JPH02172106A - Material with composition for dielectric ceramic, dielectric ceramic sintered member and multilayer wiring board - Google Patents

Material with composition for dielectric ceramic, dielectric ceramic sintered member and multilayer wiring board

Info

Publication number
JPH02172106A
JPH02172106A JP32551788A JP32551788A JPH02172106A JP H02172106 A JPH02172106 A JP H02172106A JP 32551788 A JP32551788 A JP 32551788A JP 32551788 A JP32551788 A JP 32551788A JP H02172106 A JPH02172106 A JP H02172106A
Authority
JP
Japan
Prior art keywords
mol
composition
dielectric ceramic
dielectric
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32551788A
Other languages
Japanese (ja)
Inventor
Masuzou Miyairi
宮入 増三
Hideaki Ninomiya
秀明 二宮
Kentaro Sawamura
沢村 健太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP32551788A priority Critical patent/JPH02172106A/en
Publication of JPH02172106A publication Critical patent/JPH02172106A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Abstract

PURPOSE:To obtain a miniaturized multilayer wiring board with improved characteristics and large capacity having a dielectric layer consisting of a sintered member by causing a dielectric ceramic composition material to contain a predetermined composite oxide composition material and obtaining a ceramic sintered member with an improved temperature characteristic through sintering this composition material at about 800-950 deg.C. CONSTITUTION:In a Pb(Mg1/3Nb2/3)O3PbTiO3 series dielectric ceramic composition material, for the composition of 56.1-59.9mol% when converted into PbO, 12.1-19.8mol% when converted into MgO, 12.2-19.8mol% when converted into Nb2O5, 0.6-19.7mol% when converted into TiO2, 0.1-1.0mol% copper compound when converted into CuO is contained. This dielectric ceramic composition material is sintered at about 800-950 deg.C to obtain a dielectric ceramic sintered member, and a multiwiring board is obtained by using this sintered member as a dielectric layer, and the dielectric loss and the insulating resistance of this multiwiring board can be improved and miniaturization thereof can be achieved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、誘電体セラミック用組成物、誘電体セラミッ
ク焼結体および多層配線基板に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a dielectric ceramic composition, a dielectric ceramic sintered body, and a multilayer wiring board.

〈従来の技術〉 比較的低温で焼結でき、誘電率が大きく、誘電損失が小
さな誘電体セラミックとして、Pb (Mg+/s N
bxys )Ox  PbTiOs系組成が知られてい
る(特公昭61〜28619号) また、この組成にMgOを化学量論組成よりも過剰に添
加した系も知られている(特公昭61〜5427号) 〈発明が解決しようとする課題〉 しかし、これらPb (Mg+zs Nbxis )O
s−PbTiOs系では、低温領域で焼結が可能である
とはされているが、実際には1050〜1150℃程度
で焼結しないと良好な特性かえられていない。 その際
、絶縁抵抗も小さ(不十分である。
<Prior art> Pb (Mg+/s N
bxys ) Ox PbTiOs system composition is known (Japanese Patent Publication No. 61-28619). Also, a system in which MgO is added in excess of the stoichiometric composition is also known (Japanese Patent Publication No. 61-5427). <Problem to be solved by the invention> However, these Pb (Mg+zs Nbxis)O
In the s-PbTiOs system, it is said that sintering is possible in a low temperature range, but in reality, good properties cannot be achieved unless sintering is performed at a temperature of about 1050 to 1150°C. At that time, the insulation resistance is also small (insufficient).

1000℃以上で焼結を行う際には、多くのエネルギー
を必要とする他、焼成炉やセッターや焼成匣鉢や合板等
の劣化が激しいという欠点がある。
Sintering at temperatures above 1000° C. requires a lot of energy and has the disadvantage that the firing furnace, setter, firing sagger, plywood, etc. are severely deteriorated.

また、このような誘電体セラミック用組成物は、絶縁層
材料や導体層材料と同時一体焼成して、所定のパターン
で誘電層と導体層を有する多層配線基板を作製するため
に用いられる。
Furthermore, such a dielectric ceramic composition is used to fabricate a multilayer wiring board having a dielectric layer and a conductor layer in a predetermined pattern by co-firing it with an insulating layer material and a conductor layer material.

しかし、1000℃以上の焼結温度を必要とするときに
は、Au%pt%Pd等の貴金属を導体層材料として使
用しなければならないという不都合がある。
However, when a sintering temperature of 1000° C. or higher is required, there is a disadvantage that a noble metal such as Au%pt%Pd must be used as the conductor layer material.

他方、1000℃程度以下で焼結できる絶縁層材料とし
ては、アルミナ等のセラミック骨材とガラスとを含むも
のが知られている。
On the other hand, materials containing ceramic aggregates such as alumina and glass are known as insulating layer materials that can be sintered at temperatures below about 1000°C.

しかし、上記のP b (M g r7s N b a
ys )Os −P b T i Os系では1000
℃程度にて、これら低温焼成用の絶縁層材料と同時一体
焼結すると、両者の縮率が異なるため、まがりやそりや
クラック等が生じてしまう。
However, the above P b (M g r7s N b a
ys )Os -P b TiOs system is 1000
If it is simultaneously sintered with these insulating layer materials for low-temperature firing at a temperature of about 100° C., curling, warping, cracking, etc. will occur because the shrinkage ratios of the two are different.

ところで、チタン酸塩の複合誘電体セラミックとしては
、上記のP b (M g +/3 N b mis 
)Os −P b T i Os系の他種々のものが知
られている。
By the way, as a composite dielectric ceramic of titanate, the above-mentioned P b (M g +/3 N b mis
)Os-P b T i Os and various other types are known.

