JPH0217043B2 - - Google Patents

Info

Publication number
JPH0217043B2
JPH0217043B2 JP6359483A JP6359483A JPH0217043B2 JP H0217043 B2 JPH0217043 B2 JP H0217043B2 JP 6359483 A JP6359483 A JP 6359483A JP 6359483 A JP6359483 A JP 6359483A JP H0217043 B2 JPH0217043 B2 JP H0217043B2
Authority
JP
Japan
Prior art keywords
measured
optical path
electro
laser
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6359483A
Other languages
Japanese (ja)
Other versions
JPS59190605A (en
Inventor
Akira Hirai
Nobuo Shibata
Toshio Akatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6359483A priority Critical patent/JPS59190605A/en
Publication of JPS59190605A publication Critical patent/JPS59190605A/en
Publication of JPH0217043B2 publication Critical patent/JPH0217043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02094Speckle interferometers, i.e. for detecting changes in speckle pattern

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve measuring accuracy, in a spectrum interference method, by imparting difference in light paths to one light path, and computing the phase, i.e., the displacement data, of each measuring point based on the change in brightness at each measuring point at this time. CONSTITUTION:The speckle pattern of the surface of a data medium before deformation is stored in a memory pattern. Then, the speckle pattern of the surface of the data medium after the data medium is deformed is stored in the memory every time voltages are applied to an electro-optical crystal 5 step by step, with the length of the path of laser light L3 being changed. Based on the stored data, the difference between the brightness of a picture element before the deformation and the brightness after the deformation is obtained. The difference is changed in correspondence with the change in the length of the light path. By using the phase terms of all the picture element surfaces of the data medium 7 and continuity of the change in the neighboring picture elements, the state of the displacement within the surface can be determined on the entire surface to be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定物の面内変位を非接触で測定
する装置に係り、特に磁気テープあるいは紙など
の情報媒体の面内変位を高精度で測定するに好適
な測定装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for non-contact measurement of in-plane displacement of an object to be measured, and particularly to a device for measuring in-plane displacement of an information medium such as magnetic tape or paper. The present invention relates to a measuring device suitable for measuring with precision.

〔従来の技術〕[Conventional technology]

被測定物の面内変位を非接触で測定する手段と
して、例えばスペクトル干渉法を用いる方法があ
る。
As a means for non-contactly measuring the in-plane displacement of an object to be measured, there is a method using, for example, spectral interferometry.

この測定法では、レーザ光を被測定物表面の法
線に対して対称な2つの方向から照射し、この時
被測定物表面から散乱した光をレンズを用いて撮
像素子上に結像させる。そして被測定物の変形前
後におけるスペツクル模様の各画素の明るさの差
をとる。これをモニタに可視表示すると、上記対
称な2つの方向から照射したレーザ光のそれぞれ
の中心軸により構成される平面と被測定物表面と
の交線に平行な方向に対する変位成分の等変位線
があらわれる。
In this measurement method, laser light is irradiated from two directions symmetrical to the normal to the surface of the object to be measured, and the light scattered from the surface of the object to be measured is imaged on an image sensor using a lens. Then, the difference in brightness of each pixel of the speckle pattern before and after the deformation of the object to be measured is determined. When this is visually displayed on a monitor, the equidisplacement line of the displacement component in the direction parallel to the line of intersection between the plane formed by the central axes of the laser beams irradiated from the two symmetrical directions and the surface of the object to be measured is shown. Appears.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来のスペツクル干渉法を用いる測定
法では、各画素の明るさの差を演算した際、平均
的には等変位の縞を与えているが、スペツクル自
体がノイズの作用を示しているため得られた画像
の質が悪く、また縞の間では変位分布状態を検出
できず、高精度の測定ができないという欠点が有
つた。
However, in the conventional measurement method using speckle interferometry, when calculating the difference in brightness of each pixel, it gives uniformly displaced fringes on average, but the speckle itself shows the effect of noise. The quality of the obtained image was poor, and the displacement distribution state could not be detected between the stripes, making it impossible to perform highly accurate measurements.

