JPS59190605A - Device for measuring displacement within surface - Google Patents

Device for measuring displacement within surface

Info

Publication number
JPS59190605A
JPS59190605A JP6359483A JP6359483A JPS59190605A JP S59190605 A JPS59190605 A JP S59190605A JP 6359483 A JP6359483 A JP 6359483A JP 6359483 A JP6359483 A JP 6359483A JP S59190605 A JPS59190605 A JP S59190605A
Authority
JP
Japan
Prior art keywords
brightness
measured
difference
laser
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6359483A
Other languages
Japanese (ja)
Other versions
JPH0217043B2 (en
Inventor
Akira Hirai
明 平井
Nobuo Shibata
信雄 柴田
Toshio Akatsu
赤津 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6359483A priority Critical patent/JPS59190605A/en
Publication of JPS59190605A publication Critical patent/JPS59190605A/en
Publication of JPH0217043B2 publication Critical patent/JPH0217043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02094Speckle interferometers, i.e. for detecting changes in speckle pattern

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve measuring accuracy, in a spectrum interference method, by imparting difference in light paths to one light path, and computing the phase, i.e., the displacement data, of each measuring point based on the change in brightness at each measuring point at this time. CONSTITUTION:The speckle pattern of the surface of a data medium before deformation is stored in a memory pattern. Then, the speckle pattern of the surface of the data medium after the data medium is deformed is stored in the memory every time voltages are applied to an electro-optical crystal 5 step by step, with the length of the path of laser light L3 being changed. Based on the stored data, the difference between the brightness of a picture element before the deformation and the brightness after the deformation is obtained. The difference is changed in correspondence with the change in the length of the light path. By using the phase terms of all the picture element surfaces of the data medium 7 and continuity of the change in the neighboring picture elements, the state of the displacement within the surface can be determined on the entire surface to be measured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、被測定物の面内変位を非接触で測定する装置
に係バ特に磁気テープあるいは紙などの情報媒体の面内
変位を尚梢度で!141]ボするに好適な測定装置に関
する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a device for non-contact measuring the in-plane displacement of an object to be measured. In degrees! 141] relates to a measuring device suitable for

〔発明の背景〕[Background of the invention]

仮測定物の面内変位を非倭鷹で測足す4手段として、例
えばスペックル干渉法を用いる方法がある。
Four methods for measuring the in-plane displacement of a provisionally measured object non-Japanese include, for example, a method using speckle interferometry.

この測定法では、レーザ光を被測定物表面の決勝に対し
て対称な2つの方向から照射し、この時被測定物表面か
ら散乱した光をレンズを用いて撮像素子上に結像させる
。そして仮測定物の変形前後におけるスペックル模様の
各画素の明るさの差をとる。すると入射面に平行な横変
位成分の等高緋が生じる。
In this measurement method, laser light is irradiated from two symmetrical directions to the surface of the object to be measured, and the light scattered from the surface of the object to be measured is imaged on an image sensor using a lens. Then, the difference in brightness of each pixel of the speckle pattern before and after deforming the temporary measurement object is determined. Then, a contour of the horizontal displacement component parallel to the plane of incidence is generated.

しかし、従来のスペックル干渉法を用いる測定法では、
各画素の明るさの差を復算した際、平均的には等変位の
縞を与えているが、スペックル自体がノイズの作用を示
しているため得られた画像の寅が悪く、また縞の間では
変位分布状態を検出できず、高精度の測定ができないと
いう欠点が有った。
However, in the conventional measurement method using speckle interferometry,
When calculating the difference in brightness of each pixel, on average, it gives uniformly displaced fringes, but since the speckles themselves exhibit the effect of noise, the resulting image is poor, and the fringes are There was a drawback that the displacement distribution state could not be detected between the two, making it impossible to perform highly accurate measurements.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、仮測定物の面内変位を非接触且つ高精
度で測定する測定装置を提供することにある。
An object of the present invention is to provide a measuring device that measures the in-plane displacement of a temporarily measured object in a non-contact manner and with high precision.