そして、これらチタン酸塩複合誘導体セラミックでは、
CuOを添加して、一定程度の焼結温度の低下を実現す
る旨が提案されている(特開昭62−31906号、同
62−37802号、同62−37804号、同62−
37805号等) しかし、これらでは、焼結温度の点で未だ不十分であり
、しかも低温焼成用の絶縁層材料との同時一体焼成時に
熱収縮特性が異なり、まがりやそりやクラック等が生じ
るという不都合がある。
In these titanate composite derivative ceramics,
It has been proposed to reduce the sintering temperature to a certain extent by adding CuO (Japanese Patent Laid-Open Nos. 62-31906, 62-37802, 62-37804, 62-
(No. 37805, etc.) However, these methods are still insufficient in terms of sintering temperature, and the heat shrinkage characteristics are different when simultaneously integrated with the insulating layer material for low-temperature firing, causing curling, warping, cracking, etc. There is an inconvenience.

本発明の主たる目的は、焼結温度が低下し、1000℃
以下にて低温焼成可能であり、しかもその際良好な誘電
率、誘電損失等の電気特性が良好で、さらには、セラミ
ック骨材とガラスとを含有する低温焼成用絶縁層材料と
熱収縮特性が近似し、それとの同時一体焼成時にまがり
やそりの生じないp b (M g +/s N bi
zs )Os−PbTiOs系の誘電体セラミック用組
酸物と、この組成物を焼結した誘電体セラミック焼結体
と、この焼結体を誘電層として有する多層配線基板とを
提供することにある。
The main purpose of the present invention is to reduce the sintering temperature to 1000℃
It is possible to perform low-temperature firing with the following materials, and at the same time, it has good electrical properties such as good dielectric constant and dielectric loss, and also has good heat shrinkage characteristics and an insulating layer material for low-temperature firing that contains ceramic aggregate and glass. p b (M g +/s N bi
zs) An object of the present invention is to provide an Os-PbTiOs-based dielectric ceramic composite oxide, a dielectric ceramic sintered body obtained by sintering this composition, and a multilayer wiring board having this sintered body as a dielectric layer. .

く課題を解決するための手段〉 このような目的は下記の(1)〜(9)の本発明によっ
て達成される。
Means for Solving the Problems> These objects are achieved by the following inventions (1) to (9).

(1) Pb (Mg+zs Nbtys ) Ox 
−PbT i Os系の誘電体セラミック用組成物であ
って、PbOに換算して56.1〜59.9モル%、M
gOに換算して12.1〜19.8モル%、N b t
 Osに換算して12.1〜19,8モル%、T i 
Oxに換算して0.6〜19.7モル%の組成に対し、
CuOに換算して0. 1〜10モル%の銅化合物を含
有することを特徴とする誘電体セラミック用組成物。
(1) Pb (Mg+zs Nbtys) Ox
- A composition for a PbTiOs-based dielectric ceramic, comprising 56.1 to 59.9 mol% in terms of PbO, M
12.1 to 19.8 mol% in terms of gO, N b t
12.1 to 19.8 mol% in terms of Os, Ti
For a composition of 0.6 to 19.7 mol% in terms of Ox,
0. in terms of CuO. A dielectric ceramic composition containing 1 to 10 mol% of a copper compound.

(2)さらに前記組成に対し、MnOに換算して1.7
モル%以下のMn化合物を含有する上記(1)に記載の
誘電体セラミック用組成物。
(2) Furthermore, for the above composition, 1.7 in terms of MnO
The dielectric ceramic composition according to (1) above, containing a Mn compound in an amount of mol % or less.

(3)  Pb  (Mg+、  Nb、x  )  
Os  −PbT L Os系の固溶体であって、Pb
O56.1〜59.9モル%、MgO12,1〜19.
8モル%、Nbz ox 12.1〜19.8モル%、
Ti0−0.6〜19.7モル%の固溶体組成に対し、
0.1〜10モル%のCuOを含有することを特徴とす
る誘電体セラミック焼結体。
(3) Pb (Mg+, Nb, x)
Os - PbT L Os-based solid solution, in which Pb
O56.1-59.9 mol%, MgO12.1-19.
8 mol%, Nbz ox 12.1-19.8 mol%,
For a solid solution composition of Ti0-0.6 to 19.7 mol%,
A dielectric ceramic sintered body characterized by containing 0.1 to 10 mol% of CuO.

(4)さらに前記固溶体組成に対し、1.7モル%以下
のMnOを含有する上記(3)に記載の誘電体セラミッ
ク焼結体。
(4) The dielectric ceramic sintered body according to the above (3), further containing 1.7 mol% or less of MnO with respect to the solid solution composition.

(5)絶縁層と、導体層と、誘電体層とが積層された多
層配線基板において、この誘電体層が上記(3)または
(4)に記載の誘電体セラミック焼結体から形成されて
いることを特徴とする多層配線基板。
(5) In a multilayer wiring board in which an insulating layer, a conductor layer, and a dielectric layer are laminated, the dielectric layer is formed from the dielectric ceramic sintered body described in (3) or (4) above. A multilayer wiring board characterized by:

(6)前記絶縁層が、セラミックとガラスとから形成さ
れている上記(5)に記載の多層配線基板。
(6) The multilayer wiring board according to (5) above, wherein the insulating layer is made of ceramic and glass.

(7)前記絶縁層がアルミナ30〜50体積%と、ガラ
ス50〜70体積%とを含有する上記(6)に記載の多
層配線基板。
(7) The multilayer wiring board according to (6) above, wherein the insulating layer contains 30 to 50 volume % alumina and 50 to 70 volume % glass.

(8)前記ガラスがSLo、37〜65重量%、B20
.0.5〜10重量%、A 12 z Os6〜17.
5重量%、2価金属酸化物MO25〜45重量%を含有
する上記(6)または(7)に記載の多層配線基板。
(8) The glass is SLo, 37-65% by weight, B20
.. 0.5-10% by weight, A12zOs6-17.
The multilayer wiring board according to (6) or (7) above, containing 5% by weight of MO and 25 to 45% by weight of divalent metal oxide MO.

