JPH02172821A - Formation of superconducting thin film - Google Patents

Formation of superconducting thin film

Info

Publication number
JPH02172821A
JPH02172821A JP63323296A JP32329688A JPH02172821A JP H02172821 A JPH02172821 A JP H02172821A JP 63323296 A JP63323296 A JP 63323296A JP 32329688 A JP32329688 A JP 32329688A JP H02172821 A JPH02172821 A JP H02172821A
Authority
JP
Japan
Prior art keywords
substrate
thin film
film
superconducting thin
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63323296A
Other languages
Japanese (ja)
Inventor
Akira Tsukamoto
晃 塚本
Toshiyuki Aida
会田 敏之
Tokumi Fukazawa
深沢 徳海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63323296A priority Critical patent/JPH02172821A/en
Publication of JPH02172821A publication Critical patent/JPH02172821A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the Bi-Sr-Ca-Cu-O-based or Tl-Ba-Ca-Cu-O-based superconducting film having high critical temp. and critical current by using a specified laminated multicomponent bismuth oxide as a substrate to form the film by sputtering or vapor deposition. CONSTITUTION:The substrate 1 consisting of the laminated multicomponent bismuth oxide (e.g. Bi4Ti3O12 and BaBi4Ti4O15) having a structure shown by the formula is obtained (A is the perovskite-structure A site ion selected from K, Na, Li, Bi, Mg, Sr, Ca, Ba, Y, La, etc., and B is the B site ion selected from Ti, Nb, Cu, Ni, and Cr). A superconducting thin film is then formed on the substrate 1 by sputtering, vapor deposition, etc., and the Bi-Sr-Ca-Cu-O-based or Tl-Ba-Ca-Cu-O-based superconducting thin film 2 having a high orientational property is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高出力のマグネット、ジョセフソン素子、5Q
UID等に用いられている超電導材料に係り、特に液体
窒素温度以上で動作する酸化物系高温超電導体の薄膜の
作製に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention applies to high-output magnets, Josephson elements, 5Q
The present invention relates to superconducting materials used in UIDs and the like, and particularly relates to the production of thin films of oxide-based high-temperature superconductors that operate at temperatures above liquid nitrogen temperature.

〔従来の技術〕[Conventional technology]

1988年1月に金属材料研究所の前出らによって発見
されたBi−Sr  Ca−Cu−0系超電導体は10
0K以上の臨界温度を示す。しかしこの系は組成の異な
る多くの相が混在しており単−相が得られていない。エ
レクトロニクス応用を目的として、薄膜化は重要である
が、現在MgO基板あるいはSrTiO3基板上ではC
軸配向した超電導膜が得られているが、超電導相以外の
他の相も含んでいる。薄膜の作製に関する代表的なもの
としてはジャパニーズ ジャーナル オブ アプライド
 フィジックス 26.(1988)第5625頁から
第L627頁(J pn、 J 、 Appl。
The Bi-Sr Ca-Cu-0 superconductor discovered by Mae et al. of the Institute for Materials Research in January 1988 has 10
Indicates a critical temperature of 0K or higher. However, this system contains many phases with different compositions, and a single phase cannot be obtained. Film thinning is important for electronics applications, but currently C
Although an axially oriented superconducting film has been obtained, it also contains phases other than the superconducting phase. A typical book on thin film production is Japanese Journal of Applied Physics 26. (1988) pp. 5625-L627 (J pn, J, Appl.

Phys、26 (1988)L625〜L627)等
が挙げられる。
Phys, 26 (1988) L625-L627).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

臨界温度100Kを越えるBi−3r−Ca−Cu系超
電導体は第2図に示すような層状構造をもっている。B
i202Mの間のペロブスカイト構造のCu−0面数が
異なる相やCa2Cub、、CuOなど他の相が存在す
るため、単一相を得ることができない。薄膜化した場合
超電導がC軸配向した膜が得られるが、この場合も多く
の他の相を含んでいる。
A Bi-3r-Ca-Cu superconductor with a critical temperature exceeding 100K has a layered structure as shown in FIG. B
A single phase cannot be obtained because other phases such as Ca2Cub, CuO, and other phases with different numbers of Cu-0 planes in the perovskite structure between i202M exist. When the film is made thin, a film in which the superconductor is C-axis oriented is obtained, but in this case also it contains many other phases.