〔発明の概要〕[Summary of the invention]

トワイマン−グリーン型の干渉計では、測定精度を向上
するため、一方の光路に光路差を与え、−この時の各測
定点の明暗の変化から、各測′AE点の位相すなわち変
位情報を演算している。本発明は、この方法をスペック
ル干渉法に適用し、面内変位の測定精度向上を図ったも
のである。
In the Twyman-Green interferometer, in order to improve measurement accuracy, an optical path difference is given to one optical path, and the phase, or displacement information, of each measurement point is calculated from the change in brightness of each measurement point at this time. are doing. The present invention applies this method to speckle interferometry to improve the accuracy of measuring in-plane displacement.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の面内変位測定装置の一実施例を第1図に
よ)説明する。
Hereinafter, one embodiment of the in-plane displacement measuring device of the present invention will be described (see FIG. 1).

第1図において、レーザ発振器1から射出したレーf 
光L lij: ’cのビーム径をビームエクスパンダ
2によシ拡大する。そして、この拡大したレーザ光L2
はミラー3によシ曲げ、ビームスプリンタ4によシ2方
向に分岐する。分岐したレーザ光の一方の光路には電気
光学結晶5を直ぐ。そして2本のレーザ光L! 、L4
 をミラー6.6′にょシ曲げて被測定対象であるi″
i¥報媒体7の表口に、情報媒体表面の法線方向に対し
て対1チスな2方向から照射する。そして、・情報媒体
7の表面で散乱したレーザ光によフ発生したスペックル
パターンヲテレビカメラ8によシ画像信号に変換する。
In FIG. 1, the laser f emitted from the laser oscillator 1
The beam diameter of light Llij:'c is expanded by the beam expander 2. Then, this expanded laser beam L2
is bent by the mirror 3 and branched into two directions by the beam splinter 4. An electro-optic crystal 5 is directly connected to one optical path of the branched laser beam. And two laser beams L! ,L4
Bend the mirror 6.6' to i'', which is the object to be measured.
Irradiation is applied to the front side of the information medium 7 from two directions opposite to each other with respect to the normal direction of the surface of the information medium. Then, the speckle pattern generated by the laser light scattered on the surface of the information medium 7 is converted into an image signal by the television camera 8.

テレビカメラ8は、レンズ9、絞シ10.撮像素子11
、抛1家素子駆動回路12によ多構成している。
The television camera 8 has a lens 9 and an aperture 10. Image sensor 11
, the single element drive circuit 12 is constructed in multiple ways.

情報媒体7の表面よシ散乱した4レーザ光によシ生じる
スペックル(斑点)の平均的な大きさは、絞)10のF
値(口径比)ならびに撮像倍率によシ決まる。F値を1
6、撮像倍率を1倍とした場合のスペックルの平均的な
径は、約24μmとなる。
The average size of the speckles caused by the four laser beams scattered from the surface of the information medium 7 is as follows:
It is determined by the value (aperture ratio) and imaging magnification. F value is 1
6. The average diameter of speckles when the imaging magnification is 1x is approximately 24 μm.

二次元的な像をとらえる撮像素子として、例えばCCD
センサでは、画素の大きさが18μm×12μmの素子
からシ、このような撮像素子を用いることによシ、前述
のスペックルパターンの明るさの変化を高精度で検出す
ることができる。
As an image sensor that captures two-dimensional images, for example, CCD
The sensor has a pixel size of 18 μm x 12 μm, and by using such an image sensor, changes in the brightness of the speckle pattern described above can be detected with high accuracy.

第2図は、1lIII隊処理および電気光学結晶の駆動
を行う電気回路の構成を示したものである。
FIG. 2 shows the configuration of an electric circuit for processing 1lIII and driving the electro-optic crystal.

テレビカメラ8から得たスペックルパターンの自律信号
は、A/′D変換器13によシデジタル信号に変換しラ
ンダムアクセスメモリ(RAM、)14に順次記憶する
。メモリへの画1家情報の記憶位置はメモリ制御回路1
5により与えられるアドレス情報によシ指定する。そし
て、1画像分の情報の取ル込みを終了した後、計算機1
7が、インターフェース回路16を介してメモリ制御回
路15によシアドレスを変えながらRAM14内に記憶
された画像情報を取シ込み、これを再び記憶装置18に
記憶する。さらに計算做17は、インターフェース2工
を介し、電気光字結晶駆@回路22を動作させ、電気光
学結晶5に電圧を印加してレーザ光に光路長の変化分与
えることかでさる。
An autonomous signal of a speckle pattern obtained from the television camera 8 is converted into a digital signal by an A/'D converter 13 and sequentially stored in a random access memory (RAM) 14. The storage location of the artist information in the memory is the memory control circuit 1.
The address information given by 5 is specified. After completing the import of information for one image, the computer 1
7 takes in the image information stored in the RAM 14 while changing the seat address to the memory control circuit 15 via the interface circuit 16, and stores it in the storage device 18 again. Further, calculation 17 is performed by operating the electro-optic crystal driving circuit 22 via the interface 2, applying voltage to the electro-optic crystal 5, and applying the change in optical path length to the laser beam.