(9)前記絶縁層、導体層および誘電体層を1000℃
以下にて同時一体焼成して形成された上記(5)ないし
く8)のいずれかに記載の多層配線基板。
(9) Heat the insulating layer, conductor layer and dielectric layer to 1000°C.
The multilayer wiring board according to any one of (5) to 8) above, which is formed by simultaneous integral firing in the following steps.

く作用〉 本発明によれば、CuOの添加により、Pb (Mg+
z* Nb、、−s )Os−PbTiOh系の焼結温
度が低下し、しかも1000℃以下、特に800〜95
0℃の焼結温度にて、大きな誘電率と小さい誘電損失と
高い絶縁抵抗等の良好な特性を得ることができる。
According to the present invention, by adding CuO, Pb (Mg+
z*Nb,,-s) The sintering temperature of Os-PbTiOh system is lowered, and moreover, it is lower than 1000℃, especially 800-95
At a sintering temperature of 0°C, good properties such as a large dielectric constant, small dielectric loss, and high insulation resistance can be obtained.

しかも、セラミック骨材とガラスとを含有する低温焼成
用絶縁層材料と熱収縮特性がきわめて近似するため、そ
れと同時一体焼成するときにも、まがりやそりの発生は
きわめて少ないものとなる。
Moreover, since the heat shrinkage characteristics are very similar to those of the insulating layer material for low-temperature firing containing ceramic aggregate and glass, curling and warping will be extremely rare even when simultaneously fired together.

〈具体的構成〉 以下、本発明の具体的構成を詳細に説明する。<Specific configuration> Hereinafter, the specific configuration of the present invention will be explained in detail.

本発明の誘電体セラミック用組成物は、Pb (Mg+
zi Nbazs ) Os −PbT i Os系複
合酸化物系のものである。
The dielectric ceramic composition of the present invention has Pb (Mg+
ziNbazs)Os-PbTiOs-based composite oxide.

すなわち、組成物は、下記の複合酸化物組成を含有する
That is, the composition contains the following composite oxide composition.

PbO:56.1〜59.9モル%、 特に59.0〜59.7モル% MgO:12.1〜19.8モル%、 特に18.1〜19.3モル% Nb、O,:12.1〜19.8モル%、特に18.1
〜19.3モル% Ti0a:O16〜19,7モル%、 特に1.7〜4.8モル% これらは、各酸化物の混合物として含有されても、その
一部が固溶して複合酸化物として含有されていても各酸
化物が固溶してペロブスカイト構造の複合酸化物として
含有されていてもよい。
PbO: 56.1 to 59.9 mol%, especially 59.0 to 59.7 mol% MgO: 12.1 to 19.8 mol%, especially 18.1 to 19.3 mol% Nb, O,: 12 .1 to 19.8 mol%, especially 18.1
~19.3 mol% Ti0a:O16~19.7 mol%, especially 1.7~4.8 mol% Even if these are contained as a mixture of each oxide, a part of them dissolves in solid solution and forms a composite oxide. The oxides may be contained as a solid solution or may be contained as a composite oxide having a perovskite structure.

また、組成物中においては、上記各酸化物に換算して上
記のように含有されていていればよ(、その酸化状態は
種々のものであってよい。
In addition, in the composition, it is sufficient that the oxides are contained as described above in terms of each of the above oxides (the oxidation states thereof may be various).

さらには、各酸化物は、シュウ酸塩、炭酸塩、水酸化物
、硝酸塩、有機化合物等の焼成により酸化物となりつる
化合物として含有されていてもよい。
Furthermore, each oxide may be contained as a compound that becomes an oxide upon firing of an oxalate, carbonate, hydroxide, nitrate, organic compound, or the like.

このような複合酸化物組成は、はぼ xPb(Mg+zJbzzz)Os−(1〜x)PbT
iOio、65≦X≦0.99 特に0.92≦X≦0.97 の化学量論組成に対応するものである。 このような組
成により、誘電率、誘電損失、絶縁抵抗等の特性上好ま
しい値かえられる。
Such a composite oxide composition has the following composition:
iOio, corresponds to the stoichiometric composition of 65≦X≦0.99, especially 0.92≦X≦0.97. Such a composition can change desirable values in terms of properties such as dielectric constant, dielectric loss, and insulation resistance.

これらは、一般に、0.2〜4−程度の粒径として組成
物中に含有される。
These are generally included in the composition as particle sizes of the order of 0.2-4.

本発明の組成物は、このような複合酸化物組成の酸化物
Pb (Mg+zx Nb*za ) OsP b T
 i Os換算1モルに対し、0.1〜10モル%、好
ましくは0.5〜5モル%、特に0.5〜3モル%の銅
化合物を含有する。
The composition of the present invention contains an oxide Pb (Mg+zx Nb*za) OsP b T having such a composite oxide composition.
The copper compound is contained in an amount of 0.1 to 10 mol%, preferably 0.5 to 5 mol%, particularly 0.5 to 3 mol%, based on 1 mol of iOs.

用いる銅化合物としては、酸化銅、あるいは焼成により
酸化銅、特にCuOとなる化合物であればいずれであっ
てもよ(、例えば酸化銅の他、銅のシュウ酸塩、炭酸塩
、水酸化物、硝酸塩、酢酸塩、有機化合物等を挙げるこ
とができる。
The copper compound to be used may be copper oxide or any compound that becomes copper oxide, especially CuO, upon firing (for example, in addition to copper oxide, copper oxalates, carbonates, hydroxides, Examples include nitrates, acetates, and organic compounds.

これら銅化合物は、0.2〜2−程度の粒径のものを用
いればよい。
These copper compounds may have a particle size of about 0.2 to 2-2.

なお、銅化合物は、予め銅鍍化物として前記の複合酸化
物と固溶等させてもよい。
Note that the copper compound may be dissolved in solid solution with the above-mentioned composite oxide in advance as a copper plating.

このような銅化合物の添加により、その熱収縮特性を、
用いる低温焼成用絶縁層材料と一致させることができ、
また良好な電気特性を維持したまま焼結温度を低下させ
ることができる。
The addition of such a copper compound improves its heat shrinkage properties.
It can be matched with the insulating layer material for low-temperature firing,
Furthermore, the sintering temperature can be lowered while maintaining good electrical properties.

