JPH0450683B2 - - Google Patents

Info

Publication number
JPH0450683B2
JPH0450683B2 JP60028189A JP2818985A JPH0450683B2 JP H0450683 B2 JPH0450683 B2 JP H0450683B2 JP 60028189 A JP60028189 A JP 60028189A JP 2818985 A JP2818985 A JP 2818985A JP H0450683 B2 JPH0450683 B2 JP H0450683B2
Authority
JP
Japan
Prior art keywords
cooh
film
compound
tin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60028189A
Other languages
Japanese (ja)
Other versions
JPS61188821A (en
Inventor
Jiro Abe
Hisato Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2818985A priority Critical patent/JPS61188821A/en
Publication of JPS61188821A publication Critical patent/JPS61188821A/en
Publication of JPH0450683B2 publication Critical patent/JPH0450683B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はCVD法によるフツ素ドープ酸化錫
(SnO2(F))の透明導電薄膜の形成方法に関し、特
にフツ素化合物としてフルオロカルボン酸を用い
てガラス基板表面上に被膜を形成することにより
赤外領域での反射率が高く低抵抗で良好な導電性
を備え、優れた硬度と化学的機械的耐久性を有す
る被膜を得ることができ、その特性を生かして
種々の分野に広く採用され得るものである。すな
わち、ガラス基板表面上に被膜して、例えば建
築、自動車、航空機および船舶あるいは冷凍シヨ
ーケースの防曇窓ガラスまたは熱線反射透明窓ガ
ラスに、また太陽熱集熱器のカハーガラスやオー
ブンのドアガラスに、さらに液晶電気光学デイス
プレイ等の電気電子機器部品に等、多方面で実用
され得るものである。 〔従来の技術〕 従来、スプレー法においては、例えば
(C4H92Sn(CH3CO22等の錫化合物とCF3COOH
等のフツ素化合物と、CH3OH等の溶剤よりなる
溶液を高温の板ガラスに噴霧してSnO2(F)の被膜
を形成する方法(特公昭53−25331号公報)が知
られている。また、CVD法においては、例えば
(CH34Sn等の錫化合物蒸気およびCF3Br等のガ
ス状フツ素化合物を高温のガラスに吹き付けて
SnO2(F)膜の被膜を形成する方法(特開昭55−
58363号公報)が知られている。 〔発明が解決しようとする問題点〕 前述した特公昭53−25331号公報に記載されて
いる方法においては、フツ素化剤としての
CF3COOH溶液中に30%以上添加し、ガラス基板
の温度を600℃以上にしないと抵抗の低い被膜が
得られないし、CF3COOHのような高価な薬液を
多量に消費することは経済的ではなく、またガラ
ス基板の温度を600℃以上のかなり高い温度にす
ると、ガラスの歪、反り等を生じて良好な製品が
得られ難いものであり、さらに赤外線反射率およ
び抵抗値とも充分満足できる被膜が得られないも
のであり、この薬液をそのままCVD法に適用し
ても成膜速度が遅く採用し難いものである。 一方、前述の特開昭55−58363号公報に記載の
方法においては、前述したように錫化合物として
テトラメチル錫等を、フツ素化合物としてCF3Br
等を使用しているがテトラメチル錫は成膜速度が
遅く大型ガラス板での低抵抗、高赤外線反射率被
膜への適用がむつかしく、またCF3Br等のガス状
のフツ素化合物はフツ素ドーピング剤として有効
な化合物ではあるが、高価であり、かつ多量に消
費しなければならず経済的でないという欠点に加
えて、多量に使用することは公害上の理由からも
好ましくない。 〔問題点を解決するための手段〕 本発明は、従来のかかる欠点に鑑みて成したも
のであつて、高温のガラス基板の表面上に錫化合
物の蒸気とそれに微少の添加量でよいフルオロカ
ルボン酸の蒸気をそれぞれキヤリアガスで移送し
合わせた混合蒸気を噴出することによつてSnO2
(F)薄膜を形成させる方法で、効率よく、より優れ
た抵抗で高赤外線反射率の被膜を得ることを見出
したものである。 すなわち、本発明は、加熱されたガラス基板表
面上に、有機錫ハライド類である錫化合物および
フツ素化合物の混合蒸気を噴出させて酸化錫被膜
を形成する方法において、フツ素化合物としてフ
ルオロカルボン酸を、重量比で0.01〜0.058の割
合で用いることを特徴とする透明導電薄膜の形成
方法、ならびに前記フツ素化合物としてフルオロ
カルボン酸がCF3COOH、C3F7COOH、CF3CH
=CHCOOHである上述した透明導電薄膜の形成
方法を提供するものである。 本発明において、ガラス基板の温度としては
500〜600℃が好ましく、また錫化合物としては有
機錫ハライド類であり、例えば(CH32SnCl2
(C4H9)SnCl3、(C4H92SnCl2等の化合物が、こ
とに酸化珪素等のアンダーコートをすることによ
り、ヘイズの発生もなく、成膜速度も満足できる
早さで好ましいものである。さらにフルオロカル
ボン酸としては、例えば、CF3COOH、
C3F7COOH、CF3CH=CHCOOH等の化合物が
用いられ、該フルオロカルボン酸の量的範囲は、
例えば実施例1あるいは3〜6に示すように、
CF3COOHについては(CH32SnCl2に対して重
量比で0.013〜0.058の割合であり、好ましくは
0.01〜0.03の割合である。また他の有機錫化合物
である錫化合物に対しても重量比で0.01〜0.05の
割合である。さらに他の該フルオロカルボン酸の
該量的範囲も、実施例2でも示すように該割合の
範囲である。またキヤリアガスとしては圧力調節
された空気、窒素ガス等でよい。 〔作 用〕 前述したとおり、本発明の被膜形成方法によれ
ば、より優れた低抵抗と高赤外線反射率を有する
被膜が得られることはもちろん、均一で優れた硬
度と化学的機械的耐久性のある被膜となり、ガラ
ス基板の歪みや反りの発生がなく、フルオロカル
ボン酸の微量の添加でしかも成膜速度が早いの
で、生産性、コストおよび品質上等きわめて良好
となり、さらに酸化珪素等でアンダーコートすれ
