JP2669184B2 - Non-reducing dielectric porcelain composition - Google Patents

Non-reducing dielectric porcelain composition

Info

Publication number
JP2669184B2
JP2669184B2 JP3130594A JP13059491A JP2669184B2 JP 2669184 B2 JP2669184 B2 JP 2669184B2 JP 3130594 A JP3130594 A JP 3130594A JP 13059491 A JP13059491 A JP 13059491A JP 2669184 B2 JP2669184 B2 JP 2669184B2
Authority
JP
Japan
Prior art keywords
dielectric
sample
porcelain
reducing
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3130594A
Other languages
Japanese (ja)
Other versions
JPH04331765A (en
Inventor
森 長 門 大
地 幸 生 浜
部 行 雄 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3130594A priority Critical patent/JP2669184B2/en
Publication of JPH04331765A publication Critical patent/JPH04331765A/en
Application granted granted Critical
Publication of JP2669184B2 publication Critical patent/JP2669184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は非還元性誘電体磁器組
成物に関し、特に、たとえば、卑金属からなる内部電極
材料と同時に焼成することによって作製する磁器積層コ
ンデンサに利用される、非還元性誘電体磁器組成物に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-reducing dielectric porcelain composition, and more particularly, to a non-reducing dielectric porcelain used for a ceramic laminated capacitor produced by firing at the same time as an internal electrode material made of a base metal. The present invention relates to a body porcelain composition.

【0002】[0002]

【従来の技術】従来、チタン酸カルシウム,チタン酸ス
トロンチウムあるいはチタン酸鉛を主成分とした磁器材
料を誘電体とし、Ag−Pd系,Pt系の合金を内部電
極とした磁器積層コンデンサが、高信頼性を要求する各
種民生用,産業用の電子回路に多用されてきた。磁器積
層コンデンサを製造するためには、たとえば厚み30〜
50μmの磁器グリーンシートをドクターブレード法な
どにより作製し、この磁器グリーンシートの上に内部電
極となる金属導体層を形成し、これらを複数枚積層して
熱圧着し一体化し、その一体化したものを自然雰囲気中
でたとえば1200℃以上の高温で焼成して焼結体を作
り、その焼結体の端面に内部電極と導通する外部引き出
し用電極を焼き付けていた。
2. Description of the Related Art Heretofore, a porcelain multilayer capacitor using a ceramic material mainly composed of calcium titanate, strontium titanate or lead titanate as a dielectric and an Ag-Pd-based or Pt-based alloy as an internal electrode has been known to be high in performance. It has been widely used in various consumer and industrial electronic circuits that require reliability. In order to manufacture a porcelain multilayer capacitor, for example, a thickness of 30 to
A 50 μm porcelain green sheet is produced by the doctor blade method, etc., and a metal conductor layer to be an internal electrode is formed on this porcelain green sheet. Was fired in a natural atmosphere at a high temperature of, for example, 1200 ° C. or higher to produce a sintered body, and an external extraction electrode electrically connected to the internal electrode was baked on the end surface of the sintered body.

【0003】[0003]

【発明が解決しようとする課題】従来の磁器積層コンデ
ンサにおいては、内部電極の材料として次の2つの条件
を満足する必要があった。第1に、誘電体磁器材料と内
部電極材料とが同時に焼成されるので、誘電体磁器材料
の焼結温度以上の融点を有することであり、第2に、酸
化性の高温雰囲気においても酸化されず、しかも誘電体
と反応しないことである。このような条件を満足する電
極材料として、白金,金,パラジウムあるいはそれらの
合金のような貴金属があり、これまで、磁器積層コンデ
ンサの内部電極材料としては、主としてこれらの貴金属
が使用されてきた。しかしながら、これらの電極材料は
優れた特性を有する反面、高価であり、このため、磁器
積層コンデンサに占める電極材料費の割合が30〜70
%にも達し、コストを上昇させる最大の要因になってい
た。
In the conventional porcelain multilayer capacitor, it was necessary to satisfy the following two conditions as the material of the internal electrodes. Firstly, since the dielectric ceramic material and the internal electrode material are simultaneously fired, they have a melting point higher than the sintering temperature of the dielectric ceramic material. Secondly, they are oxidized even in an oxidizing high temperature atmosphere. And does not react with the dielectric. There are noble metals such as platinum, gold, palladium and their alloys as the electrode materials that satisfy such conditions, and these noble metals have been mainly used as the internal electrode materials of the porcelain multilayer capacitors. However, although these electrode materials have excellent characteristics, they are expensive, and therefore, the electrode material cost in the porcelain multilayer capacitor is 30 to 70%.
%, Which was the biggest factor in raising costs.