本発明の目的は、被測定物の面内変位を非接触
且つ高精度で測定する面内変位測定装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an in-plane displacement measuring device that measures in-plane displacement of an object to be measured in a non-contact manner with high accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明は、レーザ
光を発光するレーザ発振器と、そのレーザ発振器
から出射されたレーザ光のビーム径を拡大するビ
ームエクスパンダと、ビームエクスパンダを通過
したレーザ光を2組に分岐するビームスプリツタ
と、分岐した2組のレーザ光を被測定物表面の法
線に対して成す角度が等しい2方向から被測定物
表面に照射するように成した光学系と、照射され
たレーザ光が被測定物表面の凹凸によつて散乱し
たことにより発生するスペツクル模様をとらえる
レンズおよび撮影素子と、この撮影素子により電
気信号に変換された画像情報を記憶する記憶装置
と、この画像情報に基づき面内変位に対応した情
報を演算する計算機と、この計算機で演算された
その情報を可視表示するモニタとを備えた面内変
位測定位置において、 前記ビームスプリツタにより分岐された2組の
レーザ光のうちの一方の光路中に配され電圧を印
加されることによつてその光路の等価光路長を変
化させる電気光学結晶と、光路長変更指令に見合
つた電圧を該電気光学結晶に印加する電気光学結
晶駆動回路とを設けると共に、前記計算機は、被
測定物の変形前において画像情報を記憶し、被測
定物の変形後において、電気光学結晶駆動回路に
光路長変更指令を与え電気光学結晶が等価光路長
を変化させた状態における画像情報の記憶を複数
回繰返し、記憶された被測定物の変形前後の画像
情報の各画素の明るさの差が零となるときの光路
長の変化量を求め、この変化量、レーザ光波長お
よび被測定物の法線方向の被測定物に照射したレ
ーザ光の方向とのなす角度に基づいて、被測定物
の変位量を測定表面に対応する全画素分につき演
算し、面内変位に対応した情報を得ることを特徴
とている。
In order to solve the above problems, the present invention provides a laser oscillator that emits laser light, a beam expander that expands the beam diameter of the laser light emitted from the laser oscillator, and a laser light that has passed through the beam expander. a beam splitter that branches into two sets; an optical system configured to irradiate the two sets of branched laser beams onto the surface of the object to be measured from two directions having equal angles with respect to the normal to the surface of the object to be measured; a lens and a photographing element that capture speckle patterns generated when the irradiated laser beam is scattered by unevenness on the surface of the object to be measured; a storage device that stores image information converted into electrical signals by the photographing element; At an in-plane displacement measurement position equipped with a computer that calculates information corresponding to in-plane displacement based on this image information and a monitor that visually displays the information calculated by this computer, An electro-optic crystal is placed in the optical path of one of the two sets of laser beams and changes the equivalent optical path length of the optical path by applying a voltage to the electro-optic crystal. In addition to being provided with an electro-optic crystal drive circuit that applies voltage to the crystal, the computer stores image information before the object to be measured is deformed, and issues an optical path length change command to the electro-optic crystal drive circuit after the object to be measured is deformed. The optical path when the difference in brightness of each pixel of the stored image information before and after the deformation of the measured object becomes zero by repeating storage of image information multiple times with the electro-optic crystal changing the equivalent optical path length. Based on this change, the laser light wavelength, and the angle between the direction of the laser beam irradiated to the workpiece and the normal direction of the workpiece, the displacement of the workpiece can be calculated from the measurement surface. The feature is that the calculation is performed for all pixels corresponding to , and information corresponding to the in-plane displacement is obtained.

〔作用〕[Effect]

記憶装置は、撮影素子によつて得られた画像情
報を記憶しており、計算機は、被測定物が変形す
る前の時点でこの記憶装置の内容を取込む。続い
て、計算機は、被測定物の変形後において、光路
長変更指令を電気光学結晶駆動回路に与える。電
気光学結晶駆動回路は、この指令に見合つて電圧
を電気光学結晶に印加する。これにより、電気光
学結晶は光路長を変更する。この変更状態におけ
る被測定物表面からの散乱光は、撮像素子により
撮像され、記憶装置に画像情報として記憶され
る。計算機は、この画像情報を取込む。このよう
な動作は、複数回繰返される。その後、計算機
は、記憶された被測定物の変形前後の画像情報の
各画素の明るさの差を求め、この差が零になると
きの光路長の変化量を求める。そして、この変化
量と、レーザ光波長と、被測定物の法線方向と被
測定物に照射したレーザ光の方向とのなす角度と
に基づいて、被測定物の変位量を求める。この演
算を測定表面に対応する全画素分につき行い、面
内変位に対応した情報を得る。
The storage device stores image information obtained by the photographing element, and the computer reads the contents of this storage device at a time before the object to be measured is deformed. Subsequently, the computer gives an optical path length change command to the electro-optic crystal drive circuit after the object to be measured has been deformed. The electro-optic crystal driving circuit applies a voltage to the electro-optic crystal in accordance with this command. This causes the electro-optic crystal to change the optical path length. Scattered light from the surface of the object in this changed state is imaged by the image sensor and stored as image information in the storage device. The computer takes in this image information. Such operations are repeated multiple times. Thereafter, the computer calculates the difference in brightness of each pixel of the stored image information before and after the deformation of the object to be measured, and calculates the amount of change in the optical path length when this difference becomes zero. Then, the amount of displacement of the object to be measured is determined based on this amount of change, the wavelength of the laser beam, and the angle between the normal direction of the object and the direction of the laser beam irradiated onto the object. This calculation is performed for all pixels corresponding to the measurement surface to obtain information corresponding to in-plane displacement.

