JPS6042867A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6042867A
JPS6042867A JP15098183A JP15098183A JPS6042867A JP S6042867 A JPS6042867 A JP S6042867A JP 15098183 A JP15098183 A JP 15098183A JP 15098183 A JP15098183 A JP 15098183A JP S6042867 A JPS6042867 A JP S6042867A
Authority
JP
Japan
Prior art keywords
substrate
film
electrode
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15098183A
Other languages
Japanese (ja)
Inventor
Shinji Saito
伸二 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15098183A priority Critical patent/JPS6042867A/en
Publication of JPS6042867A publication Critical patent/JPS6042867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable to prevent the effect of short channel without causing the decrease in withstand voltage by a method wherein an impurity region of a conductivity type different from that of a substrate is formed in the substrate in perimeter of the element isolation insulation film except the lower part of the gate electrode. CONSTITUTION:A field oxide film 2 is formed on the surface of the n type Si substrate 1, and an n type field inversion preventing layer 3 is formed in the substrate under the film 2. The gate electrode 5 is formed in the element region surrounded by the film 2 via gate oxide film 4. The source and drain regions 6 and 7 forming a Schottky junction between the substrate 1 are formed on the surface of the substrate 1 on both sides of the electrode 5. The p type impurity region 11 is formed in the substrate 1 in the perimeter of the film 2 except the lower part of the electrode 5. Thereby, an alloy layer constituting the regions 6 and 7 does not contact the layer 3, and the withstand voltage of the Schottky junction does not deteriorate even when the impurity concentration of the layer 3 is high. Therefore, the effect of short channel can be effectively prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置に関し、特にショットキー接合でソ
ース、ドレイン領域を形成したMO3半導体装置に係る
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to an MO3 semiconductor device in which source and drain regions are formed by Schottky junctions.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

MO8)ランジスメはチャネル長が短かくなるに従い、
ソース、ドレイン領域の不AJヒ物が横方向(基板の平
面方向)へ延びることによる影暫が生じ、設=t した
マスクのダート長よシも実効チャネル長が短かくなシ、
いわゆるショートチャネル効果が決われる。
MO8) As the channel length becomes shorter,
A shadow is caused by the AJ defects in the source and drain regions extending in the lateral direction (in the planar direction of the substrate), and the effective channel length is shorter than the dart length of the set mask.
The so-called short channel effect is determined.

上記不純物の横方向への拡散はnチャネルMO8)ラン
ジスタよシもpナヤネルMO8I−ランノスタの力が大
きい。これは一般にnチャネルMO8)ランノスタの不
純物として用いられている砒累(As)よシもpチャネ
ルA(O8)ンンノスタの不純物として用いられている
ポロン(B)の方が拡散係数か大きいfcめである。
The lateral diffusion of the impurity has a larger force than the n-channel MO8 transistor and the p-channel MO8I transistor. This is because poron (B), which is generally used as an impurity for p-channel A (O8) lannostar, has a higher diffusion coefficient than arsenic (As), which is generally used as an impurity for n-channel MO8) lannostar. be.

そこで、特にpチャネルMO8)ランソスタのショート
チャネル効果を抑制するノこめに、ショットキー接合で
ソース、ドレイン領域をJし成したものが提案され・て
いる(例えは、1981゜IEDM’、 P、367〜
370 、 ” 5chottky MO8FETfo
r VLSI ” ; 1982 e Symposi
um on VLSItechnol゛ogy a P
@6〜? 、 −Latch −、up freeCM
O8by 5chottky barrier tec
hnology、つ・こうしたMOSトランジスタにお
いては、ン了ス。
Therefore, in order to suppress the short channel effect of the p-channel MO8) run source, it has been proposed to form the source and drain regions with Schottky junctions (for example, 1981゜IEDM', P, 367~
370,” 5chottky MO8FETfo
r VLSI”; 1982 e Symposia
um on VLSI technology aP
@6~? , -Latch-, up freeCM
O8by 5chottky barrier tec
In terms of hnology, these MOS transistors have different characteristics.

