JPH02170437A - Manufacture of mis-type semiconductor device - Google Patents

Manufacture of mis-type semiconductor device

Info

Publication number
JPH02170437A
JPH02170437A JP32433988A JP32433988A JPH02170437A JP H02170437 A JPH02170437 A JP H02170437A JP 32433988 A JP32433988 A JP 32433988A JP 32433988 A JP32433988 A JP 32433988A JP H02170437 A JPH02170437 A JP H02170437A
Authority
JP
Japan
Prior art keywords
drain
gate electrode
region
electric field
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32433988A
Other languages
Japanese (ja)
Inventor
Yasuo Sato
康夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP32433988A priority Critical patent/JPH02170437A/en
Publication of JPH02170437A publication Critical patent/JPH02170437A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an electric field from being concentrated in a drain diffusion region part and to eliminate a drop in breakdown strength and reliability by a method wherein a peripheral edge part of a selective oxide film pattern and a peripheral part of a gate electrode are crossed at obtuse angles. CONSTITUTION:An opening-part pattern 2 of a selective oxide film 1 formed by a LOCOS method forms a funnel shape where a large rectangle and a small rectangle are connected at oblique sides formed at 45 deg. with sides of the rectangles. Accordingly, a crossing angle of the pattern 2 and a peripheral edge of a gate electrode 3 on the drain side becomes 135 deg.. As a result, corner parts 6 on the channel side in a drain region formed by diffusion of impurities by making use of the film 1 and the electrode 3 as a mask has an angle of 135 deg.; an electric field is not concentrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ソース不純物拡散領域とドレイン不純物拡散
領域の中間部の上にゲート絶縁膜を介してゲート電極が
設けられるMIS型半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the manufacture of a MIS type semiconductor device in which a gate electrode is provided on an intermediate portion between a source impurity diffusion region and a drain impurity diffusion region with a gate insulating film interposed therebetween. Regarding the method.

(従来の技術〕 MIS型半導体装置、例えばMO5型電界効果トランジ
スタ (MOSFET)のソース領域、ドレイン領域を
形成するには、従来第2図に示すように半導体基板上に
LOCO3法により形成した開口部パターン2ををする
厚い選択酸化領域1と、開口部パターン2内に形成され
る薄いゲート酸化膜上の中央部上に設けられるゲート電
i4マスクとして自己整合的に不純物を導入していた。
(Prior Art) In order to form the source region and drain region of a MIS type semiconductor device, for example, an MO5 type field effect transistor (MOSFET), conventionally, as shown in Fig. 2, openings are formed on a semiconductor substrate by the LOCO3 method. Impurities were introduced in a self-aligned manner as a gate electrode i4 mask provided over the thick selective oxidation region 1 forming the pattern 2 and the center portion of the thin gate oxide film formed within the opening pattern 2.

ドレイン拡散層領域4.ソース拡散層領域5はこのよう
にして形成されたものである。
Drain diffusion layer region 4. Source diffusion layer region 5 is formed in this manner.

〔発明が解決しようとする!li!lり3MO3型FE
Tの微細化に伴い、ドレイン耐圧の低下やホットキャリ
アの発生による信頼性の低下が問題となっている。その
原因の一つとしてドレイン拡散層領域4でのチャネル側
コーナ一部6における電界集中が上げられる。この電界
集中のメカニズムは次の通りである。すなわち、ゲート
3、ソース5および基板の各端子をグラウンド電位に固
定してドレイン端子の電位を上げていった場合、矢印7
で示した電界強度ベクトルは、ドレイン領域4のチャネ
ル側のコーナ一部6に最も集中しやすく、最初にアバラ
ンシエ・ブレークダウンが起こりやすい、この傾向はM
O3型FETの微細化が進み、ドレイン領域4の接合深
さが浅くなるほど顕著になる。つまり、第3図(alに
示すように接合深さが比較的深い場合は、横方向拡散長
も長いので、コーナ一部6の曲率半径も太き(なり、電
界集中も起こりにくいが、第3回出)に示すように接合
深さが比較的浅い場合は、コーナ一部曲率半径は小さく
なり、電界集中が起こりやすくなる。この対策として、
第4図に示すようにソース拡散層領域5.ドレイン拡散
層領域4.ゲート電極3を同心円状に配置して、ドレイ
ン拡散層領域コーナ一部の電界集中が起こらないように
するという方法が一般的に用いられている。
[Invention tries to solve it! li! 3MO3 type FE
With the miniaturization of T, problems arise such as a decrease in drain breakdown voltage and a decrease in reliability due to the generation of hot carriers. One of the causes is the electric field concentration at the channel side corner part 6 of the drain diffusion layer region 4. The mechanism of this electric field concentration is as follows. That is, if each terminal of the gate 3, source 5, and substrate is fixed at ground potential and the potential of the drain terminal is increased, the arrow 7
The electric field strength vector shown by is most likely to be concentrated in the corner part 6 on the channel side of the drain region 4, and avalanche breakdown is likely to occur first.This tendency is due to M
This problem becomes more noticeable as the O3 type FET becomes smaller and the junction depth of the drain region 4 becomes shallower. In other words, when the junction depth is relatively deep as shown in FIG. If the junction depth is relatively shallow as shown in (3), the radius of curvature of some corners will be small, making it easier for electric field concentration to occur.As a countermeasure for this,
As shown in FIG. 4, source diffusion layer region 5. Drain diffusion layer region 4. A commonly used method is to arrange the gate electrodes 3 concentrically to prevent electric field concentration from occurring at a corner of the drain diffusion layer region.