〔実施例〕〔Example〕

以下、本発明の面内変位測定装置の一実施例を
第1図により説明する。
Hereinafter, one embodiment of the in-plane displacement measuring device of the present invention will be described with reference to FIG.

第1図において、レーザ発振器1から射出した
レーザ光L1はそのビーム径をビームエクスパン
ダ2により拡大する。そして、この拡大したレー
ザ光L2はミラー3により曲げ、ビームスプリツ
タ4により2方向に分岐する。分岐したレーザ光
の一方の光路には電気光学結晶5を置く。そして
2本のレーザ光L3,L4をミラー6,6′により曲
げて被測定対象である情報媒体7の表面に、情報
媒体表面の法線方向に対して対称な2方向から照
射する。そして、情報媒体7の表面で散乱したレ
ーザ光により発生したスプリツタパターンをテレ
ビカメラ8により画像信号に変換する。テレビカ
メラ8は、レンズ9、絞り10、撮像素子11、
撮像素子駆動回路12により構成している。情報
媒体7の表面より散乱したレーザ光により生じる
スペツクル(斑点)の平均的な大きさは、絞り1
0のF値(口径比)ならびに撮像倍率により決ま
る。F値を16、撮像倍率を1倍レーザ光の波長を
0.633μmとした場合のスペツクルの平均的な径
は、約24.7μmとなる。二次元的な像をとらえる
撮像素子としては、例えばCCDセンサでは、画
素の大きさが18μm×12μmの素子があり、この
ような撮像素子を用いることにより、前述のスペ
ツクルパターンの明るさの変化を撮像素子11を
構成する各画素の出力信号として検出することが
できる。
In FIG. 1, a laser beam L 1 emitted from a laser oscillator 1 has its beam diameter expanded by a beam expander 2 . This expanded laser beam L2 is then bent by a mirror 3 and split into two directions by a beam splitter 4. An electro-optic crystal 5 is placed on one optical path of the branched laser beam. Then, the two laser beams L 3 and L 4 are bent by mirrors 6 and 6' and irradiated onto the surface of the information medium 7 to be measured from two directions symmetrical with respect to the normal direction of the surface of the information medium. Then, the splitter pattern generated by the laser light scattered on the surface of the information medium 7 is converted into an image signal by the television camera 8. The television camera 8 includes a lens 9, an aperture 10, an image sensor 11,
It is composed of an image sensor drive circuit 12. The average size of speckles caused by laser light scattered from the surface of the information medium 7 is
It is determined by the F value (aperture ratio) of 0 and the imaging magnification. The F value is 16, the imaging magnification is 1x, and the wavelength of the laser beam is
When the diameter is 0.633 μm, the average diameter of speckles is approximately 24.7 μm. As an image sensor that captures a two-dimensional image, for example, in a CCD sensor, there is an element with a pixel size of 18 μm x 12 μm, and by using such an image sensor, the above-mentioned change in the brightness of the speckle pattern can be realized. can be detected as an output signal of each pixel constituting the image sensor 11.

第2図は、画像処理および電気光学結晶の駆動
を行う電気回路の構成を示したものである。
FIG. 2 shows the configuration of an electric circuit that performs image processing and drives the electro-optic crystal.