なお、このような効果は、焼結体中に酸化銅として含有
されないかぎり発現せず、Cuにかえ、Fe、N i、
W、Zn等を用いるときには、熱収縮特性が低温焼成用
絶縁層材料と一致せず、電気特性が悪化したり、空気中
焼成が不可能となる等の不都合を生じる。
Note that such an effect will not occur unless copper oxide is contained in the sintered body, and instead of Cu, Fe, Ni,
When using W, Zn, etc., the thermal shrinkage characteristics do not match those of the insulating layer material for low-temperature firing, resulting in disadvantages such as deterioration of electrical properties and inability to perform firing in air.

なお、CuO換算にて、銅化合物の添加量が10モル%
をこえると、絶縁抵抗が悪化する。
In addition, the amount of copper compound added is 10 mol% in terms of CuO.
If it exceeds , insulation resistance will deteriorate.

また、収縮特性の点では、予め仮焼して、銅化合物を酸
化銅として複合酸化物中に含有させることが好ましい。
In addition, from the viewpoint of shrinkage characteristics, it is preferable to pre-calcine the composite oxide so that the copper compound is contained in the form of copper oxide.

さらに、本発明の組成物中には、Mn化合物が含有され
ることが好ましい。
Furthermore, it is preferable that the composition of the present invention contains a Mn compound.

Mn化合物の含有により、焼結体の絶縁抵抗がより一層
高いものとなる。
By containing the Mn compound, the insulation resistance of the sintered body becomes even higher.

Mn化合物は、前記複合酸化物1モルに対し、MnOに
換算して1.7モル%以下、特に0.04〜1.7モル
%含有される。
The Mn compound is contained in an amount of 1.7 mol % or less, particularly 0.04 to 1.7 mol %, in terms of MnO, per 1 mol of the composite oxide.

用いるMn化合物としては、焼成により酸化マンガンと
なる化合物、酸化マンガン、例えばMnOの他、例えば
炭酸塩、シュウ酸塩、水酸化物、硝酸塩、酢酸塩、有機
化合物等であってもよい。
The Mn compound used may be a compound that becomes manganese oxide upon calcination, such as manganese oxide, such as MnO, as well as carbonates, oxalates, hydroxides, nitrates, acetates, organic compounds, and the like.

これらは0.2〜2.5−程度の粒径で用いられ、ある
いは複合酸化物中に含有させて用いることもできる。
These particles are used with a particle size of about 0.2 to 2.5 mm, or they can be used by being included in the composite oxide.

なお、前記各化合物はそのまま混合して用いてもよいが
、これらは混合したものを650〜800℃にて仮焼し
て、これを粉砕後用いるとより好ましい結果を得る。
The above-mentioned compounds may be mixed and used as they are, but more preferable results can be obtained by calcining the mixture at 650 to 800° C. and pulverizing the mixture.

本発明の組成物は、これらに加え、ポリビニルアルコー
ル、ポリビニルブチラール、ポリアクリレート、ポリメ
タクリレート等の結合剤や、トルエン、メタノールなど
のアルコール類、アセトンなどのケトン等の溶剤、さら
には可塑剤、分散剤、界面活性剤等を含有してべ一スト
化される。
In addition to these, the composition of the present invention also contains binders such as polyvinyl alcohol, polyvinyl butyral, polyacrylate, and polymethacrylate, alcohols such as toluene and methanol, solvents such as ketones such as acetone, and further plasticizers and dispersants. It is made into a base containing agents, surfactants, etc.

このような組成物は、印刷法、転写法、グリーンシート
法等により成膜され、その後焼成される。 焼結温度は
1000℃以下、特に800〜950℃、さらには80
0〜900℃とされる。
Such a composition is formed into a film by a printing method, a transfer method, a green sheet method, etc., and then fired. The sintering temperature is 1000°C or less, especially 800-950°C, and even 80°C.
The temperature is 0 to 900°C.

また、焼結時間は0.5〜5時間程度とし、焼結雰囲気
は空気中で行うことができる。
Further, the sintering time can be about 0.5 to 5 hours, and the sintering atmosphere can be performed in air.

このような焼結により、 PbO換算56.1〜59.9モル% MgO換算12.1〜19.8モル% Nb、O,換算12.1〜19.8モル%TiO□換算
0.6〜19.7モル%であって、 XPb(Mg+zsNbazs)Os−(1〜X)Pb
TiO20、65≦X≦0.99 の化学量論組成ないしそれから多少偏荷した組成の複合
酸化物であって、この組成1モルに対し0.1〜lOモ
ル%のCuOと、必要に応じ1.7モル%以下のM n
 Oを含有する本発明の焼結体が得られる。
Through such sintering, 56.1 to 59.9 mol% in terms of PbO, 12.1 to 19.8 mol% in terms of MgO, 12.1 to 19.8 mol% in terms of Nb, O, 0.6 to 0.6 in terms of TiO□ 19.7 mol%, XPb(Mg+zsNbazs)Os-(1~X)Pb
A composite oxide having a stoichiometric composition of TiO20,65≦X≦0.99 or a composition slightly biased from the stoichiometric composition. M n of .7 mol% or less
A sintered body of the present invention containing O is obtained.

なお、このような焼結体は、通常、前記の複合酸化物組
成がペロブスカイト構造を示し、その粒界にCuOが偏
析し、M n Oは粒界内に固溶している。
In addition, in such a sintered body, the above-described composite oxide composition usually exhibits a perovskite structure, CuO is segregated at the grain boundaries, and M n O is dissolved in the grain boundaries.

そして、複合酸化物は、通常、2〜8μ程度のグレイン
サイズである。
The composite oxide usually has a grain size of about 2 to 8 microns.

なお、焼結体中には、他の酸化物が微量含有されていて
もよい。
Note that the sintered body may contain a trace amount of other oxides.