ドレイン領域のシリコン基板表面からの探さ方向及び横
方向への延びは、ショットキー接合を構成するショット
キーバリアメタルとシリコン基板との合金層(例えばP
tSi層)の厚み分の半分だけであるので、設計したマ
スクのダート長がIよぼ保たれる。
The drain region extends from the surface of the silicon substrate in the search direction and in the lateral direction through an alloy layer of the Schottky barrier metal and the silicon substrate (for example, P
Since it is only half the thickness of the tSi layer, the designed dart length of the mask can be maintained at approximately I.

上述したよりなショットキー接合でソース。Source with the Schottky junction described above.

ドレイン領域を形成した従来のMOS)ランジスタをM
1図及び第2図を参照して説明する。なお、第2図は第
1図のn−n線に沿う断面図である。
The conventional MOS) transistor that formed the drain region is
This will be explained with reference to FIGS. 1 and 2. Note that FIG. 2 is a sectional view taken along line nn in FIG. 1.

図中11in型シリコン基板でわシ、このn型シリコン
基板1表向には選択鹸化法によりフィールド鹸化膜2が
形成され、このフィールド酸化膜2下の基板1内にはn
Wフィールド反転防止層3が形成されている。フィール
ドば化膜2によって囲まれた素子領」或にはゲートば化
膜4を介して多結晶シリコンからなるダートa極5が形
成されている。また、ゲート′電極5両側方の基板1表
面にはショットキーバリアメタル(例えば、pt、w等
)を蒸着し、低温熱処理(300〜350℃)を施す′
ことによp1基板1との間でショットキー接合を形成す
る冶金層(例えばptst層)からなるソース、ドレイ
ン領域6,7が形成されている。また、全面にCVD酸
化M8が堆積されておシ、所定−υfにコンタクトホー
ル9m、9b、9cが開孔さ7している。
In the figure, an 11-inch silicon substrate is shown, and a field saponified film 2 is formed on the surface of this n-type silicon substrate 1 by a selective saponification method.
A W field inversion prevention layer 3 is formed. A dirt a-pole 5 made of polycrystalline silicon is formed in the element region surrounded by the field oxide film 2 or via the gate oxide film 4. Further, a Schottky barrier metal (for example, PT, W, etc.) is deposited on the surface of the substrate 1 on both sides of the gate electrode 5, and subjected to low-temperature heat treatment (300 to 350°C).
Source and drain regions 6, 7 are formed of a metallurgical layer (for example a PTST layer) forming a Schottky junction with the p1 substrate 1, for example. Further, CVD oxide M8 is deposited on the entire surface, and contact holes 9m, 9b, and 9c are opened 7 at predetermined positions -υf.

更に、CVD酸化膜8上にはコンタクトホール9 m 
* Lb @ 9 Cを介してそれぞれソース、ドレイ
ン領域6,7及びゲート′I4L他5と接続する′−極
配fJJ 10 & * 10 b 、 10 cがt
ewさiしている。
Furthermore, a contact hole 9m is formed on the CVD oxide film 8.
* Lb @ 9 C connects to the source, drain regions 6, 7 and gate 'I4L and other 5, respectively'-polar wiring fJJ 10 & * 10 b, 10 c are connected to t
I'm doing it.

上記MO3)ランジスタのゲート電懐5にしきい値電圧
を超える電圧が加わると、ダート′電極5下部の基板1
表面にpii反転層が形成される。
When a voltage exceeding the threshold voltage is applied to the gate electrode 5 of the above MO3) transistor, the substrate 1 under the dart' electrode 5
A pii inversion layer is formed on the surface.

この反転Jaはソース、ドレイン領域6,1の端部にま
で拡がシ、これらを構成する合金l−に接触する。反転
鳩は比較的濃度の商いp型であるので、ソース、ドレイ
ン領域6,7を構成するa金1−とはショットキーバリ
アを形成せず、抵抗接触(オーミック接触)となる。
This inversion Ja extends to the ends of the source and drain regions 6 and 1, and comes into contact with the alloy l- constituting these regions. Since the inversion dovetail has a relatively p-type concentration, it does not form a Schottky barrier with the a gold 1- constituting the source and drain regions 6 and 7, but forms a resistive contact (ohmic contact).