テレビカメラ8から得たスペツクルパターンの
画像信号は、A/D変換器13によりデジタル信
号に変換したランダムアクセスメモリ(RAM)
14に順次記憶する。メモリへの画像情報の記憶
位置はメモリ制御回路15により与えられるアド
レス情報により指定する。そして、1画像分の情
報の取り込みを終了した後、計算機17が、イン
ターフエース回路16を介してメモリ制御回路1
5によりアドレスを変えながら任意アクセス可能
な記憶装置(RAM)14内に記憶された画像情
報を取り込み、これを記憶装置18に記憶する。
さらに計算機17は、インターフエース21を介
して光路長変更指令を電気光学結晶駆動回路22
に出力し、これにより駆動回路22は、電気光学
結晶5に電圧を印加してレーザ光に等価的に光路
長の変化を与えることができる。電気光学結晶5
としては、例えばLiNbO3があり、この結晶に電
圧を印加するとレーザ光の屈折率が変化し、これ
に伴つて等価的に光路長が変化する。
The image signal of the speckle pattern obtained from the television camera 8 is converted into a digital signal by the A/D converter 13 and is stored in a random access memory (RAM).
14 in sequence. The storage location of the image information in the memory is specified by address information given by the memory control circuit 15. After the computer 17 has finished loading the information for one image, the computer 17 sends the information to the memory control circuit 1 via the interface circuit 16.
5, the image information stored in the arbitrarily accessible storage device (RAM) 14 is taken in while changing the address, and is stored in the storage device 18.
Furthermore, the computer 17 sends an optical path length change command to the electro-optic crystal drive circuit 22 via the interface 21.
As a result, the drive circuit 22 can apply a voltage to the electro-optic crystal 5 to equivalently change the optical path length of the laser beam. Electro-optic crystal 5
For example, there is LiNbO 3 , and when a voltage is applied to this crystal, the refractive index of the laser beam changes, and accordingly, the optical path length changes equivalently.

このようにして、計算機17は、インターフエ
ース21を介して電気光学結晶駆動回路22を動
作させ、2組のうちの一方のレーザ光の光路長を
変化させながら、このとき得られるスペツクルパ
ターンを記憶装置18に記憶させる。すなわち、
スペツクルパターンがテレビカメラ8により撮像
され、記憶装置14に記憶された段階で、計算機
17はインターフエース16を介して記憶装置1
4の内容を記憶装置18に記憶する。そして、変
形前のスペツクルパターンと、変形後に繰り返し
光路長を変化させながら撮像し、記憶装置18に
記憶したスペツクルパターンについて、対応する
各画素毎に明るさの差を求め、この値が零とな
る、すなわち明るさが等しくなる光路長の変化量
Δxを全画素について求める。そして、この変化
量Δxと、レーザ光波長λと、被測定物の法線方
向と被測定物に照射したレーザ光の方向とのなす
角度θとに基づいて、被測定物の変位量を測定表
面に対応する全画素分につき演算する。この演算
により、情報媒体7の表面上の面内変位に対応し
た情報が得られる。
In this way, the computer 17 operates the electro-optic crystal drive circuit 22 via the interface 21, and changes the optical path length of one of the two sets of laser beams, while changing the speckle pattern obtained at this time. The information is stored in the storage device 18. That is,
When the speckle pattern is imaged by the television camera 8 and stored in the storage device 14, the computer 17 transfers the speckle pattern to the storage device 1 via the interface 16.
4 is stored in the storage device 18. Then, the difference in brightness is determined for each corresponding pixel between the speckle pattern before deformation and the speckle pattern imaged while repeatedly changing the optical path length after deformation and stored in the storage device 18, and this value is zero. In other words, the amount of change Δx in the optical path length at which the brightness becomes equal is determined for all pixels. Then, the amount of displacement of the object to be measured is measured based on this amount of change Δx, the laser beam wavelength λ, and the angle θ between the normal direction of the object and the direction of the laser beam irradiated to the object. Calculations are performed for all pixels corresponding to the surface. Through this calculation, information corresponding to the in-plane displacement on the surface of the information medium 7 is obtained.

こうして求めた情報媒体7の面内変位分布の結
果は、インターフエース16を介してRAM14
に転送され、モニタ20上に表示される。
The results of the in-plane displacement distribution of the information medium 7 thus obtained are sent to the RAM 14 via the interface 16.
and displayed on the monitor 20.

