JP2568079B2 - Method for forming tin oxide transparent conductive film - Google Patents

Method for forming tin oxide transparent conductive film

Info

Publication number
JP2568079B2
JP2568079B2 JP62076305A JP7630587A JP2568079B2 JP 2568079 B2 JP2568079 B2 JP 2568079B2 JP 62076305 A JP62076305 A JP 62076305A JP 7630587 A JP7630587 A JP 7630587A JP 2568079 B2 JP2568079 B2 JP 2568079B2
Authority
JP
Japan
Prior art keywords
tin oxide
transparent conductive
conductive film
glass substrate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62076305A
Other languages
Japanese (ja)
Other versions
JPS63242947A (en
Inventor
邦彦 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62076305A priority Critical patent/JP2568079B2/en
Publication of JPS63242947A publication Critical patent/JPS63242947A/en
Application granted granted Critical
Publication of JP2568079B2 publication Critical patent/JP2568079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)
  • Chemical Vapour Deposition (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガラス基板上に化学的成膜法を用いて酸化錫
透明導電膜を形成する改良された方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to an improved method for forming a tin oxide transparent conductive film on a glass substrate by using a chemical film forming method.

[従来の技術] 従来からガラス基板上に透明導電膜を形成する方法と
して、スプレー法、常圧CVD法、減圧CVD法、真空蒸着
法、スパッタ法等が知られている。これらの中で、酸化
錫膜に関してはスプレー法、CVD法(以下化学的成膜法
と記す)が広く行われており、その原料としては四塩化
錫または各種の有機錫化合物が使用される。四塩化錫を
用いた場合その成膜速度は速いが、形成された膜に多大
のヘイズ(曇り)が生じやすい欠点があり、有機錫化合
物を用いた場合には、ヘイズが生じにくい代りに成膜速
度がきわめて遅いという欠点があった。
[Prior Art] Conventionally, as a method for forming a transparent conductive film on a glass substrate, a spray method, a normal pressure CVD method, a low pressure CVD method, a vacuum deposition method, a sputtering method and the like are known. Among these, a spray method and a CVD method (hereinafter referred to as a chemical film forming method) are widely used for a tin oxide film, and tin tetrachloride or various organic tin compounds are used as a raw material thereof. When tin tetrachloride is used, the film formation rate is fast, but there is a drawback that a large amount of haze (cloudiness) is likely to occur in the formed film. When an organic tin compound is used, haze is less likely to occur, but There was a drawback that the film speed was extremely slow.

[発明の解決しようとする問題点] 本発明は、従来技術が有していた前述の問題点を解決
し、太陽電池基板用酸化錫透明導電膜を高速に成膜でき
る方法を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of the prior art and provides a method capable of forming a tin oxide transparent conductive film for a solar cell substrate at high speed. To aim.

[問題点を解決するための手段] 本発明は、前述の問題点を解決すべくなされたもので
あり、加熱されたガラス基板表面に有機錫化合物の蒸気
及び/又は液体を接触させて熱分解酸化反応によりガラ
ス基板面に酸化錫透明導電膜を成膜する方法において、
常圧CVD法を用い、上記熱分解酸化反応時に水/錫のモ
ル比が10〜300となるように水分を介在させることを特
徴とする太陽電池基板用酸化錫透明導電膜の形成方法を
提供するものである。
[Means for Solving Problems] The present invention has been made to solve the above-mentioned problems, and the vapor and / or liquid of an organotin compound is brought into contact with the surface of a heated glass substrate to cause thermal decomposition. In the method of forming a tin oxide transparent conductive film on a glass substrate surface by an oxidation reaction,
A method for forming a tin oxide transparent conductive film for a solar cell substrate, which comprises using a normal pressure CVD method and interposing water so that a water / tin molar ratio becomes 10 to 300 during the thermal decomposition oxidation reaction. To do.