【0004】一方、貴金属以外の電極材料として、N
i,Fe,Co,Cuなどの卑金属があるが、近年、電
子部品に対する高周波対応の要求が強まり、磁器積層コ
ンデンサの内部電極として、導電率が高く、等価直列抵
抗が小さくなるものが必要とされている。このため、卑
金属の内部電極材料の中でも、CuまたはCu系合金を
用いることが考えられている。ところが、CuやCu系
合金などの卑金属は高温の酸化性雰囲気中では容易に酸
化されてしまい、電極としての役目をしなくなってしま
う。このため、これらの卑金属を磁器積層コンデンサの
内部電極に使用するためには、誘電体磁器材料とともに
中性または還元雰囲気中で焼成する必要がある。
On the other hand, as electrode materials other than noble metals, N
Although there are base metals such as i, Fe, Co, and Cu, in recent years, the demand for high-frequency compatibility for electronic components has increased, and it has become necessary to use an internal electrode of a porcelain multilayer capacitor having high conductivity and low equivalent series resistance. ing. For this reason, it has been considered to use Cu or a Cu-based alloy among base metal internal electrode materials. However, base metals such as Cu and Cu-based alloys are easily oxidized in a high-temperature oxidizing atmosphere and lose their role as electrodes. Therefore, in order to use these base metals for the internal electrodes of the porcelain monolithic capacitor, it is necessary to fire them together with the dielectric porcelain material in a neutral or reducing atmosphere.

【0005】しかしながら、従来の誘電体磁器材料で
は、このような還元雰囲気中で焼成すると著しく還元さ
れてしまい、半導体化してしまうという欠点があった。
また、CuやCu系合金は融点が1080℃以下である
ことから、誘電体材料の焼結温度はそれ以下でなければ
ならない。
However, the conventional dielectric ceramic material has a drawback in that it is remarkably reduced when it is fired in such a reducing atmosphere and becomes a semiconductor.
Further, since the melting point of Cu or a Cu-based alloy is 1080 ° C. or lower, the sintering temperature of the dielectric material must be lower than that.

【0006】したがって、CuやCu系合金のような酸
化しやすくかつ低融点の金属を積層コンデンサの内部電
極として用いる場合には、耐還元性に優れ、かつ低温で
焼結する誘電体材料が必要である。
Therefore, when a metal that is easily oxidized and has a low melting point, such as Cu or a Cu-based alloy, is used as the internal electrode of the multilayer capacitor, a dielectric material having excellent reduction resistance and sintering at low temperature is required. It is.

【0007】それゆえに、この発明の主たる目的は、1
080℃以下の低温で焼結し、かつ還元雰囲気で焼成し
ても電気的特性の劣化の生じない、非還元性誘電体磁器
組成物を提供することにある。
Therefore, the main object of the present invention is to
It is an object of the present invention to provide a non-reducing dielectric ceramic composition which does not deteriorate in electrical characteristics even if it is sintered at a low temperature of 080 ° C. or lower and is fired in a reducing atmosphere.

【0008】[0008]

【課題を解決するための手段】この発明は、一般式が A(Bi2 3 ・BTiO2 )+(100−A){(S
100-X-Y PbX CaY )TiO3 }(ただし、A,
B,XおよびYはモル%) で表され、A,B,X,Yがそれぞれ の範囲にある主成分に、一般式が aLi2 O+bRO+cB2 3 +(100−a−b−
c)SiO2 (ただし、RはMg,Ca,SrおよびB
aの中から選ばれる少なくとも1種類、a,bおよびc
はモル%) で表され、a,bおよびcが、それぞれ、 である副成分を0.1〜30重量%含有した、非還元性
誘電体磁器組成物である。
The present invention has a general formula of A (Bi 2 O 3 .BTiO 2 ) + (100-A) {(S
r 100-XY Pb X Ca Y ) TiO 3 } (however, A,
B, X and Y are represented by mol%), and A, B, X and Y are respectively represented by Are represented by the following general formula: aLi 2 O + bRO + cB 2 O 3 + (100-ab−
c) SiO 2 (where R is Mg, Ca, Sr and B
at least one selected from a, a, b and c
Is represented by mol%), and a, b and c are respectively It is a non-reducing dielectric ceramic composition containing 0.1 to 30% by weight of the subcomponent of