第3図はスペツクルパターンの発生原理を示し
たものである。二光束のレーザ光L3,L4が情報
媒体7の表面に入射する場合には、レーザ光L3
L4のそれぞれの中心軸が成す平面とレーザ光が
入射する平面との交線に平行な方向に、周期的に
明るさの変化するレーザ光が入射しているとみな
すことができる。そして、この入射レーザ光が情
報媒体7表面の凹凸により位相変化を受けて散乱
し、レンズ9、絞り10を通して撮像素子11上
に結像すると考えることができる。レーザ光の入
射方向と情報媒体10表面の法線方向(Z軸方
向)とのなす角をθとするとレーザ光の明るさが
変動する周期はλ/(2sinθ)で与えられる。レ
ーザ光の波長λをλ=0.63μm、θ=45゜とすると
変動周期Tは0.45μmとなる。第3図aに示した
光量分布を持つ照明光が入射し情報媒体7の表面
の各点から表面の粗さによりそれぞれ異なる位相
状態で散乱した光の波動は回折による広がりを持
ち、撮像素子11面では広がつた散乱光同志が重
なり干渉し合つて第6図に示した如きスペツクル
パターンを作る。なお第6図では、撮像素子上の
スペツクルパターンを素子から離して示してい
る。本光学系の場合、回折による撮像素子上での
光の広がりは24.7μmとなる。また、干渉により
出来るスペツクルパターンの形成への寄与の度合
は、二光束レーザの照明光の光量分布により決ま
り光量の大きいほどスペツクルパターンの形成へ
の影響が強い。
FIG. 3 shows the principle of speckle pattern generation. When the two beams of laser beams L 3 and L 4 are incident on the surface of the information medium 7, the laser beams L 3 and
It can be considered that the laser light whose brightness changes periodically is incident in a direction parallel to the intersection of the plane formed by the central axis of each of L4 and the plane on which the laser light is incident. It can be considered that this incident laser light undergoes a phase change due to the unevenness of the surface of the information medium 7 and is scattered, and then forms an image on the image pickup device 11 through the lens 9 and the aperture 10. When the angle between the incident direction of the laser beam and the normal direction (Z-axis direction) to the surface of the information medium 10 is θ, the period in which the brightness of the laser beam fluctuates is given by λ/(2sinθ). When the wavelength λ of the laser beam is 0.63 μm and θ=45°, the fluctuation period T is 0.45 μm. Illumination light having the light intensity distribution shown in FIG. On the surface, the spread scattered lights overlap and interfere with each other, creating a speckle pattern as shown in FIG. Note that in FIG. 6, the speckle pattern on the image pickup device is shown separated from the device. In the case of this optical system, the spread of light on the image sensor due to diffraction is 24.7 μm. Further, the degree of contribution to the formation of a speckle pattern caused by interference is determined by the light intensity distribution of the illumination light of the two-beam laser, and the larger the light intensity, the stronger the influence on the formation of the speckle pattern.

第5図に、撮像素子11を構成する画素からの
出力信号と情報媒体10が変形した結果生じる微
小要素の変位の関係を示した。
FIG. 5 shows the relationship between the output signals from the pixels constituting the image sensor 11 and the displacement of the minute elements resulting from the deformation of the information medium 10.

微小要素の変位に伴い、第3図bに示したよう
に情報媒体7上の異なる粗さ、即ち位相状態を持
つ部分がスペツクルの明るさに強い影響を持つよ
うになり、表面粗さのランダム性から、干渉光の
明るさが変化してくる。第5図a,bに示したよ
うに、各画素の出力信号の変化は、場所により異
なるが、0.45μm毎に散乱条件がほぼ同一となる
ため、同一画素では0.45μm毎の周期でほぼ同一
の出力信号が現われる。
With the displacement of the microelements, as shown in Figure 3b, parts with different roughness, that is, phase states, on the information medium 7 will have a strong influence on the brightness of the speckle, and the randomness of the surface roughness will increase. The brightness of the interference light changes depending on the nature of the interference. As shown in Figure 5 a and b, the change in the output signal of each pixel varies depending on the location, but since the scattering conditions are almost the same every 0.45 μm, the changes in the output signal of each pixel are almost the same every 0.45 μm. An output signal appears.