ば、ヘイズの発生もなく、、略無色で透視性に優
れたものが得られる特徴を有するものである。 〔実施例〕 以下に、本発明の実施例を説明する。 第1図は本発明を実施するための一装置を模式
的に示すもので、蒸発器1には錫化合物を入れ、
例えば100〜150℃の温度に加熱し、キヤリアガス
をバルブ8で圧力調節して流量計2を通し、加熱
器3で約200℃前後に加熱して100〜300/minを
前記蒸発器1に挿入し、錫化合物蒸気をCVD用
ノズル4へ送る。一方蒸発器5にはフツ素化合物
を入れ、加熱できるようになつているが室温に保
持していて、キヤリアガスをバルブ9で圧力調節
して流量計6を通し、2〜5/minの量を蒸発
器5に挿入し、フツ素化合物蒸気を錫化合物蒸気
と共にCVD用ノズル4へ送るようにしてあり、
CVD用ノズル4より、錫およびフツ素化合物の
混合蒸気を、加熱炉で500〜600℃に加熱された板
ガラス7に吹き付けてSnO2(F)の被膜を形成する
ようにしたものである。 実施例 1 錫化合物として(CH32SnCl2を用い、蒸発温
度を150℃に設定して約40g/minの割合で蒸発さ
せ、200℃に加熱した加熱空気200/minを蒸発
器に送り、キヤリアガスとして(CH32SnCl2
気とともにCVDノズルに送る。一方、フツ素化
合物としてCF3COOHを用い、常温で空気をキヤ
リアガスとして3/minほど蒸発器に挿入し、
該蒸発器内のCF7COOH蒸気を約1g/min
((CH32SnCl2に対するCF3COOHの割合は約
0.025である)の割合で(CH32SnCl2蒸気と混合
しながらCVDノズルに送り込み、加熱炉により
580℃、590℃に加熱した大きさ300×300mm2で厚さ
3mmの酸化珪素をアンタコートした板ガラスが20
mm/secの速度で移送されている表面上に前記
CVDノズルから前記混合蒸気を吹き付けて、
SnO7(F)膜を形成した。 その結果、被膜の厚さ4700Åが得られ、抵抗値
が9Ω/□、可視光透過率が76%および赤外線反
射率(10μ)が85%を有するSnO2(F)の被膜が得ら
れた。 第3図に該実施例のSnO2(F)膜における透過率
曲線と反射率曲線を示す。 実施例 2 実施例1と同様な方法で錫化合物として
(C4H9)SnCl3に変更してSnO2(F)膜を形成した。 その結果、被膜の厚さ3500Å、抵抗値15Ω/□、
赤外線反射率(10μ)82%の被膜が得られた。 実施例 3〜6 実施例1と同様な方法でCF3COOH用蒸発器へ
のキヤリア空気の温度を室温〜50℃、0.5〜2.3g/
min((CH32SnCl2に対するCF3COOHの割合は
約0.013〜0.058である)すなわち3〜5/minと
し、板ガラスの移送速度を18〜25mm/secで被膜を
形成した。その結果を表1の実施例3〜6として
示す。 比較例 1〜4 第2図に模式的に示すような装置によつて、
(CH32SnCl2を約40g/minおよびCBrF3を20〜40
g/min((CH32SnCl2に対するCBrF3の割合は約
0.5〜1.0である)すなわち3〜5/minそれぞれ
使用して、板ガラスの移送速度を変更する等によ
つて、他の条件は実施例1と同様にして比較例1
〜4の試料とした。その結果を表2に示す。 比較例 5〜9 スプレー法において、(C4H92Sn(CH3CO22
OCl3CH3、CF3COOHの三成分を用いて、表3の
ような割合の混合溶液を約3c.c./secのスプレー量
で、温度590℃に加熱された大きさ300×300mm2
厚さ3mmの板ガラス表面上にスプレーして試料と
した。その結果を表3に示す。 比較例 10〜12 比較例5〜9と同様の要領で、溶液のみ変更し
て、すなわち、Sn(C5H8O24、CCl3CH3
CF3COOHの三成分を用いて、表4のような割合
の混合溶液をスプレーして試料とした。その結果
を表4に示す。 〔発明の効果〕 本発明の実施例1〜6とその結果である第3図
の透過率および反射率曲線または表1の数値を従
来方法である比較例1〜12とその結果をまとめた
表2〜4とを対比すれば明らかなように、
(CH32SnCl2を用いても、CF3COOHの方が
CBrF3よりも抵抗値および赤外線反射率が優れて
おり特
[Industrial Application Field] The present invention relates to a method for forming a transparent conductive thin film of fluorine-doped tin oxide (SnO 2 (F)) by a CVD method, and in particular, a method for forming a transparent conductive thin film of fluorine-doped tin oxide (SnO 2 (F)) on the surface of a glass substrate using fluorocarboxylic acid as a fluorine compound. By forming a film, it is possible to obtain a film that has high reflectance in the infrared region, low resistance, good conductivity, and excellent hardness and chemical and mechanical durability. It can be widely adopted in the field of That is, it can be coated on the surface of a glass substrate, for example, on anti-fog window glasses or heat-reflecting transparent window glasses of buildings, automobiles, aircraft, ships, or refrigerated cases, as well as on Cahar glass of solar collectors and door glass of ovens. It can be put to practical use in many fields, such as in parts for electrical and electronic equipment such as liquid crystal electro-optic displays. [Prior art] Conventionally, in the spray method, a tin compound such as (C 4 H 9 ) 2 Sn (CH 3 CO 2 ) 2 and CF 3 COOH