電気光学結晶5としては、世」えはL I N b O
3がめシ、この結晶に電圧を印〃口すると、レーザ光の
位相、即ち、光路長が変化する。
As an electro-optic crystal 5, the world is L I N b O
Third, when a voltage is applied to this crystal, the phase of the laser beam, that is, the optical path length changes.

このようにして、記・1.は装置18に記1怠された複
数の画家データを用い、計算愼17は各画素の明るさの
差全演真する。そして演算した結果は、インターフェー
ス16を介して、几AA414に5己憶はせこのデータ
をD/A変候器19でアナログ鴛に変換しモニタ20上
に表示する。
In this way, note 1. Using a plurality of pieces of painter data recorded in the device 18, the calculation 17 calculates all the differences in brightness of each pixel. The calculated results are stored in the AA 414 via the interface 16, converted into analog data by the D/A converter 19, and displayed on the monitor 20.

第3図はスペックルパターンの発生)JLmt示したも
のである。二光末のレーザ光L3.L<が1n報媒体7
0表面に入射する場合には、レーザ光の入射面に直角な
方向に対して周期的に明るさの変化するレーザ光が入射
し、この入射レーザ光が情報媒体7表面の凹凸により位
相変化を受けて散乱し、レンズ:・9、絞り10を通し
て撮像素子11上に結像する。、″と考えることができ
る。レーザ光の入射方向と情報媒体10表面とのなす角
をθとするとレーザ光の明るさが変動する周期はλ/ 
(2sinθ)で与えられる。レーザ光の波長λをλ=
063μm。
FIG. 3 shows the generation of speckle patterns). Laser beam L3 at the end of the second light. L< is 1n news media 7
0 surface, a laser beam whose brightness changes periodically in the direction perpendicular to the laser beam incidence plane is incident, and this incident laser beam undergoes a phase change due to the unevenness of the surface of the information medium 7. The light is received and scattered, and an image is formed on the image sensor 11 through a lens 9 and an aperture 10. ,''. If the angle between the incident direction of the laser beam and the surface of the information medium 10 is θ, then the period in which the brightness of the laser beam fluctuates is λ/
It is given by (2 sin θ). The wavelength λ of the laser light is λ=
063 μm.

θ=45° とすると変動周期Tは0.45μmとなる
。fi&像素子11面上の各点の明るさは幾何光学にお
ける情報媒体7の各点に対応した結1遼点と、この結像
点の周辺の光の波動が回折により広がって重なり合うこ
とにより決まり、波動が強め合うときには明るく、また
打ち消しあう時には暗くなる。逆に、情報媒体7の表向
の各点から散乱した光の波動も撮像素子11上の1点に
果まらず、回折によシ広がシを持ってくる。そして、撮
1家素子11上のスペックルパターンの平均的な大きさ
は、この広がりで表わすことができ、先に述べたように
F=16、倍率lとした場合は24μmとなる。
When θ=45°, the fluctuation period T is 0.45 μm. The brightness of each point on the surface of the FI & image element 11 is determined by a focal point corresponding to each point of the information medium 7 in geometric optics, and the waves of light around this imaging point spread out by diffraction and overlap. When the waves strengthen each other, it becomes brighter, and when they cancel each other, it becomes darker. Conversely, the waves of light scattered from each point on the front side of the information medium 7 do not end up at one point on the image sensor 11, but spread out due to diffraction. The average size of the speckle pattern on the camera element 11 can be expressed by this spread, and is 24 μm when F=16 and the magnification is l as described above.