第4図に示したように、上述の原理で電気光学
結晶5による光路長の変化を与えずに記録した、
変形前の情報媒体表面のスペツクルパターンを記
憶装置18に記憶する。次に、情報媒体7に変形
を与えた後の情報媒体表面のスペツクルパターン
を記憶装置18に記憶する。変形後のスペツクル
パターンは、電気光学結晶5に段階的に電圧を印
加し、一方のレーザ光L3に光路長の変化を与え
ながらその都度記憶装置18に記憶する。第3図
cに示したように、レーザ光L3にΔxの光路長の
変化を与えると、二光束レーザが干渉して作る照
明光の光量分布がΔx/2sinθ=0.71Δx変化する。
撮像素子11上の画素(i、j)の変形前の明る
さをP0とすると、この画素の明るさは、情報媒
体7の対応する位置の微小変位によりP1に変わ
る。
As shown in FIG. 4, recording was performed using the above-mentioned principle without changing the optical path length due to the electro-optic crystal 5.
The speckle pattern on the surface of the information medium before deformation is stored in the storage device 18. Next, the speckle pattern on the surface of the information medium 7 after being deformed is stored in the storage device 18 . The deformed speckle pattern is stored in the storage device 18 each time by applying a voltage to the electro-optic crystal 5 in stages and changing the optical path length of one laser beam L3 . As shown in FIG. 3c, when the optical path length of the laser beam L3 is changed by Δx, the light quantity distribution of the illumination light produced by the interference of the two-beam lasers changes by Δx/2sinθ=0.71Δx.
If the brightness of the pixel (i, j) on the image sensor 11 before deformation is P 0 , the brightness of this pixel changes to P 1 due to a minute displacement of the corresponding position of the information medium 7 .

光路長ΔxをΔx=0.653/n×(k−1)に従い変 化させて得た画像をm1〜moとし、各画像につい
て画素(i、j)の出力信号の差を求めると、出
力信号の差が零となる画像mkは、第3図に示し
た照明光の光量分布が移動し、情報媒体7表面へ
の照射条件が変形前の状態(第3図a)と一致し
たことを示している。
Let the images obtained by changing the optical path length Δx according to Δx = 0.653/n×(k-1) be m 1 to m o , and calculate the difference between the output signals of pixels (i, j) for each image. The image m k in which the difference in 2 is zero indicates that the light intensity distribution of the illumination light shown in Fig. 3 has shifted and the irradiation conditions on the information medium 7 surface match the state before deformation (Fig. 3 a). It shows.

各画素の出力信号の差が零となる状態における
光路長の変化量Δxと、情報媒体7の変位量Sと
の関係は整数nを用いて次式で表わされる。
The relationship between the amount of change Δx in the optical path length and the amount of displacement S of the information medium 7 in a state where the difference between the output signals of each pixel is zero is expressed by the following equation using an integer n.

S=n・λ/2sinθ−Δx/2sinθ 上式の右辺第2項が、画素(i、j)の位相項
を示す。この位相項の測定を情報媒体7の測定表
面に対応する全画素面について演算する。ここ
で、測定表面上で既知の変位点、例えば不動点で
はΔx=0で光量差が零となり整数nはn=0と
なり、相隣り合う点の面内変位が連続的に変化す
ると仮定すれば、各点の整数項nを求め、さら
に、出力信号の差が零となる画像が複数存在した
場合の画像の選択と位相項Δxの決定を行うこと
ができ、この値と出力信号の差が零となる位相項
Δxの値から情報媒体7の測定表面全体にわたつ
て面内変位の状態を決定できる。
S=n·λ/2sinθ−Δx/2sinθ The second term on the right side of the above equation indicates the phase term of pixel (i, j). The measurement of this phase term is calculated for all pixel planes corresponding to the measurement surface of the information medium 7. Here, at a known displacement point on the measurement surface, for example, a fixed point, the difference in light intensity is zero when Δx = 0, the integer n becomes n = 0, and it is assumed that the in-plane displacement of adjacent points changes continuously. , find the integer term n for each point, and furthermore, if there are multiple images for which the difference between the output signals is zero, it is possible to select the image and determine the phase term Δx, and the difference between this value and the output signal is The state of in-plane displacement over the entire measurement surface of the information medium 7 can be determined from the value of the phase term Δx which becomes zero.

このように、本実施例によれば、情報媒体7の
測定表面全面の面内変位を各点の位相情報をもと
に高精度に測定できるという効果がある。
As described above, this embodiment has the effect that the in-plane displacement of the entire measurement surface of the information medium 7 can be measured with high precision based on the phase information at each point.