【0009】[0009]

【発明の効果】この発明にかかる非還元性誘電体磁器組
成物は、耐還元性に優れ、還元焼成しても、誘電特性お
よび絶縁抵抗が劣化せず、比抵抗が1010Ωcm以上、
誘電損失が5%以下であるとともに、焼結性にも優れ、
1080℃以下の低温で焼結可能である。したがって、
この発明にかかる非還元性誘電体磁器組成物を磁器積層
コンデンサ材料として用いれば、内部電極材料としてC
uまたはCu系合金を用いることができる。そのため、
従来の貴金属を用いたものに比べて、安価でありかつ等
価直列抵抗の小さな磁器積層コンデンサを得ることがで
きる。
EFFECTS OF THE INVENTION The non-reducing dielectric ceramic composition according to the present invention is excellent in reduction resistance, does not deteriorate in dielectric properties and insulation resistance even after reduction firing, and has a specific resistance of 10 10 Ωcm or more,
Dielectric loss is less than 5% and excellent in sinterability,
It can be sintered at a low temperature of 1080 ° C. or less. Therefore,
When the non-reducing dielectric ceramic composition according to the present invention is used as a material for a porcelain multilayer capacitor, C is used as an internal electrode material
u or Cu-based alloy can be used. for that reason,
It is possible to obtain a ceramic laminated capacitor that is less expensive and has a smaller equivalent series resistance than those using a conventional noble metal.

【0010】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0011】[0011]

【実施例】出発原料として工業用原料であるSrC
3 ,CaCO3 ,Pb3 4 ,Bi2 3 ,TiO2
などを準備した。これらの原料を表1および表2に示す
組成となるように秤量し、ボールミルで16時間湿式混
合した後、蒸発乾燥して混合粉末を得た。得られた混合
粉末をジルコニア質の匣に入れて、900℃で2時間焼
成し、所定の化合物を得た。
EXAMPLE SrC, an industrial material, was used as a starting material.
O 3 , CaCO 3 , Pb 3 O 4 , Bi 2 O 3 , TiO 2
And so on. These raw materials were weighed so as to have the compositions shown in Tables 1 and 2 , wet-mixed in a ball mill for 16 hours, and then evaporated to dryness to obtain a mixed powder. The obtained mixed powder was put in a zirconia box and calcined at 900 ° C. for 2 hours to obtain a predetermined compound.

【0012】次いで、このようにして得られた化合物を
200メッシュの篩を通過するように粗粉砕して、表1
に示す試料番号1〜26および表2に示す試料番号27
〜33における誘電体材料の各所望の配合比となるよう
に配合した。
Next, the compound thus obtained was coarsely pulverized so as to pass through a 200-mesh sieve.
Sample Nos. 1 to 26 shown in Table 2 and Sample No. 27 shown in Table 2
It was compounded so that each desired compounding ratio of the dielectric material in ~ 33.

【0013】[0013]

【表1】 [Table 1]

【表2】 [Table 2]

【0014】 さらに、副成分として、還元雰囲気で焼
成する場合に誘電体磁器の還元防止に優れた効果がある
還元防止剤、たとえば表3に示す試料番号34〜59
よび表4に示す試料番号60〜66における還元防止剤
を得るために、各成分の酸化物,炭酸塩あるいは水酸化
物を調合し、これらをボールミルで16時間湿式混合粉
砕した後、蒸発乾燥して粉末を得た。得られた粉末をア
ルミナ製のるつぼに入れて1300℃の温度で1時間放
置し、その後急冷してガラス化した。これを200メッ
シュの篩を通過するように粗粉砕して、還元防止剤を準
備した。
Further, as an auxiliary component, a reduction inhibitor having an excellent effect of preventing reduction of the dielectric ceramic when firing in a reducing atmosphere, for example, sample numbers 34 to 59 shown in Table 3 and sample number 60 shown in Table 4. In order to obtain the reduction inhibitor in .about.66 , oxides, carbonates or hydroxides of the respective components were mixed, wet mixed and pulverized with a ball mill for 16 hours, and then evaporated to dryness to obtain a powder. The obtained powder was placed in an alumina crucible and left at a temperature of 1300 ° C. for 1 hour, and then rapidly cooled to vitrify. This was roughly crushed so as to pass through a 200-mesh sieve to prepare a reduction inhibitor.