ところが、このような方法は、単体のMO3型FETや
比較的回路構成が単純で集積度の低いMIs型半導体集
積回路装置に用いるためには適しているが、素子の占有
面積や、レイアウト効率の点から、回路構成が複雑で集
積度の高いMIS型半導体装置には適さないという問題
点があった。
However, although this method is suitable for use in single MO3 type FETs and MIs type semiconductor integrated circuit devices with relatively simple circuit configurations and low integration, it reduces the area occupied by the elements and the layout efficiency. Therefore, there is a problem that it is not suitable for a MIS type semiconductor device with a complicated circuit configuration and a high degree of integration.

本発明の課題は、ゲート、ソースおよび基板の各端子を
グラウンド電位に固定してドレイン端子の電位を上げた
場合に、ドレイン領域のチャネル側コーナ一部での電界
集中によりブレークダウンの起こることの少ないMis
型半導体装置の製造方法を提供することにある。
An object of the present invention is to prevent breakdown from occurring due to electric field concentration at a part of the channel-side corner of the drain region when the gate, source, and substrate terminals are fixed at ground potential and the potential of the drain terminal is raised. Few Mis
An object of the present invention is to provide a method for manufacturing a type semiconductor device.

〔!!1題を解決するための手段〕 上記の課題の解決のために、本発明は、厚い選択酸化領
域と薄い絶縁膜上のゲート電極をマスクとしての不純物
拡散により、自己整合的にドレイン領域を形成する際に
、選択酸化膜領域の周縁とゲート電極の周縁の交差する
角度をドレイン側で鈍角とするものとする。
[! ! Means for Solving Problem 1] In order to solve the above problem, the present invention forms a drain region in a self-aligned manner by diffusion of impurities using a thick selective oxidation region and a gate electrode on a thin insulating film as a mask. In this case, the angle at which the periphery of the selective oxide film region and the periphery of the gate electrode intersect is an obtuse angle on the drain side.

〔作用〕[Effect]

選択酸化膜領域の周縁とゲート電極の周縁との交差する
角度をドレイン側で鈍角とすることによって、ドレイン
拡散層領域のチャネル側コーナー部の角度が鈍角となり
、電界集中を防止することができる。これによって、微
細化されたMIS型半導体装置においても、ドレイン拡
散層領域のチャネル側コーナ一部における電界集中に起
因した耐圧の低下や、信転性の低下を防止することがで
きる。
By making the angle at which the periphery of the selective oxide film region and the periphery of the gate electrode intersect at an obtuse angle on the drain side, the angle at the channel-side corner of the drain diffusion layer region becomes an obtuse angle, making it possible to prevent electric field concentration. As a result, even in a miniaturized MIS type semiconductor device, it is possible to prevent a decrease in breakdown voltage and a decrease in reliability due to electric field concentration in a part of the channel side corner of the drain diffusion layer region.

〔実施例〕〔Example〕

第1図(a)、(blは本発明の二つの実施例によるM
O8型FETの平面図で、第2図、第3図と共通の部分
には同一の符号が付されている。第1図(alの実施例
ではLOCO3法により形成された選択酸化II!lの
開口部パターン2は大きい方形と小さい方形を方形辺に
45”をなす斜辺で連結した漏斗形をなしている。ゲー
ト電極3はこの漏斗形の連結部の斜辺上に設けられてい
る。すなわち、LOCO8膜開ロ部パターン2とゲート
電極3の周縁とのドレイン側での交差角θは135°と
なる。従って、LOCO3膜lとゲート電極3をマスク
としての不純物拡散によって形成されるドレイン領域4
のチャネル側コーナ一部6は135°の角度を持ち、第
3回出)に示した従来例の90”の場合に比して電界集
中が起こりにくい、その結果として、ドレイン耐圧は向
上し、ホットキャリアの発生による@転性低下も防止す
ることができる。また本実施例によれば、第4図に示し
た同心円状の配置による方法と異なり、素子の占有面積
を増大させたり、レイアウト効率を低下させたりするこ
とがない。
FIG. 1(a), (bl is M according to two embodiments of the present invention)
This is a plan view of an O8 type FET, and the same parts as in FIGS. 2 and 3 are given the same reference numerals. In the embodiment shown in FIG. 1 (al), the selective oxidation II!l opening pattern 2 formed by the LOCO3 method has a funnel shape in which a large rectangle and a small rectangle are connected by a diagonal side of 45''. The gate electrode 3 is provided on the oblique side of this funnel-shaped connection. That is, the intersection angle θ between the LOCO8 film opening pattern 2 and the periphery of the gate electrode 3 on the drain side is 135°. , a drain region 4 formed by impurity diffusion using the LOCO3 film l and the gate electrode 3 as a mask.
The channel side corner part 6 has an angle of 135°, and electric field concentration is less likely to occur compared to the conventional example of 90" shown in Part 3). As a result, the drain breakdown voltage is improved, It is also possible to prevent a decrease in @conductivity due to the generation of hot carriers.Also, according to this embodiment, unlike the concentric arrangement method shown in FIG. It does not cause any deterioration.

第1回出)に示した実施例ではLOGO3IIIの開口
部パターン2は長方形とし、ゲート電極3を(の字状に
45°ずつ曲げ、開口部パターン2とゲート電極3のド
レイン側周縁との交差角θを1356にしたもので、コ
ーナ一部6の電力集中防止については第1図ia)と同
様の効果が得られる。
In the embodiment shown in Part 1), the opening pattern 2 of LOGO3III is rectangular, and the gate electrode 3 is bent by 45 degrees in the shape of a square, so that the intersection of the opening pattern 2 and the peripheral edge of the gate electrode 3 on the drain side is By setting the angle θ to 1356, the same effect as in FIG. 1 ia) can be obtained regarding prevention of power concentration in the corner part 6.

〔発明の効果〕〔Effect of the invention〕

本発明は、ドレイン領域を拡散で形成するためのマスク
として用いられる選択酸化膜パターンの周縁部とゲート
電極の周部を鈍角をなして交差するようにすることによ
り、ドレイン拡散層領域のチャネル側コーナ一部も鈍角
にしてその部分での電力集中を防止することができ、耐
圧の低下や信転性の低下が少ないMis型半導体装置が
得られた。
In the present invention, the periphery of the selective oxide film pattern used as a mask for forming the drain region by diffusion intersects the periphery of the gate electrode at an obtuse angle. A portion of the corner was also made obtuse to prevent power concentration at that portion, and a Mis-type semiconductor device was obtained with little reduction in breakdown voltage or reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(♂l、(blは本発明の二つの実施例によるM
O8型FETのそれぞれの平面図、第2図は従来0MO
3型FETのドレイン領域のチャネル側コーナ一部にお
ける電界集中のメカニズムを示す図、第3図(5)、山
)はドレイン拡散層の比較的深い場合と浅い場合の従来
のMO3型FETのそれぞれの平面図、第4図は従来の
別のMO3型FETの平面図である。 1 : LOGO5選択酸化膜、2 : LOCO3膜
開口部パターン、3:ゲート電橋、4ニドレイン領域、
5:ソース領域。 第1図 第2図
FIG. 1 (♂l, (bl is M according to two embodiments of the present invention)
The plan view of each O8 type FET, Figure 2 is the conventional 0MO
Figure 3 (5) shows the mechanism of electric field concentration in a part of the channel-side corner of the drain region of a type 3 FET. FIG. 4 is a plan view of another conventional MO3 type FET. 1: LOGO5 selective oxide film, 2: LOCO3 film opening pattern, 3: Gate bridge, 4 Nidrain region,
5: Source area. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)厚い選択酸化領域と薄い絶縁膜上のゲート電極を
マスクとしての不純物拡散により、自己整合的にドレイ
ン領域を形成する際に、選択酸化膜領域の周縁とゲート
電極の周縁の交差する角度をドレイン側で鈍角とするこ
とを特徴とするMIS型半導体装置の製造方法。
(1) When forming a drain region in a self-aligned manner by diffusion of impurities using a thick selective oxidation region and a gate electrode on a thin insulating film as a mask, the angle at which the periphery of the selective oxide film region intersects the periphery of the gate electrode is determined. A method for manufacturing an MIS type semiconductor device, characterized in that the angle is made obtuse on the drain side.
JP32433988A 1988-12-22 1988-12-22 Manufacture of mis-type semiconductor device Pending JPH02170437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32433988A JPH02170437A (en) 1988-12-22 1988-12-22 Manufacture of mis-type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32433988A JPH02170437A (en) 1988-12-22 1988-12-22 Manufacture of mis-type semiconductor device

Publications (1)

Publication Number Publication Date
JPH02170437A true JPH02170437A (en) 1990-07-02

Family

ID=18164679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32433988A Pending JPH02170437A (en) 1988-12-22 1988-12-22 Manufacture of mis-type semiconductor device

Country Status (1)

Country Link
JP (1) JPH02170437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246080B1 (en) 1998-05-14 2001-06-12 Nec Corporation Semiconductor device having bent gate electrode and process for production thereof
JP2002222944A (en) * 2001-01-26 2002-08-09 Kitakiyuushiyuu Techno Center:Kk Semiconductor element
WO2012144295A1 (en) * 2011-04-20 2012-10-26 ルネサスエレクトロニクス株式会社 Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042867A (en) * 1983-08-19 1985-03-07 Toshiba Corp Semiconductor device
JPS6081867A (en) * 1983-10-11 1985-05-09 Nec Corp Mos field effect transistor
JPH01181468A (en) * 1988-01-08 1989-07-19 Toshiba Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042867A (en) * 1983-08-19 1985-03-07 Toshiba Corp Semiconductor device
JPS6081867A (en) * 1983-10-11 1985-05-09 Nec Corp Mos field effect transistor
JPH01181468A (en) * 1988-01-08 1989-07-19 Toshiba Corp Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246080B1 (en) 1998-05-14 2001-06-12 Nec Corporation Semiconductor device having bent gate electrode and process for production thereof
US6387760B2 (en) 1998-05-14 2002-05-14 Nec Corporation Method for making semiconductor device having bent gate electrode
JP2002222944A (en) * 2001-01-26 2002-08-09 Kitakiyuushiyuu Techno Center:Kk Semiconductor element
WO2012144295A1 (en) * 2011-04-20 2012-10-26 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5711812B2 (en) * 2011-04-20 2015-05-07 ルネサスエレクトロニクス株式会社 Semiconductor device
US9054103B2 (en) 2011-04-20 2015-06-09 Renesas Electronics Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US5723890A (en) MOS type semiconductor device
CN203103306U (en) Semiconductor device
JPH04361571A (en) Mos type semiconductor device
JP5036479B2 (en) Semiconductor device with vertical MOSFET structure
JPH04107867A (en) Semiconductor device
JPS63311766A (en) Mis power transistor
JPH01238173A (en) Power mosfet
JPH02170437A (en) Manufacture of mis-type semiconductor device
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JP3100755B2 (en) Vertical MOS field-effect transistor
JP3214274B2 (en) MOS type semiconductor device
JP3381490B2 (en) MOS type semiconductor device
JP2964157B2 (en) Semiconductor device
JPH0493083A (en) Semiconductor device and manufacture thereof
JP2000196102A (en) Semiconductor device and its production method
JPS6353972A (en) Composite semiconductor device
JPH03206667A (en) Mos transistor
KR100611743B1 (en) TFT with Multiple Gate
JP2003008019A (en) Semiconductor device
JPH04241463A (en) Semiconductor device
JPH01111378A (en) Vertical mosfet
JPH0697439A (en) High breakdown strength semiconductor element
US8008725B2 (en) Field transistors for electrostatic discharge protection and methods for fabricating the same
JPH0837299A (en) Protective circuit of semiconductor integrated circuit
KR100321355B1 (en) MOS semiconductor device