第4図に示したように、上述の原理で電気光学結晶5に
よる光路長の変化を与えずに記録した、変形前の情報媒
体表面のスペックルノくターンを記憶装置18に記憶す
る。次に、情報媒体7に変形を与えた後の情報媒体表面
のスベンクルノくターンを記憶装置18に記憶する。変
形後のスペックルパターンは、電気光学結晶18に段階
的に電圧を印加し、一方のレーザ光L3に光路長の変化
を与えながらその都度記tは装置18に記1.はする。
As shown in FIG. 4, the speckle patterns on the surface of the information medium before deformation, which are recorded without changing the optical path length by the electro-optic crystal 5 according to the above-described principle, are stored in the storage device 18. Next, the Svenkurno turn on the surface of the information medium 7 after the information medium 7 is deformed is stored in the storage device 18 . The speckle pattern after deformation is created by applying a voltage to the electro-optic crystal 18 stepwise and changing the optical path length of one laser beam L3. I will.

そして、この記憶データをもとに図中に示した1111
1累(i、j)における変形前の明るさと、変形後の明
るさの差を求めると、明るさの差は光路長の変化ΔXに
従って第5図(a)、(b)、(C)、(d)、(e)
、(f)に示したように変化する。ここで、変形前の画
素(i、j)の明るさの状態によって、Δχを震えた場
合の明るさの差の1直は、図中(ω、(b)、(C)、
あるいは(d)、 (e)、 (f)のように異なった
変化を示す。
Based on this stored data, 1111 shown in the figure is
When determining the difference between the brightness before deformation and the brightness after deformation in the first set (i, j), the difference in brightness is shown in Figure 5 (a), (b), (C) according to the change in optical path length ΔX. , (d), (e)
, changes as shown in (f). Here, depending on the brightness state of the pixel (i, j) before transformation, the difference in brightness when Δχ is changed is (ω, (b), (C),
Or they show different changes like (d), (e), and (f).

また、光重の差が零となる点は、Δχを変えることによ
シ、第3図に示した周期的に明るさの変化する入射レー
ザ光が移動し、情報媒体表面への照射条件が変形前の状
態と一致したことを示している。
Furthermore, the point at which the difference in light weight becomes zero is due to the fact that by changing Δχ, the incident laser light whose brightness changes periodically as shown in Figure 3 moves, and the irradiation conditions on the information medium surface are adjusted. This indicates that the state matches the state before deformation.

各画素の明るさの差、すなわち光量差が零となる光路長
の変化量ΔXと、情報媒体7の変位蓋Sとの関係は次式
で表わされる。
The relationship between the difference in brightness of each pixel, that is, the amount of change ΔX in the optical path length at which the difference in light amount becomes zero, and the displacement lid S of the information medium 7 is expressed by the following equation.

上式の右辺第2項が、画素(i、j)の位相項を示す。The second term on the right side of the above equation indicates the phase term of pixel (i, j).

この位相項の測定を情報媒体7の測定表面に対応する全
画素面について演算する。この位相項と、相隣り合う画
素の変位の連続性を用いると情報媒体7の測定表面全体
にわたって面内変位の状態を決定できる。
The measurement of this phase term is calculated for all pixel planes corresponding to the measurement surface of the information medium 7. By using this phase term and the continuity of displacement of adjacent pixels, it is possible to determine the state of in-plane displacement over the entire measurement surface of the information medium 7.

このように、本実施例によれば、情報媒体7の測定表面
全回の面内変位を各点の位相情報をもとに高精度に測定
できるといつ効果がある。
As described above, according to the present embodiment, it is effective to be able to measure the in-plane displacement of all times on the measurement surface of the information medium 7 with high precision based on the phase information at each point.