【0015】[0015]

【表3】 [Table 3]

【表4】 [Table 4]

【0016】 次に、上記の誘電体材料に表1〜表4に
示す割合で還元防止剤を添加した。この場合、表1の試
料番号1〜26および表2の試料番号27〜33では、
還元防止剤として、5Li2 O+20BaO+15Ca
O+5SrO+5MgO+25B2 3 +25SiO2
(モル%)の還元防止剤を添加した。また、表3の試料
番号34〜59および表4の試料番号60〜66では、
誘電体材料として、98(Sr50Pb20Ca30)TiO
3 +2(Bi2 3 ・2TiO3 )(モル%)の誘電体
材料を用いた。
Next, a reduction inhibitor was added to the above dielectric material at a ratio shown in Tables 1 to 4. In this case, in the sample numbers 1-26 of Table 1 and the sample numbers 27-33 of Table 2,
5Li 2 O + 20BaO + 15Ca as a reduction inhibitor
O + 5SrO + 5MgO + 25B 2 O 3 + 25SiO 2
(Mol%) of a reduction inhibitor was added. Further, Sample No. 60 to 66 of the sample No. 34-59 and Table 4 in Table 3,
98 (Sr 50 Pb 20 Ca 30 ) TiO 2 as a dielectric material
A dielectric material of 3 + 2 (Bi 2 O 3 .2TiO 3 ) (mol%) was used.

【0017】これにポリビニルブチラール系のバインダ
および有機溶媒を加えて、ボールミルで16時間湿式混
合し、ドクターブレード法によってシート状に成形する
ことにより、グリーンシートを得た。このグリーンシー
トを乾燥した後、適当な大きさに切断し、切断したグリ
ーンシートにスクリーン印刷法でCu電極ペーストを印
刷した後、所定枚数積み重ね熱圧着することにより積層
体を得た。得られた積層体を所定の規格に切断した後、
外部電極としてCu電極ペーストを塗布して生ユニット
を得た。この生ユニットをN2 ,H2 およびH2 Oの混
合ガスを用いてCu電極の酸化しない還元性雰囲気に調
整した電気炉に入れ、920〜1080℃で2時間焼成
して磁器積層コンデンサを得た。
A polyvinyl butyral type binder and an organic solvent were added thereto, wet mixed in a ball mill for 16 hours, and formed into a sheet by a doctor blade method to obtain a green sheet. After drying this green sheet, it was cut into an appropriate size, a Cu electrode paste was printed on the cut green sheet by a screen printing method, and a predetermined number of the sheets were stacked and thermocompression bonded to obtain a laminate. After cutting the obtained laminate to a predetermined standard,
A Cu electrode paste was applied as an external electrode to obtain a raw unit. This raw unit was placed in an electric furnace adjusted to a reducing atmosphere in which Cu electrodes were not oxidized using a mixed gas of N 2 , H 2 and H 2 O, and fired at 920 to 1080 ° C. for 2 hours to obtain a porcelain multilayer capacitor. Was.

【0018】 得られた磁器積層コンデンサをふくしん
液に漬けて焼結度の試験を行い、最適焼成温度を決定し
た。さらに、25℃の温度における1kHz,1Vrm
sでの誘電率ε,誘電損失tanδおよび絶縁抵抗の電
気的特性を測定した。表1の試料番号1〜26,表2の
試料番号27〜33および表3の試料番号34〜59
表4の試料番号60〜66の最適焼成温度,電気的特性
を表5,表6および表7,表8にそれぞれ示す。
The obtained porcelain multilayer capacitor was immersed in a wiping solution and a sintering degree test was conducted to determine the optimum firing temperature. Further, 1 kHz, 1 Vrm at a temperature of 25 ° C.
The electrical properties of the dielectric constant ε, the dielectric loss tan δ, and the insulation resistance at s were measured. Table 1 Sample No. 1 to 26, the sample numbers in Table 2 27 to 33 and sample number 34 to 59 of Table 3,
The optimum firing temperatures and electrical characteristics of sample numbers 60 to 66 in Table 4 are shown in Tables 5 and 6, and Tables 7 and 8, respectively.