このような焼結体は、特に、多層配線基板の誘電体層に
適用して好適である。
Such a sintered body is particularly suitable for application to a dielectric layer of a multilayer wiring board.

誘電体層は、一般に、10〜200−程度の厚さとされ
る。
The dielectric layer generally has a thickness of about 10 to 200 mm.

このような場合、用いる絶縁層を構成する材料としては
、セラミックとガラスとから形成される低温焼成用材料
が好適である。
In such a case, a material for low-temperature firing made of ceramic and glass is suitable as the material constituting the insulating layer.

この場合、セラミックとしては、アルミナ、コージェラ
イト、ムライト、フォルステライト、シリカ等が好まし
いが、特に、アルミナが好適である。 そしてその粒径
は0.6〜5−程度のものを用いればよい。
In this case, the ceramic is preferably alumina, cordierite, mullite, forsterite, silica, etc., and alumina is particularly preferred. The particle size may be about 0.6 to 5.

また、これらセラミックの含有量は30〜50体積%、
ガラスの含有量は50〜70体積%であることが好まし
い。
In addition, the content of these ceramics is 30 to 50% by volume,
The content of glass is preferably 50 to 70% by volume.

一方、用いるガラスとしては、2価金属酸化物MOを含
有するアルミノホウケイ酸ガラスが好適である。
On the other hand, as the glass used, aluminoborosilicate glass containing a divalent metal oxide MO is suitable.

この場合、2価金属酸化物MOを構成するMとしては、
pb以外のものが好適で、特にCa%Ba、Sr%Mg
の1種以上が好適である。
In this case, M constituting the divalent metal oxide MO is as follows:
Those other than pb are suitable, especially Ca%Ba, Sr%Mg
One or more of these are preferred.

そして、 SiO□25〜75重量% B、0. 0.5〜15重量% Al2zOs4〜20重量% MO24〜59重量% のものが好ましい。and, SiO□25-75% by weight B, 0. 0.5-15% by weight Al2zOs4-20% by weight MO24-59% by weight Preferably.

これらのうち、特に S I O* 37〜65重量% B、0.  O85〜10重量% Al2O,6〜17.5重量% MO25〜45重量% のものは収縮特性の一致の点でより好ましい結果をつる
Among these, SIO* 37-65% by weight B, 0. Those containing 85 to 10% by weight of O, 6 to 17.5% by weight of Al2O, and 25 to 45% by weight of MO give more favorable results in terms of consistency in shrinkage characteristics.

これら、低温焼成用絶縁層材料は、前記と同様にペース
ト化され、グリーンシート法、印刷法、転写法等により
10〜200.程度の厚さとして、パターン状の誘電体
セラミック用組成物と一体化される。
These insulating layer materials for low-temperature firing are made into a paste in the same manner as described above, and are made into a paste using the green sheet method, printing method, transfer method, etc. It is integrated with the patterned dielectric ceramic composition as a certain thickness.

さらに、用いる導体層材料としては、Ag、Ni%Pd
、AgPd、Cu等が適用できる。
Furthermore, the conductor layer materials used include Ag, Ni%Pd
, AgPd, Cu, etc. can be applied.

これらのうち、特にAg、Pdまたは AgPdは、本発明の誘電体セラミック焼結体との特性
の一致が多く、特に空気中焼成する際に好適である。
Among these, Ag, Pd, and AgPd in particular have many characteristics that match the dielectric ceramic sintered body of the present invention, and are particularly suitable for firing in air.

なお、場合によっては、Au、Pt等を用いてもよい そして、これら導体層材料もペースト化され、前記と同
様にしてlO〜200Q程度の厚さのパターン状に設層
される。
Note that, depending on the case, Au, Pt, etc. may be used, and these conductor layer materials are also made into a paste, and the layers are formed in a pattern having a thickness of about 10 to 200Q in the same manner as described above.

そして、これらを一体化後、前記の温度にて一体同時焼
成することによってコンデンサ内蔵型の多層配線基板が
作製される。
After these are integrated, they are simultaneously fired at the above temperature to produce a multilayer wiring board with a built-in capacitor.

なお、多層配線基板の構造については、公知の種々のも
のであってよい。
Note that the structure of the multilayer wiring board may be of various known types.

〈実施例〉 以下、本発明の具体的実施例を揚げ、本発明をさらに詳
細に説明する。
<Example> Hereinafter, the present invention will be explained in further detail by referring to specific examples of the present invention.

実施例1 それぞれほぼ化学量論組成の 平均粒径1.2戸のPbO、 平均粒径0.5−のMgO 平均粒径0.7−のNb1Osに、 添加物として、 平均粒径0,4−のCuOおよび 平均粒径0.2PのM n COsを用意した。Example 1 Each has a nearly stoichiometric composition. PbO with an average particle size of 1.2 mm, MgO with an average particle size of 0.5- Nb1Os with an average particle size of 0.7- As an additive, CuO with an average particle size of 0,4- and MnCOs with an average particle size of 0.2P was prepared.

このものを表1に示される量比で混合し、700℃で仮
焼した。 その後ジルコニアボールを用いて水を加えて
ボールミルで粉砕し、乾燥した。
These materials were mixed in the ratio shown in Table 1 and calcined at 700°C. Thereafter, water was added using zirconia balls, and the mixture was ground in a ball mill and dried.

これに溶剤として、トルエン/アルコール、結合剤とし
てポリビニルブチラール、可塑剤としてフタル酸n−ブ
チルを添加して、ジルコニアボールを用いてボールミル
で混合し、スラリー化してペーストとした。
To this was added toluene/alcohol as a solvent, polyvinyl butyral as a binder, and n-butyl phthalate as a plasticizer, and mixed in a ball mill using zirconia balls to form a slurry into a paste.

これを、ドクターブレード法にてグリーンシートとし、
これを切断し、空気中にて表1に示される温度にて、2
時間焼成し、直径30mm厚さ1 mmのサンプルを得
た。
This is made into a green sheet using the doctor blade method.
This was cut and heated in air at the temperature shown in Table 1.
A sample with a diameter of 30 mm and a thickness of 1 mm was obtained by firing for a period of time.