本発明の目的は超電導相と非常に類似した構造をもつ基
板を使用することにより、配向性の高い超電導相単結晶
薄膜あるいはエピタキシャル成長した超電導相単結晶薄
膜を作製し、高臨界温度、高臨界電流の高品質膜を得る
ことにある。
The purpose of the present invention is to fabricate a highly oriented superconducting phase single crystal thin film or an epitaxially grown superconducting phase single crystal thin film by using a substrate with a structure very similar to that of the superconducting phase, and to produce a superconducting phase single crystal thin film with high critical temperature and high critical current. The aim is to obtain high quality membranes.

〔課題を解決するための手段〕[Means to solve the problem]

Bi−5r−Ca−Cu−0系超電導体と類似した結晶
構造をもつ基板材料を使用することで達成される。
This is achieved by using a substrate material with a crystal structure similar to the Bi-5r-Ca-Cu-0 superconductor.

すなわち、本発明の特徴は、Bi−5r−Ca−Cu−
0系またはTi−Ba−Ca−Cu−0系超電導薄膜作
製法において、 (Bit oz)2′″(A、−4R,03,、、)2
−  [Aは、K。
That is, the feature of the present invention is that Bi-5r-Ca-Cu-
0 system or Ti-Ba-Ca-Cu-0 system superconducting thin film production method, (Bit oz)2'''(A, -4R,03,,)2
- [A is K.

Na、 Li、 Bi、 Mg、 Sr、 Ca、 B
a、またはY、Laその他の希土類元素から選ばれるペ
ロブスカイト構造のAサイトオン、Rは、Tj。
Na, Li, Bi, Mg, Sr, Ca, B
a, or the A site of the perovskite structure selected from Y, La, and other rare earth elements, and R is Tj.

Nb、Cu、Ni、Crから選ばれるBサイトオン]の
構造をもつ層状複合ビスマス酸化物を基板として用い、
スパッタ法または蒸着法により膜を作製する超電導薄膜
作製法にある。
Using a layered composite bismuth oxide with a structure of B site selected from Nb, Cu, Ni, and Cr as a substrate,
A method for producing a superconducting thin film in which a film is produced using a sputtering method or a vapor deposition method.

上記層状複合ビスマス酸化物は、Bi−Sr−Ca −
Cu −0系またはTi−Ba−Ca−Cu−〇系超電
導体と類似した結晶構造をもつため、基板として用いる
と堆積した膜が結晶化する際、基板との相互作用によっ
て基板の面方位に薄膜の面方位が合うように配向した膜
あるいはエピタキシャル成長した膜を作製することがで
きる。
The layered composite bismuth oxide is Bi-Sr-Ca-
Since it has a crystal structure similar to that of Cu-0-based or Ti-Ba-Ca-Cu-〇-based superconductors, when used as a substrate, when the deposited film crystallizes, the surface orientation of the substrate changes due to interaction with the substrate. It is possible to produce a film that is oriented so that the plane orientation of the thin film matches, or a film that is epitaxially grown.

〔作用〕[Effect]

Bi−3r−Ca−Cu−0系超電導体と類似した結晶
Jc造をもつ基板を使用するため、堆積した膜が結晶化
する際、基板との相互作用によって基板の面方位に薄膜
の面方位が合うように配向した膜あるいはエピタキシャ
ル成長した膜を作製することができる。この際、選択的
に結晶が成長するため目的とする超電導相以外の相の生
成を抑制し、単一相を得ることができる。
Since a substrate with a crystal Jc structure similar to that of Bi-3r-Ca-Cu-0 superconductors is used, when the deposited film crystallizes, the plane orientation of the thin film changes depending on the plane direction of the substrate due to interaction with the substrate. It is possible to produce a film that is oriented so that the two directions match, or a film that is epitaxially grown. At this time, since crystals grow selectively, the formation of phases other than the intended superconducting phase is suppressed, and a single phase can be obtained.