【0019】[0019]

【表5】 [Table 5]

【表6】 [Table 6]

【0020】[0020]

【表7】 [Table 7]

【表8】 [Table 8]

【0021】この発明において主成分および副成分の範
囲を上述のように限定する理由は次の通りである。ま
ず、主成分の限定理由について説明する。表1の試料番
号1に示すように、還元防止剤の添加量が0.1重量%
未満になると、誘電体が還元され、誘電損失tanδが
5%以上となり、絶縁抵抗が劣化してしまう。表1の試
料番号8,9に示すように、Aの値すなわちBi2 3
が10モル%を超えると、内部電極であるCuと反応
し、電極切れを生じるため、積層コンデンサとして好ま
しくない。表1の試料番号11,12に示すように、B
の値すなわちTiO2 が0.8未満になるか、試料番号
16,17に示すようにBの値が8を超えると、還元防
止剤を30重量%入れても絶縁抵抗が1010Ωcmより
小さくなって好ましくない。表1の試料番号26および
表2の試料番号27,28,30,31,33に示すよ
うに、Yの値が70モル%を超えると、還元防止剤を添
加しても絶縁抵抗が1010Ωcmより小さくなって好ま
しくない。
The reasons for limiting the ranges of the main component and the subcomponent in the present invention as described above are as follows. First, the reasons for limiting the main components will be described. As shown in Sample No. 1 in Table 1, the amount of the reduction inhibitor added was 0.1% by weight.
If it is less than 1, the dielectric is reduced, the dielectric loss tan δ becomes 5% or more, and the insulation resistance deteriorates. As shown in sample numbers 8 and 9 of Table 1, the value of A, that is, Bi 2 O 3
If it exceeds 10 mol%, it reacts with Cu as an internal electrode and causes electrode breakage, which is not preferable as a multilayer capacitor. As shown in sample numbers 11 and 12 in Table 1, B
When the value of TiO 2 is less than 0.8 or the value of B exceeds 8 as shown in Sample Nos. 16 and 17, the insulation resistance is less than 10 10 Ωcm even when 30% by weight of the reduction inhibitor is added. It is not preferable. As shown in Sample No. 26 of Table 1 and Sample Nos. 27, 28, 30, 31, 33 of Table 2, when the value of Y exceeds 70 mol%, the insulation resistance is 10 10 even if the reducing inhibitor is added. It is not preferable because it is smaller than Ωcm.

【0022】次に、副成分としての還元防止剤を限定し
た理由について説明する。表3の試料番号47,48,
49,50に示すように、bの値すなわちROが10モ
ル%未満になると、絶縁抵抗が1010Ωcmより小さく
なって好ましくない。表3の試料番号39,40,4
1,42に示すように、bの値すなわちROが55モル
%以上になると、焼成温度が1080℃以上となり、C
u内部電極が溶出してしまい、コンデンサとして使用で
きない。表3の試料番号55に示すように、aの値すな
わちLi2 Oが20モル%以上になるか、試料番号57
に示すように、cの値すなわちB2 3 が40モル%以
上になると、誘電特性が著しく損なわれたり、焼結が完
了する前に軟化変形したりする。表3の試料番号34,
35に示すように、還元防止剤の添加量が0.1重量%
未満になると、誘電体が還元され絶縁抵抗が劣化する。
また、表4の試料番号66に示すように、還元防止剤の
添加量が30重量%を超えると、誘電体磁器が軟化し、
さらに変形してしまうため好ましくない。
Next, the reason why the reduction inhibitor as a subcomponent is limited will be described. Sample Nos. 47 and 48 in Table 3
49 and 50, when the value of b, that is, RO is less than 10 mol%, the insulation resistance becomes less than 10 10 Ωcm, which is not preferable. Sample No. 39, 40, 4 in Table 3
As shown in FIGS. 1 and 42, when the value of b, that is, RO becomes 55 mol% or more, the firing temperature becomes 1080 ° C. or more, and C
The u internal electrode elutes and cannot be used as a capacitor. As shown in Sample No. 55 of Table 3, the value of a, that is, Li 2 O is 20 mol% or more, or Sample No. 57
As shown in FIG. 5, when the value of c, that is, B 2 O 3 is 40 mol% or more, the dielectric properties are significantly impaired, or the metal is softened and deformed before the completion of sintering. Sample No. 34 in Table 3,
As shown in 35, the addition amount of the reduction inhibitor was 0.1% by weight.
When it is less than the above range, the dielectric is reduced and the insulation resistance is deteriorated.
Further, as shown in Sample No. 66 of Table 4, when the addition amount of the reduction inhibitor exceeded 30% by weight, the dielectric porcelain softened,
Further deformation is not preferred.