以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明において使用されるガラス基板としては、普通
板ガラス、フロート板ガラスなどのソーダライムシリケ
ートガラス板が一般的であるが、その他アルミノシリケ
ートガラス板、硼珪酸塩ガラス板、リシウムアルミノシ
リケートガラス板、石英ガラス板、その他の各種ガラス
板も使用できる。なお、ソーダライムシリケートガラス
などのナトリウムを含有するガラスからなるガラス基
板、又は低アルカリ含有のガラスからなる基板の場合に
はガラス表面からナトリウムが溶出してその上面に形成
される透明導電膜に悪影響を及ぼさない様に、例えばヘ
イズが発生しない様に、又導電膜の結晶性や導電性が改
善される様にシリカ、アルミナ、ジルコニア、チタニア
などのアルカリバリヤーコートをガラス基板面に施して
もよい。又、ガラス基板の厚さは特に限定はされない
が、光の透過率の低下、重量の極端な上昇、強度低下、
取扱いの不便さが起こらない様に、0.5mm〜6mmが適当で
ある。
As the glass substrate used in the present invention, ordinary plate glass, soda lime silicate glass plate such as float plate glass is generally, but other aluminosilicate glass plate, borosilicate glass plate, lithium aluminosilicate glass plate, quartz Glass plates and other various glass plates can also be used. In the case of a glass substrate made of glass containing sodium such as soda lime silicate glass or a substrate made of glass containing low alkali, sodium is eluted from the glass surface and adversely affects the transparent conductive film formed on the upper surface. Alkali barrier coating such as silica, alumina, zirconia, and titania may be applied to the glass substrate surface so that haze does not occur and crystallinity or conductivity of the conductive film is improved. . The thickness of the glass substrate is not particularly limited, but the light transmittance is reduced, the weight is extremely increased, the strength is reduced,
0.5mm ~ 6mm is suitable to avoid inconvenience of handling.

本発明において酸化錫透明導電膜を成膜する方法とし
ては、ガラス基板表面に有機錫化合物の蒸気を接触させ
て熱分解酸化反応等により成膜する常圧CVD法が適用さ
れる。
In the present invention, as a method for forming the tin oxide transparent conductive film, an atmospheric pressure CVD method is used in which vapor of an organic tin compound is brought into contact with the surface of a glass substrate to form a film by a thermal decomposition oxidation reaction or the like.

本発明において使用される有機錫化合物としては、
(CH32SnCl2,(CH33SnCl,(C2H52SnCl2,(C2H5
3SnCl,(C4H92SnCl2,(C4H9)SnCl3,(C6H52SnCl2
などの有機塩化錫、(CH3)SnBr3,(CH32SnBr2,(C
H33SnBr,(C2H53SnBrなどの有機臭化錫、(CH32S
nF2,(CH33SnF,(C2H52SnF2,(C2H53SnF,(C
6H53SnFなどの有機フッ化錫、あるいは(CH3)SnI3,
(CH32SnI2,(CH33SnI,(C2H52SnI2,(C2H53Sn
Iなどの有機ヨウ化錫、あるいはその他の各種有機ハロ
ゲン化錫が好ましく使用できる。
Examples of the organic tin compound used in the present invention include:
(CH 3) 2 SnCl 2, (CH 3) 3 SnCl, (C 2 H 5) 2 SnCl 2, (C 2 H 5)
3 SnCl, (C 4 H 9 ) 2 SnCl 2 , (C 4 H 9 ) SnCl 3 , (C 6 H 5 ) 2 SnCl 2
Organic tin chloride, such as (CH 3 ) SnBr 3 , (CH 3 ) 2 SnBr 2 , (C
Organic tin bromide such as H 3 ) 3 SnBr, (C 2 H 5 ) 3 SnBr, (CH 3 ) 2 S
nF 2 , (CH 3 ) 3 SnF, (C 2 H 5 ) 2 SnF 2 , (C 2 H 5 ) 3 SnF, (C
6 H 5 ) 3 SnF or other organic tin fluoride, or (CH 3 ) SnI 3 ,
(CH 3) 2 SnI 2, (CH 3) 3 SnI, (C 2 H 5) 2 SnI 2, (C 2 H 5) 3 Sn
Organic tin iodides such as I, or other various organic tin halides can be preferably used.