〔実施例〕〔Example〕

以下、本発明を実施例にもとづいて説明する。 Hereinafter, the present invention will be explained based on examples.

Bi25r2Ca2Cu、Ox薄膜の作成はターゲット
にBi5rCaCu20x組成の4インチφの焼結体を
用いてアネルバ製マグネトロンスパッタリング装置によ
って行なった。スパッタガスとしてAr+50%0□の
混合ガスを用い、圧力は30 m Torrとした。基
板として一般式 %式% (001)面を使用した。基板温度は800℃〜500
℃の範囲で行なった。膜厚は1.0μmで、X線回折に
よると基板温度が600℃以上の膜では基板の(110
)面及び(001)面に対してエピタキシャル成長し、
C=37人の高Tc用の単層であることがわかった。T
cは100〜107に、Jcは77にで105A / 
am2台であった。基板温度が500℃の膜は充分結晶
化しておらず、空気中で熱処理を行う必要があった。
The Bi25r2Ca2Cu, Ox thin film was formed using a magnetron sputtering device manufactured by ANELVA, using a 4 inch diameter sintered body having a Bi5rCaCu20x composition as a target. A mixed gas of Ar+50%0□ was used as the sputtering gas, and the pressure was 30 m Torr. A (001) plane was used as a substrate. Substrate temperature is 800℃~500℃
It was carried out in the range of °C. The film thickness is 1.0 μm, and according to X-ray diffraction, the thickness of the substrate is (110
) plane and (001) plane,
It was found that C = 37 monolayers for high Tc. T
c is 100 to 107, Jc is 77 and 105A /
There were 2 ams. The film at a substrate temperature of 500° C. was not sufficiently crystallized and required heat treatment in air.

860℃×2時間の熱処理によりTc=102K。Tc=102K by heat treatment at 860°C for 2 hours.

J c = 4 X I O!′A/cm2の高温超電
導単結晶薄膜が得られた。
J c = 4 X I O! A high temperature superconducting single-crystalline thin film with a temperature of 'A/cm2 was obtained.

また、スパッタガスとして純Arガスを使用した場合も
、空気中で成膜後に熱処理を加えることでBi□5r2
Ca、Cu、Oxの高Tc用の単結晶薄膜を得ることが
できた。熱処理条件としては空気中では840℃〜88
0℃、0.1気圧酸素中では830℃〜860℃である
。熱処理時間は15分から24時間としたが超伝導特性
に差は生じなかった。
Furthermore, even when pure Ar gas is used as the sputtering gas, Bi□5r2
Single crystal thin films of Ca, Cu, and Ox for high Tc could be obtained. Heat treatment conditions are 840°C to 88°C in air.
At 0°C and 0.1 atm oxygen, the temperature is 830°C to 860°C. Although the heat treatment time ranged from 15 minutes to 24 hours, no difference occurred in the superconducting properties.

第1図に一例として(110)基板面にエピタキシャル
成長した膜の断面図を示す。第2図はBi、Sr、Ca
2Cu、O工高温超電導体の構造を示している。図では
酸素原子を省略して陽イオンのスタッキングのみを示し
ている。Bi2O2層の間にCuのペロブスカイト構造
がある。第3図はBi4Ti、○、2の結晶構造を示し
ている。酸素原子は省略して陽イオンのスタッキングの
みを示している。B i2S r2Ca2Cu、08と
非常に似た構造をもっている。
FIG. 1 shows, as an example, a cross-sectional view of a film epitaxially grown on a (110) substrate surface. Figure 2 shows Bi, Sr, Ca
It shows the structure of a 2Cu, O high temperature superconductor. The figure omits oxygen atoms and only shows stacking of cations. There is a Cu perovskite structure between the Bi2O2 layers. FIG. 3 shows the crystal structure of Bi4Ti, ○, 2. Oxygen atoms are omitted and only the stacking of cations is shown. It has a structure very similar to B i2S r2Ca2Cu, 08.