さらに従来のスペツクル干渉法を用いた測定法
では、被測定面の傾斜により、撮像素子に入射す
る散乱光強度が変わり、このため、各画素におけ
る光量のピーク値も異なり、これがノイズとして
現われていた。しかし、本実施例では、光量差で
はなく、出力信号の差が零となる光路長の変化、
即ち位相差を用いているため、本質的にノイズは
低減し、高精度の測定が可能となる。
Furthermore, in the conventional measurement method using speckle interferometry, the intensity of the scattered light incident on the image sensor changes depending on the inclination of the surface to be measured, and therefore the peak value of the light amount at each pixel also differs, which appears as noise. . However, in this embodiment, instead of the difference in light amount, the change in optical path length that makes the difference in output signals zero,
That is, since a phase difference is used, noise is essentially reduced and highly accurate measurement becomes possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、情報媒体表面の面内変位を、
スペツクル干渉法による縞の明暗ではなく位相情
報で測定できるので、変位の測定を高精度に行
え、且つ従来は不可能であつた縞の間の変位状態
を連続的に測定できるという効果がある。また、
各画素の位相を検知しているため、各画素の明る
さに影響されず、従来法の欠点であつたスペツク
ルノイズを除去できるという利点もある。
According to the present invention, the in-plane displacement of the information medium surface is
Since it is possible to measure the phase information rather than the brightness of the fringes by speckle interferometry, displacement can be measured with high precision, and the displacement state between the fringes can be continuously measured, which was previously impossible. Also,
Since the phase of each pixel is detected, it is not affected by the brightness of each pixel, and has the advantage of being able to remove speckle noise, which was a drawback of the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定装置の一実施例の構成
図、第2図は第1図における画像処理および電気
光学結晶の駆動を行う電気回路のブロツク図、第
3図および第4図は第1図に示す装置におけるス
ペツクルパターンの発生原理を説明する図、第5
図a,bは変位にともなう画素の出力信号の変化
を示す図、第6図は撮像素子上のスペツクルパタ
ーンを示す図、第7図は光路長変化による出力信
号の変化を示す図である。 1……レーザ発振器、5……電気光学結晶、8
……テレビカメラ、11……撮像素子。
FIG. 1 is a block diagram of an embodiment of the measuring device of the present invention, FIG. 2 is a block diagram of an electric circuit for image processing and driving the electro-optic crystal in FIG. 1, and FIGS. Figure 5 explains the principle of speckle pattern generation in the apparatus shown in Figure 1.
Figures a and b are diagrams showing changes in the output signal of a pixel due to displacement, Figure 6 is a diagram showing a speckle pattern on the image sensor, and Figure 7 is a diagram showing changes in the output signal due to a change in optical path length. . 1... Laser oscillator, 5... Electro-optic crystal, 8
...TV camera, 11...imaging device.

Claims (1)

【特許請求の範囲】 1 レーザ光を発光するレーザ発振器と、該レー
ザ発振器から出射されたレーザ光のビーム径を拡
大するビームエクスパンダと、該ビームエクスパ
ンダを通過したレーザ光を2組に分岐するビーム
スプリツタと、分岐した2組のレーザ光を被測定
物表面の法線に対して成す角度が等しい2方向か
ら該被測定物表面に照射するように成した光学系
と、照射されたレーザ光が該被測定物表面の凹凸
によつて散乱したことにより発生するスペツクル
模様をとらえるレンズおよび撮像素子と、該撮像
素子により電気信号に変換された画像情報を記憶
する記憶装置と、該画像情報に基づき面内変位に
対応した情報を演算する計算機と、該計算機で演
算された該情報を可視表示するモニタとを備えた
面内変位測定装置において、 前記ビームスプリツタにより分岐された2組の
レーザ光のうちの一方の光路中に配され、電圧を
印加されることによつて該一方の光路の等価光路
長を変化させる電気光学結晶と、 光路長変更指令に見合つた電圧を該電気光学結
晶に印加する電気光学結晶駆動回路とを設けると
共に、 前記計算機は、前記被測定物の変形前において
前記画像情報を記憶し、前記被測定物の変形後に
おいて、該電気光学結晶駆動回路に該光路長変更
指令を与え該電気光学結晶が等価光路長を変化さ
せた状態における前記画像情報の記憶を複数回繰
返し、記憶された前記被測定物の変形前後の画像
情報の各画素の明るさの差が零となるときの光路
長の変化量を求め、該変化量、レーザ光波長およ
び前記被測定物の法線方向と前記被測定物に照射
したレーザ光の方向とのなす角度に基づいて、前
記被測定物の変位量を測定表面に対応する全画素
分につき演算し、面内変位に対応した情報を得る
こと を特徴とする面内変位測定装置。
[Claims] 1. A laser oscillator that emits laser light, a beam expander that expands the beam diameter of the laser light emitted from the laser oscillator, and the laser light that has passed through the beam expander is split into two groups. a beam splitter to irradiate the surface of the object to be measured, an optical system configured to irradiate the surface of the object to be measured with two sets of branched laser beams from two directions having equal angles to the normal to the surface of the object to be measured; A lens and an image sensor that capture a speckle pattern generated when laser light is scattered by unevenness on the surface of the object to be measured; a storage device that stores image information converted into an electrical signal by the image sensor; and a storage device that stores the image information. In an in-plane displacement measuring device comprising a computer that calculates information corresponding to in-plane displacement based on the information, and a monitor that visually displays the information calculated by the computer, the two sets are split by the beam splitter. an electro-optic crystal that is arranged in one optical path of the laser beam and changes the equivalent optical path length of the one optical path by applying a voltage; and an electro-optic crystal drive circuit that applies an electric voltage to the optical crystal, and the computer stores the image information before deforming the object to be measured, and stores the image information in the electro-optic crystal drive circuit after deforming the object to be measured. The storage of the image information in a state in which the electro-optic crystal changes the equivalent optical path length by giving the optical path length change command is repeated several times, and the brightness of each pixel of the stored image information before and after deformation of the object to be measured is determined. Find the amount of change in the optical path length when the difference between the two becomes zero, and based on the amount of change, the laser beam wavelength, and the angle between the normal direction of the object to be measured and the direction of the laser beam irradiated to the object to be measured. An in-plane displacement measuring device characterized in that the amount of displacement of the object to be measured is calculated for all pixels corresponding to the measurement surface to obtain information corresponding to in-plane displacement.
JP6359483A 1983-04-13 1983-04-13 Device for measuring displacement within surface Granted JPS59190605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6359483A JPS59190605A (en) 1983-04-13 1983-04-13 Device for measuring displacement within surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6359483A JPS59190605A (en) 1983-04-13 1983-04-13 Device for measuring displacement within surface