There is a known method (Japanese Patent Publication No. 53-25331) in which a solution of a fluorine compound such as fluorine compound and a solvent such as CH 3 OH is sprayed onto a high-temperature plate glass to form a SnO 2 (F) film. In addition, in the CVD method, for example, tin compound vapor such as (CH 3 ) 4 Sn and gaseous fluorine compounds such as CF 3 Br are sprayed onto hot glass.
Method for forming SnO 2 (F) film
58363) is known. [Problems to be solved by the invention] In the method described in the aforementioned Japanese Patent Publication No. 53-25331,
A film with low resistance cannot be obtained unless 30% or more of CF 3 COOH is added to the solution and the temperature of the glass substrate is raised to 600°C or higher, and it is not economical to consume large amounts of expensive chemicals such as CF 3 COOH. Moreover, if the temperature of the glass substrate is raised to a fairly high temperature of 600℃ or higher, the glass may become distorted or warped, making it difficult to obtain a good product.Furthermore, the infrared reflectance and resistance value are sufficiently satisfactory. A film cannot be obtained, and even if this chemical solution is directly applied to the CVD method, the film formation rate is slow and it is difficult to employ it. On the other hand, in the method described in JP-A-55-58363, as mentioned above, tetramethyltin etc. are used as the tin compound and CF 3 Br as the fluorine compound.
However, tetramethyltin has a slow film formation rate and is difficult to apply to low resistance, high infrared reflectance coatings on large glass plates, and gaseous fluorine compounds such as CF 3 Br Although it is an effective compound as a doping agent, it is expensive and has to be consumed in large quantities, making it uneconomical. In addition, it is undesirable to use a large amount for pollution reasons. [Means for Solving the Problems] The present invention has been made in view of the above-mentioned drawbacks of the conventional technology. SnO 2 is produced by transporting each acid vapor using a carrier gas and blowing out a mixed vapor.
(F) It was discovered that a coating with better resistance and high infrared reflectance can be obtained efficiently by a method of forming a thin film. That is, the present invention provides a method for forming a tin oxide film by ejecting a mixed vapor of a tin compound, which is an organic tin halide, and a fluorine compound onto the surface of a heated glass substrate. is used in a weight ratio of 0.01 to 0.058, and the fluorocarboxylic acid as the fluorine compound is CF 3 COOH, C 3 F 7 COOH, CF 3 CH
The present invention provides a method for forming the above-mentioned transparent conductive thin film in which =CHCOOH. In the present invention, the temperature of the glass substrate is
The temperature is preferably 500 to 600°C, and the tin compound is an organic tin halide, such as ( CH3 ) 2SnCl2 ,