上日己MO8)ランジスタでは前述したようにソース、
ドレイン領域6,2の横方向への延びが少ないため、実
効チャネル長ははげマスクのダート長に等しく、ショー
トチャネル効果を抑制でひる。
Kaminichi MO8) In the transistor, as mentioned above, the source,
Since the lateral extension of the drain regions 6 and 2 is small, the effective channel length is equal to the dart length of the bald mask, thereby suppressing the short channel effect.

ところで、一般的にMOS )ランジスタでは、フィー
ルド敵化膜2下にp型反転層が生じて隣接−したトラン
ジスタと短絡した多、ソース、ドレイン領域の空乏層が
延びて、bI4接したトランジスタと知略するのを防止
する目的で、フィールド酸化膜2の底面及び側面にn型
フィールド反転防止層3を形成している。このフィール
ド反転防止層3の不和II物拡散はノロセス工程を容易
にするため、フィールド酸化膜2とセルファライン(自
己整合)で行なうのが一般的である。
By the way, in general, in a MOS (MOS) transistor, a p-type inversion layer is formed under the field barrier film 2, and the depletion layer in the source and drain regions short-circuited with the adjacent transistor extends, resulting in a transistor in contact with bI4. In order to prevent this, an n-type field inversion prevention layer 3 is formed on the bottom and side surfaces of the field oxide film 2. In order to facilitate the norocess process, diffusion of the inorganic compound into the field inversion prevention layer 3 is generally carried out in a self-aligned manner with the field oxide film 2.

この場合、n型フィールド反転防止層3の′不細9勿濃
度は1〜3×10 tm である。
In this case, the n-type field inversion prevention layer 3 has a concentration of 1 to 3×10 tm.

しかしながら、ショットキー縁合ができるn型シリコン
基板の最大−塵は1〜2 X 10’ 7cm−’程度
であシ、上述したような濃度の11型フィールド反転防
止層3がソース、ドレイン領域6゜7を構成する合金層
に接触しfc場合には、シ。
However, the maximum amount of dust on an n-type silicon substrate that can form a Schottky edge is about 1 to 2 x 10' 7 cm, and the 11-type field inversion prevention layer 3 with the above-mentioned concentration is in the source and drain regions 6. If it comes into contact with the alloy layer constituting ゜7, then fc.

、トキー接合ができなかったシ、接合耐圧が低いものに
なっ′ICシするという欠点がある。
However, there are disadvantages in that it is not possible to perform a single-key junction, and the junction breakdown voltage is low, leading to IC failure.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためにな込れたものであシ
、耐圧の低下等を招く゛こと々くフィールド反転防止層
をセルファラインで形成することができ、ショートチャ
ネル効M′t−有効に抑fiiljできる牛尋体装置を
提供−〜ようとするものである。
The present invention has been developed to solve the above-mentioned drawbacks, and it is possible to form a field reversal prevention layer with a self-line, which often causes a decrease in breakdown voltage, etc., and the short channel effect M't- It is an object of the present invention to provide a cow fat body device that can effectively suppress cancer.

〔発明の概賛〕[Overview of the invention]

本発明の#−導体装飯は、第1寺電型(例えばn u 
)の半4体基板に、ショットキー接合で形成されPcン
ース、ドレイン領域をf;’=、yyだ半導体装15(
例えばpナヤ不ルMO8)ランソスタ)にお・いて、ダ
ート電極下hIS以外の素子分喘絶縁膜(ンイールド臥
化族)の周囲の基板中に第2導′I■帖(p型)の不純
物領域を形成したことを特f改とするものである。
The #-conductor arrangement of the present invention is of the first type (for example, n u
), the semiconductor device 15 (
For example, in the case of a p-type (p-type) impurity in the substrate around the insulating film (n-yield) for elements other than the hIS under the dirt electrode. The special feature is that the area is formed.