本発明において、有機錫化合物を使用する際には、1
種類を使用してもよいし、あるいは複数種類組み合わせ
て使用してもよい。特に、常圧CVD法には、(CH32SnC
l2,(C4H9)SnCl3、等比較的低温で蒸気圧の高い化合物
が特に好ましい。
In the present invention, when the organotin compound is used, 1
Types may be used, or a plurality of types may be used in combination. Especially, for the atmospheric pressure CVD method, (CH 3 ) 2 SnC
Compounds having a relatively high vapor pressure at a relatively low temperature, such as l 2 and (C 4 H 9 ) SnCl 3 , are particularly preferable.

かかる有機錫化合物は、蒸気として、あるいはかかる
有機錫化合物を適宜の有機溶媒に溶かしてなる液体とし
てガラス基板に接触させる。蒸気として適用する場合に
は、例えば有機錫化合物の蒸気をキャリアガスにより圧
送し、この蒸気をCVD用吐出ノズルの先端からガラス基
板面に向けて吐出させる方法が採用される。
The organotin compound is brought into contact with the glass substrate as vapor or as a liquid obtained by dissolving the organotin compound in an appropriate organic solvent. When applied as vapor, for example, a method in which vapor of an organotin compound is pressure-fed by a carrier gas and the vapor is ejected toward the glass substrate surface from the tip of a CVD ejection nozzle.

本発明においては、有機錫化合物が熱分解反応する際
に水分即ち水又は水蒸気を介在させることを特徴とす
る。例えば、水蒸気を有機錫化合物の蒸気をガラス基板
面まで圧送するキャリアガスの経路途中で混入したり、
あるいはキャリアガスとは別系統の経路でキャリアガス
とガラスとの接触箇所で供給し、有機錫化合物の蒸気が
ガラス基板面と接触する際に水蒸気が存在する様にされ
る。空気、不活性ガス等のキャリアガスに有機錫化合物
の蒸気及び水蒸気を混入してキャリアガスの圧力をもっ
てガラス基板面に吐出させる方法が効率面を考慮すると
最適である。水分の存在する割合は、太陽電池基板用の
ため供給する水とガラス基板面に供給する有機錫化合物
を錫との割合即ち水/錫(モル比)を10〜300の範囲と
する。
The present invention is characterized in that water, that is, water or water vapor is interposed during the thermal decomposition reaction of the organotin compound. For example, water vapor may be mixed in the path of the carrier gas that pumps the vapor of the organic tin compound to the glass substrate surface,
Alternatively, the carrier gas is supplied at a contact point between the carrier gas and the glass through a route different from the carrier gas so that the water vapor is present when the vapor of the organotin compound comes into contact with the glass substrate surface. Considering efficiency, the method of mixing vapor of the organic tin compound and water vapor into a carrier gas such as air or an inert gas and discharging the mixture to the surface of the glass substrate under the pressure of the carrier gas is optimal. The ratio of water present is such that the ratio of water supplied for the solar cell substrate and tin of the organic tin compound supplied to the glass substrate surface, that is, water / tin (molar ratio) is in the range of 10 to 300.

酸化錫透明導電膜をガラス基板面に形成する際のガラ
ス基板の温度は、反応効率、着膜効率、膜性能などの点
から一般に400℃以上、ガラス基板の熱変形温度以下が
好ましい。
The temperature of the glass substrate when the tin oxide transparent conductive film is formed on the surface of the glass substrate is generally 400 ° C. or higher and the heat deformation temperature of the glass substrate or lower in view of reaction efficiency, film deposition efficiency, film performance and the like.