Compounds such as (C 4 H 9 ) SnCl 3 and (C 4 H 9 ) 2 SnCl 2 , especially when undercoated with silicon oxide, do not generate haze and the film formation speed is satisfactory. This is preferable. Furthermore, examples of fluorocarboxylic acids include CF 3 COOH,
Compounds such as C 3 F 7 COOH and CF 3 CH=CHCOOH are used, and the quantitative range of the fluorocarboxylic acid is as follows:
For example, as shown in Examples 1 or 3 to 6,
Regarding CF 3 COOH, the ratio by weight to (CH 3 ) 2 SnCl 2 is 0.013 to 0.058, preferably
The ratio is between 0.01 and 0.03. Furthermore, the weight ratio is 0.01 to 0.05 with respect to a tin compound which is another organic tin compound. Furthermore, the quantitative range of the other fluorocarboxylic acids is also within the ratio range as shown in Example 2. Further, the carrier gas may be pressure-regulated air, nitrogen gas, or the like. [Function] As mentioned above, according to the film forming method of the present invention, a film having superior low resistance and high infrared reflectance can be obtained, as well as uniform and excellent hardness and chemical and mechanical durability. The film forms a uniform coating, which does not cause distortion or warping of the glass substrate, and the addition of a small amount of fluorocarboxylic acid results in a fast film formation rate, resulting in extremely good productivity, cost, and quality. When coated, it has the characteristic that it does not generate haze, is almost colorless, and has excellent transparency. [Examples] Examples of the present invention will be described below. FIG. 1 schematically shows an apparatus for carrying out the present invention, in which a tin compound is put in an evaporator 1,
For example, heat the carrier gas to a temperature of 100 to 150°C, adjust the pressure with valve 8, pass it through flowmeter 2, heat it to around 200°C with heater 3, and insert it into the evaporator 1 at 100 to 300/min. Then, the tin compound vapor is sent to the CVD nozzle 4. On the other hand, a fluorine compound is put in the evaporator 5, which can be heated but kept at room temperature.The pressure of the carrier gas is adjusted with a valve 9 and passed through a flow meter 6, at a rate of 2 to 5 min. It is inserted into the evaporator 5 to send the fluorine compound vapor to the CVD nozzle 4 together with the tin compound vapor.
A CVD nozzle 4 sprays a mixed vapor of tin and a fluorine compound onto a plate glass 7 heated to 500 to 600° C. in a heating furnace to form a SnO 2 (F) coating. Example 1 (CH 3 ) 2 SnCl 2 was used as a tin compound, the evaporation temperature was set at 150°C, it was evaporated at a rate of about 40g/min, and heated air heated to 200°C was sent to the evaporator at 200/min. , as a carrier gas along with (CH 3 ) 2 SnCl 2 vapor to the CVD nozzle. On the other hand, using CF 3 COOH as a fluorine compound, air was inserted into the evaporator at room temperature as a carrier gas for about 3 min.