本発明はBi−8 r−Ca−Cu−0系超電導体に限
らず、同様の構造をもつ他の超電導体、たとえばTQ−
Ba−Ca−Cu−0系、TQ−Sr−Ca−Cu−〇
系、Bi−Pb−3r−Ca−Cu−0系にも適用でき
る。また基板と膜の格子定数がかなり異なる場合は、第
4図に示すように基板をななめに切断することで、高配
向の超電導薄膜を得ることができる。
The present invention is not limited to Bi-8 r-Ca-Cu-0 superconductors, but also applies to other superconductors having a similar structure, such as TQ-
It can also be applied to Ba-Ca-Cu-0 system, TQ-Sr-Ca-Cu-○ system, and Bi-Pb-3r-Ca-Cu-0 system. If the lattice constants of the substrate and film are considerably different, a highly oriented superconducting thin film can be obtained by cutting the substrate diagonally as shown in FIG.

Bi4Ti30工2のような層状ビスマス酸化物の他の
例としてはBi、Nb0sF、BaBi4Ti40に、
などがあり、B L4 T 130 x 2と同様な効
果がある。
Other examples of layered bismuth oxides such as Bi4Ti30 are Bi, Nb0sF, BaBi4Ti40,
etc., and has the same effect as B L4 T 130 x 2.

また、CUD法によっても同様の高い配向性を持つ単相
膜が得られた。
A single-phase film with similar high orientation was also obtained by the CUD method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高い臨界温度をもつ B i2S r2Ca2Cu、08膜やこれと類似した
構造をもつ超電導体の高配向膜やエピタキシャル成長し
た単結晶薄膜を作製でき、その効果は極めて大きい。
According to the present invention, a B i2S r2Ca2Cu,08 film having a high critical temperature, a highly oriented superconductor film having a similar structure, and an epitaxially grown single crystal thin film can be produced, and the effects thereof are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得られた膜の断面図、第2図はB
 12 S r2Ca、 Cu、 Oxの陽イオンのス
クッキングを示した略式図、第3図はB i、 T i
、 O□2の陽イオンのスクッキングを示した略式図、
第4図は本発明の他の方法により得られた膜の断面図で
ある。 1・・・一般式(Bi202)(A、、Rn O3n 
+、)をもつ薄状複合ビスマス酸化物の基板、 2−Bi2Sr、Ca2Cu、Ox超電導薄膜、3・・
・基板のBi2O□暦、4・・・超電導体のBigot
/ill、5− B i、6− Cu、7− Ca、8
=−Sr。 9・・Ti、3′・・・基板のペロブスカイト類似構造
の部分、4′・・・超電導体のベロジスカイ1−類似構
造の部分。 ≠4′ ・ ・ ・ 争−一一タ ・ ・N−一\ 、?3′ ・ ・ ・
Figure 1 is a cross-sectional view of the membrane obtained by the present invention, and Figure 2 is B
Schematic diagram showing the scooking of cations of 12S r2Ca, Cu, Ox, Figure 3 shows B i, Ti
, a schematic diagram showing the cation scooking of O□2,
FIG. 4 is a cross-sectional view of a membrane obtained by another method of the present invention. 1... General formula (Bi202) (A,, Rn O3n
+, ) thin composite bismuth oxide substrate, 2-Bi2Sr, Ca2Cu, Ox superconducting thin film, 3...
・Bi2O□ calendar of substrate, 4... Bigot of superconductor
/ill, 5-Bi, 6-Cu, 7-Ca, 8
=-Sr. 9... Ti, 3'... Part of perovskite-like structure of substrate, 4'... Part of Belogisky 1-like structure of superconductor. ≠4' ・ ・ ・ Conflict - 11 ta ・ N - 1\ ,? 3' ・ ・ ・