又、本発明においては、酸化錫膜の導電性調整のため
に、有機錫化合物の熱分解酸化反応時にフッ素成分やア
ンチモン成分などを存在させることもできる。具体的に
は、有機錫化合物の蒸気、又は液体にフッ酸、フッ化ア
ンモニウム、トリフロロ酢酸、五塩化アンチモン、トリ
ブチルアンチモンなどのドーパント付与成分を混合して
ガラス基板面に作用させるか、あるいは有機錫化合物の
蒸気、又は液体と別にドーパント付与成分をガラス基板
面に向けて供給し、この蒸気、又は液体とドーパント付
与成分とをガラス基板上で混合させるかなどして有機錫
化合物の熱分解酸化反応時にフッ素成分やアンチモン成
分などを共存させる。
Further, in the present invention, in order to adjust the conductivity of the tin oxide film, a fluorine component, an antimony component or the like may be present during the thermal decomposition and oxidation reaction of the organotin compound. Specifically, a vapor or liquid of an organotin compound is mixed with a dopant-imparting component such as hydrofluoric acid, ammonium fluoride, trifluoroacetic acid, antimony pentachloride, or tributylantimony to act on the glass substrate surface, or organotin. A pyrolysis oxidation reaction of an organotin compound by supplying a dopant-providing component toward the glass substrate surface separately from the vapor or liquid of the compound and mixing the vapor or liquid with the dopant-providing component on the glass substrate. Sometimes fluorine and antimony components coexist.

[作用] 本発明において、有機錫化合物が熱分解酸化反応する
際に水分を介在させることにより成膜スピードが向上す
ることの理由は必ずしも明瞭ではないが、有機錫化合
物、特にハロゲンを含む有機錫化合物の分解に際して加
水分解反応を促進せしめる作用をし、それによって成膜
速度が向上するが、同時に錫に有機官能基も結合してい
るため、四塩化錫を用いた場合のように粒子が巨大に成
長するには至らないものと推定される。
[Function] In the present invention, the reason why the film formation speed is improved by interposing water during the thermal decomposition and oxidation reaction of the organotin compound is not necessarily clear, but the organotin compound, particularly the organotin containing halogen, is not clear. When the compound is decomposed, it acts to accelerate the hydrolysis reaction, which improves the film formation rate, but since the organic functional group is also bonded to tin at the same time, the particles are very large like when tin tetrachloride is used. It is estimated that it will not grow to.

[実施例] 次に、本発明の実施例について説明する。[Examples] Next, examples of the present invention will be described.

実施例1 膜厚約1000Åの酸化ケイ素アルカリバリヤー膜が形成
されたガラス基板を約520℃に加熱し、上記アルカリバ
リヤー膜形成面上にジメチルジクロル錫[(CH32SnCl
2]の蒸気と水蒸気とを用いて常圧CVD法により酸化銀膜
を形成した。この際、各サンプルについてガラス基板面
にCVD用ノズルからキャリアガスにより供給される(C
H32SnCl2とH2Oとのモル比(H2O/(CH32SnCl2)を種
々変化させた。この方法により成膜された酸化錫膜の膜
厚と介在される水分の割合、即ちH2O/(CH32SnCl2
比と膜厚との関係を第1図に示した。又同様にH2O/(CH
32SnCl2の比と比抵抗との関係を第2図に、又H2O/(C
H32SnCl2の比とヘイズとの関係を第3図に示した。
Example 1 A glass substrate on which a silicon oxide alkali barrier film having a thickness of about 1000 Å was formed was heated to about 520 ° C., and dimethyldichlorotin [(CH 3 ) 2 SnCl 2 was formed on the surface on which the alkali barrier film was formed.
[2 ] was used to form a silver oxide film by atmospheric pressure CVD. At this time, for each sample, it is supplied to the glass substrate surface by a carrier gas from a CVD nozzle (C
The molar ratio of H 3 ) 2 SnCl 2 and H 2 O (H 2 O / (CH 3 ) 2 SnCl 2 ) was changed variously. The relationship between the film thickness of the tin oxide film formed by this method and the proportion of intervening water, that is, the ratio of H 2 O / (CH 3 ) 2 SnCl 2 and the film thickness is shown in FIG. Similarly, H 2 O / (CH
3 ) The relationship between the ratio of 2 SnCl 2 and the specific resistance is shown in Fig. 2 as well as H 2 O / (C
The relationship between the ratio of H 3 ) 2 SnCl 2 and haze is shown in FIG.

第1図から明らかな様に、水の添加量の増加に応じて
酸化錫膜の膜厚が増加することが認められる。又、第2
図から水を添加しても酸化錫膜の導電膜としての電気特
性は劣化しないことが認められる。
As is clear from FIG. 1, it is recognized that the film thickness of the tin oxide film increases as the amount of water added increases. Also, the second
From the figure, it can be seen that the electrical characteristics of the tin oxide film as a conductive film do not deteriorate even if water is added.