The CF 7 COOH vapor in the evaporator is approximately 1g/min.
(The ratio of CF 3 COOH to (CH 3 ) 2 SnCl 2 is approximately
It is fed into the CVD nozzle while mixing with ( CH3 ) 2SnCl2 vapor at a ratio of 0.025) and heated in a heating furnace.
20 sheets of unta coated silicon oxide glass with a size of 300 x 300 mm 2 and a thickness of 3 mm heated to 580℃ and 590℃
on the surface being transported at a speed of mm/sec.
Spraying the mixed steam from a CVD nozzle,
A SnO 7 (F) film was formed. As a result, a SnO 2 (F) film having a film thickness of 4700 Å, a resistance value of 9 Ω/□, a visible light transmittance of 76%, and an infrared reflectance (10 μ) of 85% was obtained. FIG. 3 shows the transmittance curve and reflectance curve of the SnO 2 (F) film of this example. Example 2 A SnO 2 (F) film was formed in the same manner as in Example 1 except that (C 4 H 9 )SnCl 3 was used as the tin compound. As a result, the film thickness was 3500Å, the resistance value was 15Ω/□,
A coating with an infrared reflectance (10μ) of 82% was obtained. Examples 3 to 6 In the same manner as in Example 1, the temperature of the carrier air to the CF 3 COOH evaporator was varied from room temperature to 50°C, 0.5 to 2.3 g/
min (the ratio of CF 3 COOH to (CH 3 ) 2 SnCl 2 is about 0.013 to 0.058), that is, 3 to 5/min, and the film was formed at a transport speed of the plate glass of 18 to 25 mm/sec. The results are shown as Examples 3 to 6 in Table 1. Comparative Examples 1 to 4 By using an apparatus as schematically shown in Fig. 2,
(CH 3 ) 2 SnCl 2 at about 40 g/min and CBrF 3 at 20-40 g/min
g/min ((CH 3 ) 2 The ratio of CBrF 3 to SnCl 2 is approximately
0.5 to 1.0), that is, 3 to 5/min, respectively, and by changing the transfer speed of the plate glass, etc., the other conditions were the same as in Example 1, Comparative Example 1
~4 samples. The results are shown in Table 2. Comparative Examples 5 to 9 In the spray method, ( C4H9 ) 2Sn ( CH3CO2 ) 2 ,
Using the three components OCl 3 CH 3 and CF 3 COOH, a mixed solution with the proportions shown in Table 3 was sprayed at a spray rate of about 3 c.c./sec into a 300 x 300 mm 2 heated to a temperature of 590°C. ,
A sample was prepared by spraying it onto the surface of a 3 mm thick plate glass. The results are shown in Table 3. Comparative Examples 10 to 12 In the same manner as Comparative Examples 5 to 9, only the solution was changed, namely, Sn(C 5 H 8 O 2 ) 4 , CCl 3 CH 3 ,
Using the three components of CF 3 COOH, a mixed solution having the proportions shown in Table 4 was sprayed to prepare a sample. The results are shown in Table 4. [Effects of the Invention] Examples 1 to 6 of the present invention and the transmittance and reflectance curves shown in FIG. As is clear from comparing 2 to 4,
Even if (CH 3 ) 2 SnCl 2 is used, CF 3 COOH is better.
It has better resistance value and infrared reflectance than CBrF 3 .