これら各サンプルにつき、25℃での誘電率ε、誘電体
損失Tanδを周波数1 kHz 、電圧1■で測定し
た。 結果を表1に示す。
For each of these samples, the dielectric constant ε and dielectric loss Tan δ at 25° C. were measured at a frequency of 1 kHz and a voltage of 1 μ. The results are shown in Table 1.

また、25℃、50Vの比抵抗Ω・ctaを表1に併記
する。
Further, the specific resistance Ω·cta at 25° C. and 50V is also listed in Table 1.

なお、表1中、PMNはP b (M g +/3Nb
zzs)Oa 、PTはP bT i O,を示し、焼
結体の組成は仕込組成どおりの化学量論組成のものであ
った。
In Table 1, PMN is P b (M g +/3Nb
zzs)Oa, PT indicates P bT i O, and the composition of the sintered body was stoichiometric as the charging composition.

表1に示される結果から、本発明のサンプルは、低温焼
成しても誘電率を保持したままTanδおよび比抵抗が
改善されることがわかる。
From the results shown in Table 1, it can be seen that the samples of the present invention improve Tan δ and specific resistance while maintaining the dielectric constant even when fired at low temperatures.

さらに、各サンプルNo、3 (比較)とNo、5の熱
機械分析の結果を第1図に示す。
Furthermore, the results of thermomechanical analysis of each sample No. 3 (comparison) and No. 5 are shown in FIG.

また、第1図には、下記の低温焼成用絶縁層材料の熱機
械分析の結果が併記される。
Also shown in FIG. 1 are the results of the thermomechanical analysis of the insulating layer material for low-temperature firing described below.

ガラス(平均粒径1.7JjJl)  60重量%Si
O52,0重量% BaO4,2重量% Aβ0         11.0重量%MgO2,0
重量% CaO12,6重量% SrO0,2重量% BaO16,5重量% 他            0.5重量%AJ2.O,
(平均粒径1.5Pm)4Q重量%第1図に示される結
果から、本発明のサンブルは、低温焼成用絶縁層材料と
きわめて熱収縮特性が近似することがわかる。
Glass (average particle size 1.7JjJl) 60% by weight Si
O5 2.0% by weight BaO4.2% by weight Aβ0 11.0% by weight MgO2.0
Weight% CaO 12.6% by weight SrO 0.2% by weight BaO 16.5% by weight Others 0.5% by weight AJ2. O,
(Average particle size: 1.5 Pm) 4Q% by weight From the results shown in FIG. 1, it can be seen that the thermal shrinkage characteristics of the sample of the present invention are very similar to those of the insulating layer material for low-temperature firing.

なお、各サンプルの熱収縮特性を下記の評価にて表1に
併記する。
The heat shrinkage characteristics of each sample are also listed in Table 1 based on the evaluation below.

O:上記絶縁層材料との800℃での熱収縮率の差が±
1%以内 ○:±2%以内 ×:±2%より大 次に、各サンプルおよび前記低温焼成用絶縁層材料と、
平均粒径1.OpAg−Ptペーストを用い、880℃
で0.5時間焼結して、多層配線基板を作製した。
O: The difference in thermal contraction rate at 800°C with the above insulating layer material is ±
Within 1% ○: Within ±2% ×: Greater than ±2% Next, each sample and the insulating layer material for low temperature firing,
Average particle size 1. Using OpAg-Pt paste, 880℃
This was sintered for 0.5 hours to produce a multilayer wiring board.

構造は4層の150%厚の絶縁層間に、同厚の誘電体層
をパターン状に形成し、10μ厚の導体層をパターン状
に配し、さらに所定パターンにてスルーホールを形成し
たものである。
The structure consists of a dielectric layer of the same thickness formed in a pattern between four 150% thick insulating layers, a 10μ thick conductor layer arranged in a pattern, and through holes formed in a predetermined pattern. be.

また、全体サイズは5.6X6.5mmとした。Further, the overall size was 5.6 x 6.5 mm.

本発明のサンプルを用いた場合には、そり、曲がり、ク
ラックは全(生じなかったのに対し、比較サンプルを用
いた場合には最大3mm程度のそり、曲がりや、クラッ
クが生じた。
When the sample of the present invention was used, no warping, bending, or cracking occurred at all, whereas when using the comparative sample, warping, bending, or cracking of up to about 3 mm occurred.

実施例2 実施例1の低温焼成用絶縁層材料を下記にかえて同様に
多層配線基板を作製した。
Example 2 A multilayer wiring board was produced in the same manner as in Example 1 except that the material for the insulating layer for low-temperature firing was changed to the following.

ガラス(平均粒径2.2M)  50重量%5iOz 
        54.2重量%B、03      
  3,9重量%Al2a O@         9
.3重量%CaO1,6重量% BaO1,6重量% Sr0         29.3重量%Aβ20.(
平均粒径3.2戸)50重量%この結果、実施例1と同
等の結果かえられた。
Glass (average particle size 2.2M) 50% by weight 5iOz
54.2% by weight B, 03
3.9 wt% Al2a O@9
.. 3% by weight CaO 1.6% by weight BaO 1.6% by weight Sr0 29.3% by weight Aβ 20. (
Average particle size: 3.2) 50% by weight As a result, the results were the same as in Example 1.

そして、このような効果は、前記のガラスを含む低温焼
成用絶縁層材料において同等に実現することが確認され
た。
It has been confirmed that such effects can be equally achieved in the insulating layer material for low-temperature firing containing the above-mentioned glass.

く効果〉 本発明の組成物は1000℃以下、特に800〜950
℃、特に800〜900℃で焼結し、ち密な焼結体かえ
られる。
Effect> The composition of the present invention can be
It is sintered at a temperature of 800 to 900°C, and a dense sintered body can be obtained.

