example 1.2.
3 shows the relationship between heat treatment temperature and time for the substrate in FIG. Representative Patent Attorney (8107) Kiyotaka Sasaki, -31 Figure 02 Flow Figure 2 2 Power Flow

Claims (1)

【特許請求の範囲】[Claims] セラミックス薄膜の製造方法において、水もしくは有機
溶媒に可溶な1種または2種以上の無機金属塩及び/又
は有機金属塩を水及び/又は有機溶媒の溶液とし、これ
を加熱雰囲気中に微小滴状に分散せしめ、溶質の熱分解
過程中あるいは直後に基板上に機能性セラミックスを堆
積することを特徴とする機能性セラミックス薄膜の製造
方法。
In a method for producing a ceramic thin film, one or more inorganic metal salts and/or organic metal salts that are soluble in water or an organic solvent are made into a solution of water and/or an organic solvent, and this is dissolved in microdrops in a heated atmosphere. 1. A method for producing a functional ceramic thin film, which comprises dispersing the solute into a thin film and depositing the functional ceramic on a substrate during or immediately after the thermal decomposition process of a solute.
JP27181987A 1987-10-29 1987-10-29 Manufacture of thin functional ceramics film Pending JPH01116081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27181987A JPH01116081A (en) 1987-10-29 1987-10-29 Manufacture of thin functional ceramics film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27181987A JPH01116081A (en) 1987-10-29 1987-10-29 Manufacture of thin functional ceramics film

Publications (1)

Publication Number Publication Date
JPH01116081A true JPH01116081A (en) 1989-05-09

Family

ID=17505288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27181987A Pending JPH01116081A (en) 1987-10-29 1987-10-29 Manufacture of thin functional ceramics film

Country Status (1)

Country Link
JP (1) JPH01116081A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120543A (en) * 1980-01-31 1981-09-21 Bfg Glassgroup Glass coating method and device
JPS613885A (en) * 1984-06-18 1986-01-09 Taiyo Yuden Co Ltd Manufacture of thin film by atomization
JPS6183650A (en) * 1984-09-26 1986-04-28 Naoyuki Miyata Production of transparent electrically-conductive glass
JPS61186478A (en) * 1985-02-15 1986-08-20 Central Glass Co Ltd Forming of conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120543A (en) * 1980-01-31 1981-09-21 Bfg Glassgroup Glass coating method and device
JPS613885A (en) * 1984-06-18 1986-01-09 Taiyo Yuden Co Ltd Manufacture of thin film by atomization
JPS6183650A (en) * 1984-09-26 1986-04-28 Naoyuki Miyata Production of transparent electrically-conductive glass
JPS61186478A (en) * 1985-02-15 1986-08-20 Central Glass Co Ltd Forming of conductive film

Similar Documents

Publication Publication Date Title
Gurav et al. Aerosol processing of materials
US5278138A (en) Aerosol chemical vapor deposition of metal oxide films
US5429657A (en) Method for making silver-palladium alloy powders by aerosol decomposition
US4970093A (en) Chemical deposition methods using supercritical fluid solutions
EP1144721B1 (en) Material fabrication
JP3118493B2 (en) Liquid material CVD equipment
Korotcenkov et al. Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties
EP1144726A1 (en) Colloidal spray method for low cost thin coating deposition
Madhuri Thermal protection coatings of metal oxide powders
JP2002500703A (en) Film or coating deposition on substrate
JP3343938B2 (en) Materials for vacuum deposition
JPS59107905A (en) Manufacture of hyperfine particle of metallic oxide
JPH01116081A (en) Manufacture of thin functional ceramics film
JP3276330B2 (en) Method for producing spherical powder and spherical powder produced by this method
Korotcenkov et al. Synthesis and deposition of sensor materials
JP2003138376A (en) Method of forming thin film by aerosol pyrolysis method
JP3152548B2 (en) High frequency induction plasma deposition equipment
Tucić et al. Synthesis of thin films by the pyrosol process
US7784306B1 (en) Material deposition
EP1679390B1 (en) Method for forming a protective layer on a metallic turbine substrate
JPH01224209A (en) Production of ceramic superconductor
WO2002102903A2 (en) Direct synthesis and deposition of luminescent films
JP3373357B2 (en) Ultrafine particles and method for producing the same
JPH01230405A (en) Production of oxide superconducting thick film
Aleksandar Synthesis of thin films by the pyrosol process