【0023】上述の実施例においては、還元防止剤とし
て、予め所定の割合に配合し高温に熱処理して溶融した
後に粉砕してガラス化したものを主成分に添加混合し
た。しかし、還元防止剤の添加方法としては、この他、
予め所定の割合に配合し熱処理を行った粉末を添加する
か、あるいは還元防止剤を主成分に対して個々に添加し
てもよい。
In the above-mentioned examples, as the anti-reducing agent, a mixture was added in a predetermined proportion to the main component, which was previously mixed in a predetermined ratio, heat-treated at a high temperature, melted, crushed and vitrified. However, as a method of adding the reduction inhibitor,
A powder which has been previously blended in a predetermined ratio and heat-treated may be added, or a reduction inhibitor may be added individually to the main component.

【0024】なお、酸化ビスマスを含み、酸化鉛,チタ
ン酸カルシウムあるいはチタン酸ストロンチウムの少な
くともいずれかを含む誘電体材料およびCu系の内部電
極材料からなる積層体を焼成する場合、その誘電体が還
元されず、かつその内部電極が酸化されない酸素雰囲気
下に保持する必要がある。すなわち、誘電体が還元され
ると絶縁抵抗が低下し、内部電極が酸化されると等価直
列抵抗が増大するなどの不具合が生じ、いずれの場合も
コンデンサとしての機能を失う。
When firing a laminate of a dielectric material containing bismuth oxide and at least one of lead oxide, calcium titanate, and strontium titanate and a Cu-based internal electrode material, the dielectric material is reduced. It is necessary to keep the internal electrode in an oxygen atmosphere in which the internal electrode is not oxidized. That is, when the dielectric is reduced, the insulation resistance is reduced, and when the internal electrodes are oxidized, the equivalent series resistance is increased, which causes problems such as loss of the function of the capacitor.