また、25℃、1k)lzテ(F)誘電率は1ooo。Also, at 25°C, the dielectric constant of 1k)lzte(F) is 1ooo.

以上がえられ、CuOを添加して高温焼成したときの誘
電率が保持される。
The above results are obtained, and the dielectric constant is maintained when CuO is added and fired at high temperature.

しかも、誘電損失は2.5%以下、特に2%以下となる
Moreover, the dielectric loss is 2.5% or less, particularly 2% or less.

また絶縁抵抗は10日Ω・cm以上となり。Also, the insulation resistance is 10 Ω・cm or more.

特にMnO添加系では10”Ω・cm以上となる。In particular, in the MnO-added system, the resistance is 10''Ω·cm or more.

このように、CuOを添加して高温焼成したときよりも
誘電損失および絶縁抵抗が向上する。
In this way, the dielectric loss and insulation resistance are improved compared to when CuO is added and fired at a high temperature.

さらに、これらの温度特性も良好で、25U特性を十分
に満足する。
Furthermore, these temperature characteristics are also good and fully satisfy the 25U characteristics.

加えて、セラミック骨材とガラスとを含有する低温焼成
用絶縁層材料との熱収縮特性をきわめて近似したものと
でき、多層配線基板を同時一体化焼成した際まがりやそ
りの発生がきわめて少なくなる。
In addition, the heat shrinkage characteristics can be made very similar to that of the insulating layer material for low-temperature firing containing ceramic aggregate and glass, and the occurrence of curling and warping is extremely reduced when the multilayer wiring board is simultaneously integrated and fired. .

しかも、高特性、高容量であり、基板は小型化する。Moreover, it has high characteristics and high capacity, and the substrate can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の誘電体セラミック用組成物の熱収縮特
性を示すグラフである。 特許出願人 ティーデイ−ケイ株式会社手続補正書 (自発) 1、事件の表示 昭和63年特許願第325517号 2、発明の名称 3、補正をする者 事件との関係   特許出願人 名  称  ティーデイ−ケイ株式会社4、代理人 住  所 〒113 東京都文京区湯島3丁目23番1号 天神弥栄興産ビル3階 6、補正の内容 (1)明細書第5ページ下から第3行の「チタン酸塩」
を「鉛ペロブスカイト系」に訂正する。 (2)同第6ページ第2行〜第3行の「チタン酸塩複合
誘導体セラミック」を「チタン酸塩および鉛ペロブスカ
イト系複合誘電体セラミック」に訂正する。 (3)同第23ページ第1O行〜第11行のrAg−P
tペースト」をrAg−Pdペースト」に訂正する。 手続ネ…正書 (自発) 1゜ 事件の表示 昭和63年特許願第325517号 2、 発明の名称 3゜ 補正をする者 事件との関係   特許出願人 名  称  ティーデイ−ケイ株式会社4、代理人 住  所 〒113 東京都文京区湯島3丁目23番1号 天神弥栄興産ビル3階 6゜ 補正の内容
FIG. 1 is a graph showing the heat shrinkage characteristics of the dielectric ceramic composition of the present invention. Patent Applicant TDC Co., Ltd. Procedural Amendment (Voluntary) 1. Indication of the case Patent Application No. 325517 of 1988 2. Name of the invention 3. Person making the amendment Relationship with the case Patent applicant name Title TDC Co., Ltd. Company 4, Agent address: 6, 3rd floor, Tenjin Yaei Kosan Building, 3-23-1 Yushima, Bunkyo-ku, Tokyo 113 Contents of amendment (1) “Titanate” in the third line from the bottom of page 5 of the specification
is corrected to "lead perovskite type". (2) "Titanate composite dielectric ceramic" in lines 2 and 3 of page 6 is corrected to "titanate and lead perovskite composite dielectric ceramic." (3) rAg-P on page 23, lines 10 to 11
Correct "t paste" to "rAg-Pd paste". Proceedings... Official document (spontaneous) 1゜Indication of the case Patent Application No. 325517 of 1988 2, Name of the invention 3゜Relationship with the case by the person making the amendment Patent applicant name Title TDC Co., Ltd. 4, Agent resident Address: 3rd floor, Tenjin Yasaka Kosan Building, 3-23-1 Yushima, Bunkyo-ku, Tokyo 113 6° Correction details

Claims (9)