【表】【table】

【表】【table】

【表】【table】

【表】 に2.5〜5μの範囲ではCF3COOHの方がCBrF3
り赤外線反射率が優れている。またCF3COOHを
使用した方がCBrF3より添加量が微量でよいので
経済的であるとともに公害上も好ましいという結
果を得た。 さらに表3および表4で示す混合溶液の一成分
としてCF3COOHを用いているスプレー法につい
て本発明の実施例と対比してみると明らかに酸化
珪素のアンダーコートをしないスプレー法とはい
え、被膜の抵抗値および赤外線反射率(10μ)に
おいても本発明の結果より格段に悪く相違なるグ
レードのものであり、CF3COOHの添加量におい
ても本比較例の方が断然多く、効率が悪いもので
ある。 以上のように本発明によれば、微量のフルオロ
カルボン酸をCVD法に適用し、しかも有機錫ハ
ライド類を用いれば、より効果的に成膜ができ、
優れた低抵抗と高赤外線反射率の被膜が経済的に
得られ、その優れた品質を確実となし得るので、
広い分野の材料に採用し得るという顕著な作用効
果を奏するものである。
[Table] In the range of 2.5 to 5μ, CF 3 COOH has better infrared reflectance than CBrF 3 . Furthermore, it was found that the use of CF 3 COOH is more economical and preferable in terms of pollution since only a small amount is needed than CBrF 3 . Furthermore, when comparing the spray method using CF 3 COOH as a component of the mixed solution shown in Tables 3 and 4 with the examples of the present invention, it is clear that although it is a spray method that does not undercoat silicon oxide, The resistance value and infrared reflectance (10 μ) of the film are also of a grade that is significantly worse and different from the results of the present invention, and the amount of CF 3 COOH added in this comparative example is also far greater, which is less efficient. It is. As described above, according to the present invention, by applying a small amount of fluorocarboxylic acid to the CVD method and using organic tin halides, film formation can be made more effectively.
A coating with excellent low resistance and high infrared reflectance can be obtained economically, and its excellent quality can be ensured.
It has remarkable effects and can be applied to materials in a wide range of fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する一装置の模式図、第
2図は従来のCVD法における一装置の模式図、
第3図は本発明の一実施例の透過率および反射率
を示す曲線である。 1,5,10…蒸発器、3,12…加熱器、1
4…ボンベ、4,13…CVD用ノズル、2,6,
11,15…流量計、7,16…板ガラス、8,
9,17,18…バルブ。
FIG. 1 is a schematic diagram of an apparatus for carrying out the present invention, FIG. 2 is a schematic diagram of an apparatus for a conventional CVD method,
FIG. 3 is a curve showing the transmittance and reflectance of an embodiment of the present invention. 1, 5, 10... Evaporator, 3, 12... Heater, 1
4...Cylinder, 4,13...CVD nozzle, 2,6,
11, 15...Flowmeter, 7,16...Plate glass, 8,
9, 17, 18...Valve.

Claims (1)