Claims (1)

【特許請求の範囲】[Claims] 1、Bi−Sr−Ca−Cu−O系またはTi−Ba−
Ca−Cu−O系超電導薄膜作製法において、(Bi_
2O_2)^2^+(A_n_−_1R_nO_3_n
_+_1)^2^−[Aは、K、Na、Li、Bi、M
g、Sr、Ca、Ba、またはY、Laその他の希土類
元素から選ばれるペロブスカイト構造のAサイトオン、
Rは、Ti、Nb、Cu、Ni、Crから選ばれるBサ
イトオン]の構造をもつ層状複合ビスマス酸化物を基板
として用い、スパッタ法または蒸着法により膜を作製す
る超電導薄膜作製法。
1. Bi-Sr-Ca-Cu-O system or Ti-Ba-
In the Ca-Cu-O based superconducting thin film production method, (Bi_
2O_2)^2^+(A_n_-_1R_nO_3_n
_+_1)^2^-[A is K, Na, Li, Bi, M
g, Sr, Ca, Ba, or Y, La and other rare earth elements selected from the A site of the perovskite structure,
A superconducting thin film production method in which a layered composite bismuth oxide having a structure of "R is a B site selected from Ti, Nb, Cu, Ni, and Cr" is used as a substrate and a film is produced by sputtering or vapor deposition.
JP63323296A 1988-12-23 1988-12-23 Formation of superconducting thin film Pending JPH02172821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323296A JPH02172821A (en) 1988-12-23 1988-12-23 Formation of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323296A JPH02172821A (en) 1988-12-23 1988-12-23 Formation of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH02172821A true JPH02172821A (en) 1990-07-04

Family

ID=18153202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323296A Pending JPH02172821A (en) 1988-12-23 1988-12-23 Formation of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH02172821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434126A (en) * 1992-09-29 1995-07-18 Matsushita Electric Industrial Co., Ltd. Thin-film high Tc superconductor comprising a ferroelectric buffer layer
CN104087904A (en) * 2014-07-08 2014-10-08 天津大学 Preparation method for BMNT film material with high tunability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434126A (en) * 1992-09-29 1995-07-18 Matsushita Electric Industrial Co., Ltd. Thin-film high Tc superconductor comprising a ferroelectric buffer layer
CN104087904A (en) * 2014-07-08 2014-10-08 天津大学 Preparation method for BMNT film material with high tunability

Similar Documents

Publication Publication Date Title
JPH01320224A (en) Combined structure of superconductor and substrate, superconductor device, superconductor structure and combined structure of superconductor and galliumate
JPH02172821A (en) Formation of superconducting thin film
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JPH01117376A (en) Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof
JPH01101677A (en) Electronic device
JP2804102B2 (en) Oxide superlattice material
JPH0297073A (en) Tunnel type josephson junction element
JPS63310512A (en) Membranous superconductor
JPH03275504A (en) Oxide superconductor thin film and its production
JPH03242320A (en) Oxide superconductor thin film
JP3251093B2 (en) Superconductor and method of manufacturing the same
JPH01280375A (en) Semiconductor substrate having superconductor layer
JPH01280379A (en) Semiconductor substrate having superconductor layer
JP2003037304A (en) Method for manufacturing oxide superconducting thin film on sapphire substrate
JPH04144994A (en) Production of oxide superconductor thin film
JP2809557B2 (en) Copper oxide material
JPH02170311A (en) Manufacture of oxide superconductor thin film
JPS63236794A (en) Production of superconductive thin film of oxide
JPH02124717A (en) Oxide superconductor
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JPH06196760A (en) Superconductive lamination thin film
JPH02167827A (en) Thin-film superconductor
JPH0244782A (en) Superconductive element and manufacture thereof
JPH02237082A (en) Semiconductor substrate provided with superconductor thin film and manufacture thereof
JPH01280376A (en) Semiconductor substrate having superconductor layer