Publications (2)

Publication Number Publication Date
JPS59190605A JPS59190605A (en) 1984-10-29
JPH0217043B2 true JPH0217043B2 (en) 1990-04-19

Family

ID=13233745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6359483A Granted JPS59190605A (en) 1983-04-13 1983-04-13 Device for measuring displacement within surface

Country Status (1)

Country Link
JP (1) JPS59190605A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287468A (en) * 1988-05-16 1989-11-20 Fuji Xerox Co Ltd Moving information detecting method for random space pattern
IE910326A1 (en) * 1991-01-31 1992-07-29 Mairead Rosario Reynolds A method and apparatus for detecting direction and¹displacement of a surface

Also Published As

Publication number Publication date
JPS59190605A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
US5467184A (en) Method of large deformation measurement using speckle interferometry
US6208416B1 (en) Method and apparatus for measuring shape of objects
US6885460B2 (en) Apparatus for and method of measuring surface shape of an object
JPS62129711A (en) Method and apparatus for measuring configurational error of object
Etchepareborda et al. Random laser speckle pattern projection for non-contact vibration measurements using a single high-speed camera
JPH04249752A (en) Optical inspection method and device for specimen
JPH01288702A (en) Method and apparatus for measuring three-dimensional curved shape
Sánchez et al. LED source interferometer for microscopic fringe projection profilometry using a Gates’ interferometer configuration
JP3353365B2 (en) Displacement and displacement velocity measuring device
US6734977B2 (en) Method and apparatus for measuring gap, and method and apparatus for measuring shape and method for manufacturing liquid crystal device
CN113237437B (en) Structured light three-dimensional morphology measurement method and device based on phase coding element
JPH0217043B2 (en)
JP2595050B2 (en) Small angle measuring device
JP2003139515A (en) Method for measuring absolute value of deformation quantity using speckle
JP2020153992A (en) Shape measurement device by white interferometer
JP3233723B2 (en) Phase pattern difference discriminator
JPH04295709A (en) Intereference measuring apparatus and method for receiving image data of interference fringe
JP2993835B2 (en) Multi-wavelength phase interferometry and multi-wavelength phase interferometer
JP3325078B2 (en) Non-contact three-dimensional shape measuring device
JPH0711413B2 (en) Non-contact type surface profile measuring device
JPH01235807A (en) Depth measuring instrument
JPH07218226A (en) Three-dimesional measuring apparatus of surface shape
JP2003232619A (en) Method and device for measuring kinetic shape
Molin Applications of whole field interferometry in mechanics and acoustics
JPH07190737A (en) Shearing interference measuring method and shearing interferometer