【特許請求の範囲】 1 加熱されたガラス基板表面上に、有機錫ハラ
イド類である錫化合物およびフツ素化合物の混合
蒸気を噴出させて酸化錫被膜を形成する方法にお
いて、フツ素化合物としてフルオロカルボン酸
を、錫化合物に対し、重量比で0.01〜0.058の割
合で用いることを特徴とする透明導電薄膜の形成
方法。 2 前記フツ素化合物としてフルオロカルボン酸
が、CF3COOH、C3F7COOH、CF3CH=
CHCOOHであることを特徴とする特許請求の範
囲第1項に記載の透明導電薄膜の形成方法。
[Claims] 1. In a method of forming a tin oxide film by ejecting a mixed vapor of a tin compound, which is an organotin halide, and a fluorine compound onto the surface of a heated glass substrate, fluorocarbon is used as the fluorine compound. 1. A method for forming a transparent conductive thin film, characterized in that an acid is used in a weight ratio of 0.01 to 0.058 to a tin compound. 2 The fluorocarboxylic acid as the fluorine compound is CF 3 COOH, C 3 F 7 COOH, CF 3 CH=
The method for forming a transparent conductive thin film according to claim 1, wherein CHCOOH is used.
JP2818985A 1985-02-18 1985-02-18 Formation of transparent conductive thin film Granted JPS61188821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2818985A JPS61188821A (en) 1985-02-18 1985-02-18 Formation of transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2818985A JPS61188821A (en) 1985-02-18 1985-02-18 Formation of transparent conductive thin film

Publications (2)

Publication Number Publication Date
JPS61188821A JPS61188821A (en) 1986-08-22
JPH0450683B2 true JPH0450683B2 (en) 1992-08-17

Family

ID=12241742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2818985A Granted JPS61188821A (en) 1985-02-18 1985-02-18 Formation of transparent conductive thin film

Country Status (1)

Country Link
JP (1) JPS61188821A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175118A (en) * 1987-12-28 1989-07-11 Central Glass Co Ltd Formation of transparent conducting film
JP2007153701A (en) * 2005-12-07 2007-06-21 Fujikura Ltd Heat ray reflection glass, film forming apparatus and film forming method
JP5048862B1 (en) * 2011-10-28 2012-10-17 シャープ株式会社 Film formation method on glass substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684809A (en) * 1979-12-14 1981-07-10 Hitachi Ltd Method of forming transparent conductive film
JPS5830007A (en) * 1981-08-17 1983-02-22 三洋電機株式会社 Method of producing transparent conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684809A (en) * 1979-12-14 1981-07-10 Hitachi Ltd Method of forming transparent conductive film
JPS5830007A (en) * 1981-08-17 1983-02-22 三洋電機株式会社 Method of producing transparent conductive film

Also Published As

Publication number Publication date
JPS61188821A (en) 1986-08-22

Similar Documents

Publication Publication Date Title
KR100577945B1 (en) Method for Forming Tin Oxide Coating on Glass
US4500567A (en) Method for forming tin oxide coating
IE46333B1 (en) Coating of supports with tin oxide
JPH0196044A (en) Formation of low radiation rate metal oxide coating
CN1020582C (en) Non-glare coated glass
US4743506A (en) Tin oxide coated article
US4600654A (en) Method of producing transparent, haze-free tin oxide coatings
US5004490A (en) Method of making glass substrate coated with tin oxide
GB2275692A (en) Coated glass having a substratum comprising oxides of aluminium titanium and vanadium
JPH0450683B2 (en)
JPS6236046A (en) Formation of tin oxide film
AU575648B2 (en) Iridescence suppressing coating process
CA2193158A1 (en) Method for the pyrolytic coating of glass and glass ceramics
US5417757A (en) Liquid precursor for the production of fluorine doped tin oxide coatings and corresponding coating process
EP0158399B1 (en) Liquid coating composition for producing high quality, high performance fluorine-doped tin oxide coatings
KR920007956B1 (en) Method of producting transparent haze-free tin oxide coatings
JPH0217496B2 (en)
CA1333515C (en) Liquid coating composition comprising an organic di-or tricarboxylate and an organic fluoroacid, and chemical vapor deposition method for forming a fluorine-doped tin oxide coating on glass having low bulk resistivity and low haze values
US5385751A (en) Atmospheric pressure CVD process for preparing fluorine-doped tungsten oxide films
JPS6147227B2 (en)
US3331702A (en) Iridizing method
JPS6214221B2 (en)
JP2009517312A (en) Deposition of ruthenium oxide coatings on substrates
JPH046796B2 (en)
JPS6183650A (en) Production of transparent electrically-conductive glass