さらに従来のスペックル干渉法を用いた測定法では、被
測定面の傾斜によジ、撮像素子に入射する散乱光強度が
変わシ、このため、各画素における光量のピーク値も異
なシ、これがノイズとして現われていた。しかし、本実
施例では、光量差ではなく、光量差が苓となる光路長の
変化、即ち位相差を用いているため、本買釣にノイズは
低減し、高精度の測定が可能となる。
Furthermore, in the conventional measurement method using speckle interferometry, the intensity of the scattered light incident on the image sensor changes depending on the slope of the surface to be measured, and therefore the peak value of the light amount at each pixel also differs. It appeared as noise. However, in this embodiment, since the change in optical path length that is determined by the difference in light amount, that is, the phase difference, is used instead of the difference in light amount, noise is reduced during actual fishing, and highly accurate measurement is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、情報媒体表面の面内変位を、スペック
ル干渉法による縞の明暗ではなく位相情報で測定できる
ので、変位の測ホ金尚精度に行え、且つ従来は不可能で
あった禍の間の変位状態全連続的に測定できるという効
果がある。また、各画素の位相を検知しているため、各
画素の明るさに影響されず、従来法の欠点でめったスペ
ックルノイズを除去できるという利点もろる。
According to the present invention, since the in-plane displacement of the information medium surface can be measured using phase information rather than the brightness and darkness of fringes using speckle interferometry, the displacement can be measured with high precision and also prevents damage that was previously impossible. This has the effect of being able to continuously measure the entire displacement state between. Additionally, since the phase of each pixel is detected, it is not affected by the brightness of each pixel, and has the advantage of being able to remove speckle noise, which is a drawback of conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定装置の一実施例の俗成図、第2図
は第1図における画11処理および電気光学結晶の駆動
を行う電気回路のプロンク図、第3図および第4図は第
1図に示す装置におけるスペックルパターンの発生原理
を説明する図、第5図(a)。 (b)、 (C)、 (d)、 (e)、 (f)は光
路長の変化に対する情報媒体の変形前後の明るさの差と
の関係を示す図である。 1・・・レーザ発振器、5・・・電気光学結晶、8・・
・テレビカメラ、11・・・撮像素子。 第1図 第  2  図 )6     う     し4 (久) −1 (C) <e) 5図 (b) 1 qノ
FIG. 1 is a general diagram of an embodiment of the measuring device of the present invention, FIG. 2 is a schematic diagram of an electric circuit for processing the image 11 in FIG. 1 and driving the electro-optic crystal, and FIGS. 3 and 4 FIG. 5(a) is a diagram illustrating the principle of generation of a speckle pattern in the apparatus shown in FIG. 1; (b), (C), (d), (e), and (f) are diagrams showing the relationship between the change in optical path length and the difference in brightness before and after deformation of the information medium. 1... Laser oscillator, 5... Electro-optic crystal, 8...
- Television camera, 11...imaging device. Figure 1 Figure 2) 6 Ushi 4 (ku) -1 (C) <e) Figure 5 (b) 1 qノ

Claims (1)

【特許請求の範囲】[Claims] レーザ光を発光するレーザ発振器、レーザ発振器から出
たレーザ光のビーム径を拡大するビームエクスパンダ、
ビームエクスパンダ1mしたレーザ光を2本に分岐する
ビームスプリッタ、分岐した2組のレーザ光を被測定物
表面の法線に対して成す角が等しい2方向から照射する
ように奴した光学系、前記レーザ光が前記被測定物表面
の凹凸によって散乱したことによシ発生するスペックル
模様をとらえるレンズおよび撮像素子、撮像素子によシ
ミ気信号に変換された画像情報を記憶する記憶装置、仮
測定物の変形前に撮像素子上に記録されたスペックル模
様と、変形後の撮像素子上に記録されたスペックル模様
の撮像素子上の各両系の明るさの走から面内変位を求め
る処理装置を見えた面内変位測定装置において、前記2
組のレーザ光の一方の光路にレーザ光の光路に位相差を
与える手段を挿入し、前記記憶装置は被測定物表面が変
形する前に得られたスペックル模様全基準の画像情報と
して記・慮し、前記処理装置は被測定物表面が変形した
後に、前記光路に位相差を与える手段を駆動しし〜ザ光
の一方の光路の位相差を変化させながら、この時得られ
るuiir+家情報と基準の画像情報の各画素の明るさ
の差を逐−求め、この明るさの差が最小となるレーザ光
の一方の光路の光路差から各画素の位相差を求め、この
位相差から各画素に対応する被測定′vD衣面の面内変
位を求めるように構成したことを特徴とする面内変位測
定装置。
A laser oscillator that emits laser light, a beam expander that expands the beam diameter of the laser light emitted from the laser oscillator,
A beam splitter that splits a 1m beam expander laser beam into two beams, an optical system that irradiates the two sets of split laser beams from two directions with equal angles to the normal to the surface of the object to be measured, A lens and an image sensor that capture speckle patterns generated when the laser beam is scattered by unevenness on the surface of the object to be measured, a storage device that stores image information converted into a stain signal by the image sensor, and a temporary storage device. In-plane displacement is determined from the brightness traces of both systems on the image sensor of the speckle pattern recorded on the image sensor before deformation of the object to be measured and the speckle pattern recorded on the image sensor after deformation. In the in-plane displacement measuring device in which the processing device is visible, the above-mentioned 2.
A means for imparting a phase difference to the optical path of the laser beam is inserted into one optical path of the set of laser beams, and the storage device records image information of all the speckle patterns obtained before the surface of the object to be measured is deformed. In consideration of this, the processing device drives the means for imparting a phase difference to the optical path after the surface of the object to be measured is deformed, and while changing the phase difference of one of the optical paths of the light, The difference in brightness of each pixel of the image information and the reference image information is sequentially determined, and the phase difference of each pixel is determined from the optical path difference of one optical path of the laser beam that minimizes the difference in brightness. An in-plane displacement measuring device characterized in that it is configured to obtain an in-plane displacement of a surface to be measured 'vD corresponding to a pixel.
JP6359483A 1983-04-13 1983-04-13 Device for measuring displacement within surface Granted JPS59190605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6359483A JPS59190605A (en) 1983-04-13 1983-04-13 Device for measuring displacement within surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6359483A JPS59190605A (en) 1983-04-13 1983-04-13 Device for measuring displacement within surface