【特許請求の範囲】[Claims] (1)Pb(Mg_1_/_3Nb_2_/_3)O_
3−PbTiO_3系の誘電体セラミック用組成物であ
って、PbOに換算して56.1〜59.9モル%、M
gOに換算して12.1〜19.8モル%、Nb_2O
_5に換算して12.1〜19.8モル%、TiO_2
に換算して0.6〜19.7モル%の組成に対し、Cu
Oに換算して0.1〜10モル%の銅化合物を含有する
ことを特徴とする誘電体セラミック用組成物。
(1) Pb(Mg_1_/_3Nb_2_/_3)O_
3-PbTiO_3-based dielectric ceramic composition containing 56.1 to 59.9 mol% in terms of PbO, M
12.1 to 19.8 mol% in terms of gO, Nb_2O
12.1 to 19.8 mol% in terms of _5, TiO_2
Cu
A composition for dielectric ceramics, characterized in that it contains 0.1 to 10 mol% of a copper compound in terms of O.
(2)さらに前記組成に対し、MnOに換算して1.7
モル%以下のMn化合物を含有する請求項1に記載の誘
電体セラミック用組成物。
(2) Furthermore, for the above composition, 1.7 in terms of MnO
The dielectric ceramic composition according to claim 1, containing a Mn compound in an amount of mol % or less.
(3)Pb(Mg_1_/_3Nb_2_/_3)O_
3−PbTiO_3系の固溶体であって、PbO56.
1〜59.9モル%、MgO12.1〜19.8モル%
、Nb_2O_312.1〜19.8モル%、TiO_
20.6〜19.7モル%の固溶体組成に対し、0.1
〜10モル%のCuOを含有することを特徴とする誘電
体セラミック焼結体。
(3) Pb(Mg_1_/_3Nb_2_/_3)O_
3-PbTiO_3-based solid solution, PbO56.
1 to 59.9 mol%, MgO 12.1 to 19.8 mol%
, Nb_2O_312.1-19.8 mol%, TiO_
0.1 for a solid solution composition of 20.6 to 19.7 mol%
A dielectric ceramic sintered body characterized by containing ~10 mol% of CuO.
(4)さらに前記固溶体組成に対し、1.7モル%以下
のMnOを含有する請求項3に記載の誘電体セラミック
焼結体。
(4) The dielectric ceramic sintered body according to claim 3, further comprising 1.7 mol% or less of MnO based on the solid solution composition.
(5)絶縁層と、導体層と、誘電体層とが積層された多
層配線基板において、この誘電体層が請求項3または4
に記載の誘電体セラミック焼結体から形成されているこ
とを特徴とする多層配線基板。
(5) In a multilayer wiring board in which an insulating layer, a conductor layer, and a dielectric layer are laminated, the dielectric layer is as claimed in claim 3 or 4.
A multilayer wiring board, characterized in that it is formed from the dielectric ceramic sintered body described in .
(6)前記絶縁層が、セラミックとガラスとから形成さ
れている請求項5に記載の多層配線基板。
(6) The multilayer wiring board according to claim 5, wherein the insulating layer is made of ceramic and glass.
(7)前記絶縁層がアルミナ30〜50体積%と、ガラ
ス50〜70体積%とを含有する請求項6に記載の多層
配線基板。
(7) The multilayer wiring board according to claim 6, wherein the insulating layer contains 30 to 50% by volume of alumina and 50 to 70% by volume of glass.
(8)前記ガラスがSiO_237〜65重量%、B_
2O_30.5〜10重量%、Al_2O_36〜17
.5重量%、2価金属酸化物MO 25〜45重量%を含有する請求項6または7に記載の
多層配線基板。
(8) The glass is SiO_237-65% by weight, B_
2O_30.5-10% by weight, Al_2O_36-17
.. The multilayer wiring board according to claim 6 or 7, containing 5% by weight of MO and 25 to 45% by weight of divalent metal oxide MO.
(9)前記絶縁層、導体層および誘電体層を1000℃
以下にて同時一体焼成して形成された請求項5ないし8
のいずれかに記載の多層配線基板。
(9) Heat the insulating layer, conductor layer and dielectric layer to 1000°C.
Claims 5 to 8 formed by simultaneous integral firing of the following:
The multilayer wiring board according to any one of the above.
JP32551788A 1988-12-23 1988-12-23 Material with composition for dielectric ceramic, dielectric ceramic sintered member and multilayer wiring board Pending JPH02172106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32551788A JPH02172106A (en) 1988-12-23 1988-12-23 Material with composition for dielectric ceramic, dielectric ceramic sintered member and multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32551788A JPH02172106A (en) 1988-12-23 1988-12-23 Material with composition for dielectric ceramic, dielectric ceramic sintered member and multilayer wiring board

Publications (1)

Publication Number Publication Date
JPH02172106A true JPH02172106A (en) 1990-07-03

Family

ID=18177761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32551788A Pending JPH02172106A (en) 1988-12-23 1988-12-23 Material with composition for dielectric ceramic, dielectric ceramic sintered member and multilayer wiring board

Country Status (1)

Country Link
JP (1) JPH02172106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350639A (en) * 1991-09-10 1994-09-27 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic for use in microwave device, a microwave dielectric ceramic resonator dielectric ceramics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216483A (en) * 1985-06-04 1987-01-24 Fujisawa Pharmaceut Co Ltd Imidazo-heterocyclic compound and production thereof
JPS62115608A (en) * 1985-11-14 1987-05-27 株式会社村田製作所 Dielectric porcelain compound
JPS63299006A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Dielectric porcelain composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216483A (en) * 1985-06-04 1987-01-24 Fujisawa Pharmaceut Co Ltd Imidazo-heterocyclic compound and production thereof
JPS62115608A (en) * 1985-11-14 1987-05-27 株式会社村田製作所 Dielectric porcelain compound
JPS63299006A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Dielectric porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350639A (en) * 1991-09-10 1994-09-27 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic for use in microwave device, a microwave dielectric ceramic resonator dielectric ceramics

Similar Documents

Publication Publication Date Title
US5248640A (en) Non-reducible dielectric ceramic composition
JP4988451B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP2008042150A (en) Multilayer ceramic capacitor
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP2666388B2 (en) Multilayer ceramic capacitors
JPH0821257B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
US4985381A (en) Dielectric ceramic composition
JPH06243725A (en) Dielectric ceramic composition and compound electronic part
JP2001302342A (en) Dielectric ceramic composition, laminated ceramic capacitor and manufacturing method thereof
JPH02172106A (en) Material with composition for dielectric ceramic, dielectric ceramic sintered member and multilayer wiring board
JP3586148B2 (en) Non-reducing dielectric ceramic material, method for producing the same, and laminated ceramic capacitor
JP4052032B2 (en) Dielectric composition and multilayer ceramic component using the same
JP2001307944A (en) Method for manufacturing laminated ceramic capacitor and paste for external electrode
JP2893703B2 (en) Multilayer ceramic capacitors
JP2669184B2 (en) Non-reducing dielectric porcelain composition
JP2671422B2 (en) Non-reducing dielectric porcelain composition
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JP4052031B2 (en) Dielectric composition and multilayer ceramic component using the same
JPH0855519A (en) Dielectric ceramic composition
JP3235343B2 (en) Dielectric porcelain composition
JP3235344B2 (en) Dielectric porcelain composition
JP3158569B2 (en) Non-reducing dielectric ceramic composition
JPH1154359A (en) Laminated ceramic capacitor, dielectric ceramics and manufacture of dielectric ceramics
JP2642390B2 (en) Thick film capacitors
JPH02206108A (en) Laminated ceramic capacitor