【0025】それに対して、この発明によれば、誘電体
材料に還元防止剤を添加したことにより、焼成可能な雰
囲気の酸素分圧が特に低酸素分圧側に広がるために、酸
素分圧を厳密にコントロールしなくても適当な還元雰囲
気下で良品率の高い製品を得ることができる。すなわ
ち、この発明による非還元性誘電体磁器組成物は還元雰
囲気中で焼成しても還元されにくい。そして、かかる組
成物からなる磁器は、誘電特性や絶縁抵抗が劣化せず、
比抵抗は1010Ωcm以上であり、また、その誘電損失
は5%以下である。さらに、この発明にかかる非還元性
誘電体磁器組成物は、その焼成温度が1080℃以下で
ある。このため、この発明にかかる非還元性誘電体磁器
組成物を積層コンデンサの材料として用いれば、内部電
極用材料としてCuまたはCu系合金などを用いること
ができる。これにより、従来のPd−Ag、あるいはP
t系などの貴金属電極を用いた場合に比べて大幅なコス
トの低減が図られ、また等価直列抵抗の小さな積層セラ
ミックコンデンサが得られる。
On the other hand, according to the present invention, by adding the reduction inhibitor to the dielectric material, the oxygen partial pressure of the calcinable atmosphere spreads particularly to the low oxygen partial pressure side, so that the oxygen partial pressure is strictly controlled. It is possible to obtain a product with a high non-defective rate in an appropriate reducing atmosphere without controlling. That is, the non-reducing dielectric ceramic composition according to the present invention is not easily reduced even when fired in a reducing atmosphere. And, the porcelain composed of such a composition does not deteriorate the dielectric characteristics and insulation resistance,
The specific resistance is 10 10 Ωcm or more, and the dielectric loss thereof is 5% or less. Furthermore, the firing temperature of the non-reducing dielectric ceramic composition according to the present invention is 1080 ° C. or lower. Therefore, if the non-reducing dielectric ceramic composition according to the present invention is used as a material for a multilayer capacitor, Cu or a Cu-based alloy can be used as a material for internal electrodes. Thereby, the conventional Pd-Ag or Pd-Ag
Compared with the case of using a t-based noble metal electrode, the cost can be significantly reduced, and a multilayer ceramic capacitor having a small equivalent series resistance can be obtained.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式が A(Bi2 3 ・BTiO2 )+(100−A){(S
100-X-Y PbX CaY )TiO3 }(ただし、A,
B,XおよびYはモル%) で表され、A,B,X,Yがそれぞれ の範囲にある主成分に、 一般式が aLi2 O+bRO+cB2 3 +(100−a−b−
c)SiO2 (ただし、RはMg,Ca,SrおよびB
aの中から選ばれる少なくとも1種類、a,bおよびc
はモル%) で表され、a,bおよびcが、それぞれ、 である副成分を0.1〜30重量%含有した、非還元性
誘電体磁器組成物。
1. The general formula is A (Bi 2 O 3 .BTiO 2 ) + (100-A) {(S
r 100-XY Pb X Ca Y ) TiO 3 } (however, A,
B, X and Y are represented by mol%), and A, B, X and Y are respectively represented by The main formula in the range of is represented by the following general formula: aLi 2 O + bRO + cB 2 O 3 + (100-ab−
c) SiO 2 (where R is Mg, Ca, Sr and B
at least one selected from a, a, b and c
Is represented by mol%), and a, b and c are respectively A non-reducing dielectric porcelain composition containing 0.1 to 30% by weight of the sub-component.
JP3130594A 1991-05-02 1991-05-02 Non-reducing dielectric porcelain composition Expired - Lifetime JP2669184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3130594A JP2669184B2 (en) 1991-05-02 1991-05-02 Non-reducing dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3130594A JP2669184B2 (en) 1991-05-02 1991-05-02 Non-reducing dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH04331765A JPH04331765A (en) 1992-11-19
JP2669184B2 true JP2669184B2 (en) 1997-10-27

Family

ID=15037945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3130594A Expired - Lifetime JP2669184B2 (en) 1991-05-02 1991-05-02 Non-reducing dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP2669184B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900915A (en) * 1997-03-18 1999-05-04 Thomson Consumer Electronics, Inc. HD to SD guide converter for electronic television schedule system
JP2002145661A (en) * 2000-11-08 2002-05-22 Sumitomo Special Metals Co Ltd Dielectric porcelain composition for microwave
JP4792720B2 (en) * 2004-08-31 2011-10-12 株式会社村田製作所 Dielectric ceramic composition and ceramic multilayer substrate

Also Published As

Publication number Publication date
JPH04331765A (en) 1992-11-19

Similar Documents

Publication Publication Date Title
JP3227859B2 (en) Non-reducing dielectric ceramic composition
KR980009197A (en) Multilayer Ceramic Capacitors
JPH0821257B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3323801B2 (en) Porcelain capacitors
JPH0817054B2 (en) Dielectric porcelain composition
JP2736397B2 (en) Porcelain capacitor and method of manufacturing the same
JP2669184B2 (en) Non-reducing dielectric porcelain composition
JP3158553B2 (en) Non-reducing dielectric ceramic composition
JP2843736B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0734327B2 (en) Non-reducing dielectric ceramic composition
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JP2736396B2 (en) Porcelain capacitor and method of manufacturing the same
JP2669185B2 (en) Non-reducing dielectric porcelain composition
JP3158552B2 (en) Non-reducing dielectric ceramic composition
JP3158568B2 (en) Non-reducing dielectric ceramic composition
JP3158567B2 (en) Porcelain multilayer capacitors
JP2671422B2 (en) Non-reducing dielectric porcelain composition
JP2761689B2 (en) Porcelain capacitor and method of manufacturing the same
JP3158569B2 (en) Non-reducing dielectric ceramic composition
JP3106367B2 (en) Non-reducing dielectric porcelain composition
JP2843733B2 (en) Porcelain capacitor and method of manufacturing the same
JP3233020B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0614498B2 (en) Porcelain capacitor and method of manufacturing the same
JP3318952B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2879867B2 (en) Porcelain capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 14

EXPY Cancellation because of completion of term