なお、第1図における△印はキャリアガスとして窒素
を用いた場合の結果を、○印は空気を用いた場合の結果
を示している。第1図から両者の間には膜厚と水の添加
割合との関係の差は認められない。この結果から大気中
に含まれる水分では添加する水量として全く不十分であ
ることがわかる。
In FIG. 1, the mark Δ indicates the result when nitrogen was used as the carrier gas, and the mark ○ indicates the result when air was used. From FIG. 1, there is no difference between the two in the relationship between the film thickness and the water addition ratio. From this result, it is understood that the water content in the atmosphere is not sufficient as the amount of water to be added.

第3図は水を過剰に添加した場合のヘイズ値の変化を
測定した結果であるが、図から明らかなように大過剰の
水の添加はヘイズの増加をもたらし、一般的には不適当
である。しかし近年太陽電池基板として若干ヘイズのあ
る導電膜が好まれる場合もあり、このような用途に対し
ては大過剰の水を添加して成膜することはきわめて効果
的であることが認められる。
FIG. 3 shows the results of measuring the change in haze value when water is added excessively. As is clear from the figure, the addition of a large excess of water leads to an increase in haze, which is generally inappropriate. is there. However, in recent years, a conductive film having a little haze may be preferred as a solar cell substrate, and it is recognized that the film formation by adding a large excess of water is extremely effective for such applications.

[発明の効果] 本発明によれば、化学的成膜法において有機錫化合
物、特にハロゲンを含む有機錫化合物を用いてガラス基
板上に太陽電池基板用酸化錫透明導電膜を高速に成膜す
ることが可能になる。
EFFECTS OF THE INVENTION According to the present invention, a tin oxide transparent conductive film for a solar cell substrate is rapidly formed on a glass substrate by using an organic tin compound, particularly an organic tin compound containing halogen in a chemical film forming method. It will be possible.

さらに、本発明の作用をハロゲンを含まない有機スズ
化合物と錫ハロゲン化物の混合系(例えばテトラメチル
錫と四塩化錫の混合物を出発原料とした酸化錫膜の化学
的成膜法)に応用し、系に適量の水を添加することは成
膜速度向上の観点からきわめて有効である。
Furthermore, the effect of the present invention is applied to a mixed system of a halogen-free organotin compound and a tin halide (for example, a chemical film formation method of a tin oxide film using a mixture of tetramethyltin and tin tetrachloride as a starting material). It is extremely effective to add an appropriate amount of water to the system from the viewpoint of improving the film formation rate.

【図面の簡単な説明】[Brief description of drawings]

第1図は常圧CVD法による酸化錫透明導電膜の膜厚とH2O
/(CH32SnCl2の比との関係グラフ、第2図は常圧CVD
法による酸化錫透明導電膜の比抵抗とH2O/(CH32SnCl
2の比との関係グラフ、第3図は常圧CVD法による酸化錫
透明導電膜のヘイズとH2O/(CH32SnCl2の比との関係
グラフを示す。
Fig. 1 shows the film thickness and H 2 O of the transparent conductive tin oxide film by atmospheric pressure CVD method.
/ (CH 3 ) 2 SnCl 2 ratio graph, Fig. 2 shows atmospheric pressure CVD
Resistivity of H 2 O / (CH 3 ) 2 SnCl
FIG. 3 shows a relationship graph with the ratio of 2 , and FIG. 3 shows a relationship graph with the ratio of H 2 O / (CH 3 ) 2 SnCl 2 to the haze of the transparent conductive tin oxide film by the atmospheric pressure CVD method.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加熱されたガラス基板表面に有機錫化合物
の蒸気及び/又は液体を接触させて熱分解酸化反応によ
りガラス基板面に酸化錫透明導電膜を成膜する方法にお
いて、常圧CVD法を用い、上記熱分解酸化反応時に水/
錫のモル比が10〜300となるように水分を介在させるこ
とを特徴とする太陽電池基板用酸化錫透明導電膜の形成
方法。
1. A method for forming a tin oxide transparent conductive film on a glass substrate surface by contacting vapor and / or liquid of an organotin compound to the heated glass substrate surface to form a tin oxide transparent conductive film at atmospheric pressure CVD method. Of water / water during the thermal decomposition oxidation reaction
A method for forming a tin oxide transparent conductive film for a solar cell substrate, which comprises interposing water so that the molar ratio of tin is 10 to 300.
【請求項2】有機錫化合物がハロゲンを含む有機錫化合
物であることを特徴とする特許請求の範囲第1項記載の
酸化錫透明導電膜の形成方法。
2. The method for forming a tin oxide transparent conductive film according to claim 1, wherein the organotin compound is a halogen-containing organotin compound.
JP62076305A 1987-03-31 1987-03-31 Method for forming tin oxide transparent conductive film Expired - Fee Related JP2568079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076305A JP2568079B2 (en) 1987-03-31 1987-03-31 Method for forming tin oxide transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076305A JP2568079B2 (en) 1987-03-31 1987-03-31 Method for forming tin oxide transparent conductive film