Publications (2)

Publication Number Publication Date
JPS59190605A true JPS59190605A (en) 1984-10-29
JPH0217043B2 JPH0217043B2 (en) 1990-04-19

Family

ID=13233745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6359483A Granted JPS59190605A (en) 1983-04-13 1983-04-13 Device for measuring displacement within surface

Country Status (1)

Country Link
JP (1) JPS59190605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287468A (en) * 1988-05-16 1989-11-20 Fuji Xerox Co Ltd Moving information detecting method for random space pattern
WO1992014115A1 (en) * 1991-01-31 1992-08-20 Vincent Toal A method and apparatus for determining direction of displacement of an object surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287468A (en) * 1988-05-16 1989-11-20 Fuji Xerox Co Ltd Moving information detecting method for random space pattern
WO1992014115A1 (en) * 1991-01-31 1992-08-20 Vincent Toal A method and apparatus for determining direction of displacement of an object surface

Also Published As

Publication number Publication date
JPH0217043B2 (en) 1990-04-19

Similar Documents

Publication Publication Date Title
US6208416B1 (en) Method and apparatus for measuring shape of objects
US8736847B2 (en) Method and apparatus for imaging
US5467184A (en) Method of large deformation measurement using speckle interferometry
JP2930406B2 (en) Method and apparatus for observing a moiré pattern on a surface to be tested by applying a moiré method utilizing phase shift
TWI797377B (en) Surface shape measuring device and surface shape measuring method
Sjödahl Some recent advances in electronic speckle photography
JPH04249752A (en) Optical inspection method and device for specimen
Willomitzer et al. High resolution non-line-of-sight imaging with superheterodyne remote digital holography
US11815856B2 (en) Method and system for recording digital holograms of larger objects in non-laboratory environment
CN114502912A (en) Hybrid 3D inspection system
JP3353365B2 (en) Displacement and displacement velocity measuring device
US20220065617A1 (en) Determination of a change of object&#39;s shape
JPS59190605A (en) Device for measuring displacement within surface
JP3228458B2 (en) Optical three-dimensional measuring device
Chang et al. Binary fringe pattern in infrared phase measuring deflectometry
JP2595050B2 (en) Small angle measuring device
Maeda et al. Birefringence compensation for single-shot 3D profilometry using a full-Stokes imaging polarimeter
JP3233723B2 (en) Phase pattern difference discriminator
JP3325078B2 (en) Non-contact three-dimensional shape measuring device
JP2001099624A (en) Method for measuring and analyzing interference fringe
JPH04295709A (en) Intereference measuring apparatus and method for receiving image data of interference fringe
JPH0711413B2 (en) Non-contact type surface profile measuring device
Molin Applications of whole field interferometry in mechanics and acoustics
JP2003232619A (en) Method and device for measuring kinetic shape
Heikkinen et al. Perspective error reduction in 2D Digital Image Correlation measurements by combination with Defocused Speckle Imaging