こうした半導体装置によれば、ショットキー接合で形成
されたソース、ドレイン領域と、素子分離絶に=y、M
下の反転防止層か接触することがないので、ショットキ
ー接合の耐圧劣化等の問題が生じることがなく、ショー
トチャネル効果を有効に抑制することができる。
According to such a semiconductor device, the source and drain regions formed by the Schottky junction and the element isolation are completely isolated from each other.
Since there is no contact with the underlying inversion prevention layer, problems such as deterioration of the breakdown voltage of the Schottky junction do not occur, and short channel effects can be effectively suppressed.

〔発明の実施例〕[Embodiments of the invention]

以下、不発ゆ」の実施例金泥3図及び第4図をβHして
説明する。なお、紀4図は第3図の■−IV緑に沿う断
面図である。また、既述した第1図及び第2図と同一の
領域には同−社号を付して説明を省略する。
Hereinafter, the example gold paint of "Unexploded Yuu" will be explained using βH as shown in FIGS. 3 and 4. It should be noted that Figure 4 is a cross-sectional view taken along the green line ■-IV in Figure 3. Further, the same areas as those in FIG. 1 and FIG. 2 already described are given the same company name and the explanation thereof will be omitted.

第3図及び第4図゛図示のpチャネルMQS)ランジス
タは、ダート電極5下部以外のフィールド酸化M2の周
囲の基板I中にp型不縄物領域11.11を・形成した
ほかは、第1図及び第2図図示の従来のpチャネルMO
8)ランノスタと同様な構造を有している。
The p-channel MQS transistor shown in FIGS. 3 and 4 has a p-type impurity region 11.11 formed in the substrate I around the field oxide M2 other than the lower part of the dirt electrode 5. Conventional p-channel MO shown in FIGS. 1 and 2
8) It has a similar structure to Rannostar.

前記pムy不純物領域11.11は、多結晶シリコン膜
、をパターニングすることにょシダート電極5を形成し
た後、写真蝕刻法にょルホトレジストパターンを形成し
、これをマスクとしてstaンをイオン注入し、更に、
前記ホトレジストノリ−ンを除去した後、熱処理するこ
とにょシ形成することができる。
The p-y impurity region 11.11 is formed by patterning a polycrystalline silicon film to form a radiation electrode 5, then forming a photoresist pattern by photolithography, and using this as a mask, ion-implanting STAN. , furthermore,
After the photoresist layer is removed, it can be formed by heat treatment.

しかして、上記pチャネルMO8)ランノスタによれば
、ソース、ドレイン領域6.7を禍成する合金層(例え
ばPtSi層)とn型フィール1゛反転防止層3,3と
の間にp型不純物領域11゜11が介在しているので、
両者が+bmすることはなく、nmフィールド反反転防
止層、3の不純物a腹が向くで・もショットキル接合の
耐圧が劣化することはない。すなわち、ショットキー接
も自体の耐圧はFI型シリコン基板1の不純物磯度によ
って決定される耐圧となるため、高い降伏′旺圧をイj
する。したがって、nt11フィールド反転防止J奮3
,3を従来通シフイールド鹸化膜2とセルフアンインで
形成しても耐圧の劣化ヲ招くことかなく、ショートチャ
ネル効果を1効に防止することができる。
According to the above-mentioned p-channel MO8) Lannostar, p-type impurity is added between the alloy layer (for example, PtSi layer) forming the source and drain regions 6.7 and the n-type field 1' inversion prevention layers 3, 3. Since the region 11°11 is interposed,
Both do not increase +bm, and the breakdown voltage of the shotkill junction does not deteriorate even if the nano-field anti-inversion layer and the impurity a-antino of 3 are oriented. In other words, the breakdown voltage of the Schottky contact itself is determined by the degree of impurity in the FI type silicon substrate 1, so a high breakdown voltage is not required.
do. Therefore, nt11 field reversal prevention
.

なお、本発明の半導体装置は第3図及び第4図に示し7
1cJ@造に限らず、例えは第5図に示す構造でもよい
。第5図図示のpチャネルMOSトランジスタはダート
電極5′を、フィールド酸化膜2と交わる近傍の部分の
寸法を中央部の寸法よシ大きくしたものである。
The semiconductor device of the present invention is shown in FIGS. 3 and 4.
The structure is not limited to the 1cJ@ structure, and for example, the structure shown in FIG. 5 may be used. The p-channel MOS transistor shown in FIG. 5 has a dirt electrode 5' in which the size of the portion near where it intersects with the field oxide film 2 is larger than the size of the center portion.

゛こりしたpチャネルMO8)ランジスタによれは、ケ
゛−ト電極5′とフィールド酸化膜2との交わる部分近
傍でp型不純物領域11.IIの横方間の拡散により実
効チャネル長が短かくなるのを防止することができる。
Due to the damaged p-channel MO transistor (8), the p-type impurity region 11. It is possible to prevent the effective channel length from becoming short due to the lateral diffusion of II.

特に、p型不純物領域11.11−の不純物娘度が高く
、横方向の拡散が大きい一合に有効である。
This is particularly effective in cases where the p-type impurity regions 11, 11- have a high impurity degree and a large amount of lateral diffusion.

また、本発明の半導体装置は上ml実施例の如くpチャ
ネルMO8)ランジスタに1狐らず、nチャネルMOS
トラ/ノスタ、0MO8等にも1万J様に適用できる。
In addition, the semiconductor device of the present invention does not have a p-channel MOS transistor as in the above embodiment, but an n-channel MOS transistor.
It can also be applied to Tora/Nosta, 0MO8, etc. for 10,000J.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本ih明の半導体装Uによれは、M
OSトランジスタ等の接合耐圧の劣化を・招くことなく
、ショートチャネル効果を1力止することができ、ひい
ては素子の微力1u化を達J戊できる等顕著な効果を奏
するものである。
As detailed above, the semiconductor device U of the present invention has M
This has remarkable effects such as being able to temporarily stop the short channel effect without causing deterioration of the junction breakdown voltage of the OS transistor, etc., and further achieving the miniaturization of the device to 1 μ.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はショットキー接合でソース、ドレイン領域が形
成された従来のpチャネルMO8+・ランジスタの平面
図、第2図iIj:第1図のII −II ib+’i
に沿う断面図、第3図は本発明の実施例におけるpチャ
ネル1〜fO8l−ランノスクの平面図、第4図は第3
図の■−■縁に沿う−「面図、第5図は本)ら明の他の
実施例におけるpチャネルMOSトランジスタの平面図
である。 1・・・n型シリコン基板、2・・・フィールド敗化膜
、3・・・n型フィールド反転防止層、4・・・ゲート
敲化収、5.5′・・・ダート電極、6,7・・・ソー
ス、ドレイン領域、8・・・CVD1化膜、−9a +
9b 19 c ”’コンタクトホール、10 a +
 10b*10c・・・寛憾配餓、11・・・p型不純
物領域0出願人代理人 弁理士 鈴 江 武 が第1図 第2図 第3図
Figure 1 is a plan view of a conventional p-channel MO8+ transistor with source and drain regions formed by Schottky junctions, Figure 2 iIj: II-II ib+'i in Figure 1
3 is a plan view of p-channels 1 to fO8l-lannosk in the embodiment of the present invention, and FIG.
5 is a plan view of a p-channel MOS transistor in another embodiment of the present invention along the edge of the figure. 1... n-type silicon substrate, 2... Field destruction film, 3... N-type field inversion prevention layer, 4... Gate ablation layer, 5.5'... Dirt electrode, 6, 7... Source, drain region, 8... CVD1 film, -9a +
9b 19 c ”' Contact hole, 10 a +
10b*10c...Relaxation, 11...P-type impurity region 0 Applicant's agent, patent attorney Takeshi Suzue, is shown in Figure 1, Figure 2, and Figure 3.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板表面の素子分離絶縁膜及
び該;!≦子分離絶縁股下に形成された第1寺Ia型の
反転防止層によって囲まれた素子領域に、互いに′電気
的に分離され、ショットキー接合でノー成されたンース
、ドレイン領域を設け、これらソース、ドレイン領域向
の基板上にダート杷琢膜を介してダート電極を設けた″
P専鉢体装置11おいて、前記ダート′嵯極下部以外の
累子分−ト杷程11にの周囲の基板中に第2専′亀型の
不純物鎖板を形成し/くことを特徴とする半導体に置。
(1) An element isolation insulating film on the surface of a first conductivity type semiconductor substrate and the;! ≦In the device region surrounded by the first temple Ia type anti-inversion layer formed under the child isolation insulating crotch, source and drain regions electrically isolated from each other and formed by a Schottky junction are provided. A dart electrode is provided on the substrate facing the source and drain regions via a dart loquat film.
The P-type pot body device 11 is characterized in that a second specialized tortoise-shaped impurity chain plate is formed in the substrate around the particle diameter 11 other than the extreme lower part of the dirt plate. Placed in semiconductors.
(2) り−1・′電極の素子分艦絶縁膜と交わる近傍
の部分の寸法をり゛−ト篭極中央ibの寸法よシ大きく
したとを特徴とする特許請求の範囲第1項記載の半導体
装置。
(2) Claim 1, characterized in that the dimension of the portion of the ri-1/' electrode in the vicinity of where it intersects with the element branch insulating film is made larger than the dimension of the center ib of the ri-1/' electrode. semiconductor devices.
JP15098183A 1983-08-19 1983-08-19 Semiconductor device Pending JPS6042867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15098183A JPS6042867A (en) 1983-08-19 1983-08-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15098183A JPS6042867A (en) 1983-08-19 1983-08-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6042867A true JPS6042867A (en) 1985-03-07

Family

ID=15508674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15098183A Pending JPS6042867A (en) 1983-08-19 1983-08-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6042867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170437A (en) * 1988-12-22 1990-07-02 Fuji Electric Co Ltd Manufacture of mis-type semiconductor device
JPH0330476A (en) * 1989-06-28 1991-02-08 Matsushita Electron Corp Mis transistor and protective circuit provided therewith
US5306082A (en) * 1992-06-12 1994-04-26 James Karlin Appliance doors and panels
US5928599A (en) * 1995-06-01 1999-07-27 Batesville Services, Inc. Method of forming articles of manufacture of various shapes including undercuts therein with generic tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170437A (en) * 1988-12-22 1990-07-02 Fuji Electric Co Ltd Manufacture of mis-type semiconductor device
JPH0330476A (en) * 1989-06-28 1991-02-08 Matsushita Electron Corp Mis transistor and protective circuit provided therewith
US5306082A (en) * 1992-06-12 1994-04-26 James Karlin Appliance doors and panels
US5928599A (en) * 1995-06-01 1999-07-27 Batesville Services, Inc. Method of forming articles of manufacture of various shapes including undercuts therein with generic tool
US6530134B1 (en) 1995-06-01 2003-03-11 Batesville Services, Inc. Molded casket shell and trim therefore

Similar Documents

Publication Publication Date Title
JP3229012B2 (en) Method for manufacturing semiconductor device
JPS63102264A (en) Thin film semiconductor device
US4426766A (en) Method of fabricating high density high breakdown voltage CMOS devices
JPS6042867A (en) Semiconductor device
US4142197A (en) Drain extensions for closed COS/MOS logic devices
JP3000739B2 (en) Vertical MOS field effect transistor and method of manufacturing the same
US3518750A (en) Method of manufacturing a misfet
GB2152283A (en) Gate protection arrangement for a semiconductor device
US5181094A (en) Complementary semiconductor device having improved device isolating region
JPS59130465A (en) Manufacture of metal insulator semiconductor device
US3936862A (en) MISFET and method of manufacture
JPS6119174A (en) Semiconductor device
JPS62248256A (en) Semiconductor device
US4528581A (en) High density CMOS devices with conductively interconnected wells
JP3350170B2 (en) Power MOS type semiconductor device and method of manufacturing the same
JPS6247151A (en) Formation of mutual connection on substrate
JPS6058674A (en) Mos type transistor
JP3095912B2 (en) Semiconductor integrated circuit device
JPS594083A (en) Manufacture of semiconductor device
TW200425472A (en) Semiconductor device
JPS5918676A (en) Semiconductor integrated circuit
JPS63200559A (en) Semiconductor integrated circuit device
JP2968640B2 (en) Semiconductor device
JP3052019B2 (en) Integrated circuit device
JPS5931224B2 (en) semiconductor equipment