Publications (2)

Publication Number Publication Date
JPS63242947A JPS63242947A (en) 1988-10-07
JP2568079B2 true JP2568079B2 (en) 1996-12-25

Family

ID=13601658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076305A Expired - Fee Related JP2568079B2 (en) 1987-03-31 1987-03-31 Method for forming tin oxide transparent conductive film

Country Status (1)

Country Link
JP (1) JP2568079B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738813B1 (en) 1995-09-15 1997-10-17 Saint Gobain Vitrage SUBSTRATE WITH PHOTO-CATALYTIC COATING
AU5820199A (en) * 1998-09-17 2000-04-03 Libbey-Owens-Ford Co. Heat strengthened coated glass article and method for making same
US6602606B1 (en) 1999-05-18 2003-08-05 Nippon Sheet Glass Co., Ltd. Glass sheet with conductive film, method of manufacturing the same, and photoelectric conversion device using the same
JP4272534B2 (en) * 2002-01-28 2009-06-03 日本板硝子株式会社 Method for producing glass substrate provided with transparent conductive film, glass substrate provided with transparent conductive film, and photoelectric conversion device using the same
CN1293589C (en) * 2003-07-23 2007-01-03 西安理工大学 Method of making transparent electrode on optical fiber panel surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437120A (en) * 1977-08-27 1979-03-19 Nippon Sheet Glass Co Ltd Method of forming metal oxide thin layer on surface of glass
JPS61186478A (en) * 1985-02-15 1986-08-20 Central Glass Co Ltd Forming of conductive film

Also Published As

Publication number Publication date
JPS63242947A (en) 1988-10-07

Similar Documents

Publication Publication Date Title
KR100577945B1 (en) Method for Forming Tin Oxide Coating on Glass
US4371740A (en) Conductive elements for photovoltaic cells
CA1171328A (en) Method for forming conductive, transparent coating on a substrate
JPS6361388B2 (en)
JPS61227946A (en) Electroconductive glass
JP2568079B2 (en) Method for forming tin oxide transparent conductive film
US4770901A (en) Process for formation of tin oxide film
JP2000109342A5 (en)
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
EP0745605B1 (en) Liquid methyltin halide compositions
JP2530027B2 (en) Liquid coating composition
US4619704A (en) Composition for forming a transparent conductive film
JPH0742572B2 (en) Transparent conductive film
JPH04214047A (en) Method for forming silicon oxycarbide layer on glass support and product containing semiconductor layer
JPH01227307A (en) Transparent electric conductor
CA1131742A (en) Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer
US4235945A (en) High resistivity electroconductive tin oxide films
EP0148608B1 (en) Film-forming composition comprising indium and tin compounds
JPS6380413A (en) Transparent conductor
JPH0572686B2 (en)
PT78198A (en) DEPOSITION OF A TIN OXIDE LAYER ON A SUBSTRATE FROM GASEOUS TIN COMPOUNDS
EP1480276A1 (en) Substrate for photoelectric conversion device
JP2005029463A (en) Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate
JP3004679B2 (en) Method of forming transparent conductive film
JPH07112076B2 (en) Transparent conductive film body having a two-layer structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees