JP3100755B2 - Vertical MOS field-effect transistor - Google Patents

Vertical MOS field-effect transistor

Info

Publication number
JP3100755B2
JP3100755B2 JP04136947A JP13694792A JP3100755B2 JP 3100755 B2 JP3100755 B2 JP 3100755B2 JP 04136947 A JP04136947 A JP 04136947A JP 13694792 A JP13694792 A JP 13694792A JP 3100755 B2 JP3100755 B2 JP 3100755B2
Authority
JP
Japan
Prior art keywords
chip
effect transistor
vertical mos
mos field
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04136947A
Other languages
Japanese (ja)
Other versions
JPH05335583A (en
Inventor
宏 谷田
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP04136947A priority Critical patent/JP3100755B2/en
Publication of JPH05335583A publication Critical patent/JPH05335583A/en
Application granted granted Critical
Publication of JP3100755B2 publication Critical patent/JP3100755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、縦型MOS構造をし
た電界効果トランジスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor having a vertical MOS structure.

【0002】[0002]

【従来の技術】図3は、従来の大出力用縦型MOS電界
効果トランジスタ(以下パワーMOSFETという)の
構造を示す図で、同図(a)は従来のパワーMOSFE
Tのマスクを示す平面図、同図(b)は同図(a)のB
−B’間で切断したセルの断面構造を示す図である。図
3において、1はドレイン領域、2はゲ−ト酸化膜、3
は多結晶シリコン、4は高濃度領域、5はウェル領域、
6はソ−ス領域、7は層間絶縁膜、8はソ−ス電極、9
はドレイン電極を示している。
2. Description of the Related Art FIG. 3 is a view showing the structure of a conventional high power vertical MOS field effect transistor (hereinafter referred to as a power MOSFET). FIG.
FIG. 2B is a plan view showing a mask of T, and FIG.
It is a figure which shows the cross-section of the cell cut | disconnected between -B '. In FIG. 3, 1 is a drain region, 2 is a gate oxide film, 3
Is polycrystalline silicon, 4 is a high concentration region, 5 is a well region,
6 is a source region, 7 is an interlayer insulating film, 8 is a source electrode, 9
Indicates a drain electrode.

【0003】図3に示すように、縦型構造のMOSFE
Tは一般的に拡散自己整合、いわゆるD−MOS(Di
ffused self alignd)構造をしてい
る。すなわち、ドレイン領域1となるシリコン基板表面
上にゲ−ト酸化膜2を形成し、ゲート酸化膜2の上にリ
ソグラフィ工程により多結晶シリコン膜3を格子状に形
成し、ゲ−ト酸化膜2上より多結晶シリコン膜3に接す
ることなく四角形状にしてドレイン領域1とは逆導電型
の高濃度領域4を形成し、多結晶シリコン膜3をマスク
として自己整合拡散によるドレイン領域1とは逆導電型
のウェル領域5とドレイン領域1と同一導電型領域のソ
−ス領域6を形成し、多結晶シリコン膜3に対して層間
絶縁膜7を形成してリソグラフィ工程を経た後にソ−ス
電極8およびドレイン電極9を形成したものである。
[0003] As shown in FIG.
T is generally a diffusion self-alignment, so-called D-MOS (Di
(fused self aligned) structure. That is, a gate oxide film 2 is formed on the surface of a silicon substrate to be a drain region 1, and a polycrystalline silicon film 3 is formed on the gate oxide film 2 by a lithography process in a lattice shape. A high-concentration region 4 having a conductivity type opposite to that of the drain region 1 is formed in a rectangular shape without contacting the polycrystalline silicon film 3 from above, and the polycrystalline silicon film 3 is used as a mask to form a high concentration region 4 opposite to the drain region 1 by self-aligned diffusion. A source region 6 of the same conductivity type as that of the well region 5 and the drain region 1 is formed, an interlayer insulating film 7 is formed on the polycrystalline silicon film 3, and a lithography process is performed. 8 and a drain electrode 9 are formed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の構造では、パワーMOSFETの電力負荷がモ
ータやソレノイド等の誘導性の負荷である場合には、ド
レイン領域1とウェル領域5の接合部にブレークダウン
が生じると、ソース領域6、ウェル領域5、ドレイン領
域1で形成される寄生のバイポーラトランジスタが動作
し、パワーMOSFETは発熱により破壊されることに
なる。また、ブレークダウンした場合、チップ内部では
空乏層が隣合うウェル領域から伸びるため、曲率が緩和
され見かけ上階段接合の状態になるのに対し、チップ周
辺部では、隣合うウェル領域がないため曲率が緩和され
ずスフェリカル接合となる。このため、ブレークダウン
電流はチップ周辺部に集中し、主にチップ周辺を破壊す
る。このように従来のパワーMOSFETの構造では、
逆方向の安全動作領域(以下R−ASOという)が狭い
という問題点があった。
However, in the conventional structure described above, when the power load of the power MOSFET is an inductive load such as a motor or a solenoid, the power MOSFET is connected to the junction between the drain region 1 and the well region 5. When the breakdown occurs, a parasitic bipolar transistor formed by the source region 6, the well region 5, and the drain region 1 operates, and the power MOSFET is destroyed by heat generation. In the case of breakdown, the depletion layer extends from the adjacent well region inside the chip, so that the curvature is relaxed and an apparently stair-junction state is obtained. Is not relaxed, resulting in a spherical joint. For this reason, the breakdown current concentrates on the periphery of the chip and mainly destroys the periphery of the chip. Thus, in the structure of the conventional power MOSFET,
There is a problem that the safe operation area in the reverse direction (hereinafter referred to as R-ASO) is narrow.

【0005】したがって、この発明の目的は、逆方向安
全動作領域の向上を図ることができる縦型MOS構造を
した電界効果トランジスタを提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a field effect transistor having a vertical MOS structure capable of improving a safe reverse operation area.

【0006】[0006]

【課題を解決するための手段】この発明の縦型MOS電
界効果トランジスタは、ドレイン領域となる一導電型の
半導体基板内に複数形成された他導電型のウェル領域の
うちチップ周辺に形成されたウェル領域のゲート電極
と、ゲート電極用ワイヤーボンディグ部であるゲートパ
ットとをシート抵抗の高い抵抗体を介して電気的に接続
したことを特徴とする。
A vertical MOS field-effect transistor according to the present invention is formed around a chip of a plurality of well regions of another conductivity type formed in a semiconductor substrate of one conductivity type serving as a drain region. A gate electrode in the well region and a gate pad, which is a wire bonding part for the gate electrode, are electrically connected via a resistor having a high sheet resistance.

【0007】[0007]

【作用】この発明の構成によれば、ブレークダウンが生
じても、チップ周辺に形成されたパワーMOSFETの
ゲートのシート抵抗が高いため、チャネルが閉じるのに
時間がかかり、その間にチップ周辺部に集中するブレー
クダウン電流が、このMOSFETのチャネルを通りド
レイン電極からソース電極から抜ける。このため、チッ
プ周辺部の寄生バイポーラトランジスタの動作が抑制さ
れることになり、パワーMOSFETの破壊を防止する
ことができる。
According to the structure of the present invention, even if a breakdown occurs, since the sheet resistance of the gate of the power MOSFET formed around the chip is high, it takes a long time to close the channel, and during that time, the peripheral portion of the chip A concentrated breakdown current flows from the drain electrode to the source electrode through the channel of the MOSFET. Therefore, the operation of the parasitic bipolar transistor at the periphery of the chip is suppressed, and the power MOSFET can be prevented from being broken.

【0008】[0008]

【実施例】以下図面を参照しながら、この発明の一実施
例であるパワ−MOSFETについて説明する。図1
(a)はこの発明の実施例である単一のシリコンチップ
上に集積されたパワーMOSFETのマスクを示す平面
図であり、同図(b)は同図(a)におけるA−A’部
の断面構造を示す図である。図1(a)において従来例
を示す図3と同一符号を付したものは同じものを示すた
め、説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A power MOSFET according to an embodiment of the present invention will be described below with reference to the drawings. FIG.
FIG. 2A is a plan view showing a mask of a power MOSFET integrated on a single silicon chip according to an embodiment of the present invention, and FIG. 2B is a sectional view taken along the line AA ′ in FIG. It is a figure showing a section structure. In FIG. 1A, the same components as those in FIG. 3 showing the conventional example are denoted by the same reference numerals, and the description thereof is omitted.

【0009】この発明の実施例であるパワーMOSFE
Tは、図1に示すように、チップ周辺部のゲート電極で
ある多結晶シリコン21がストライプ状にチップ周辺を
取り囲むように形成されている。その他のゲート電極で
ある多結晶シリコン22は格子状に形成されている。格
子状の多結晶シリコン22はゲート電極用ワイヤーボン
ディング部となるゲートパッド24に直接接続され、ス
トライプ状の多結晶シリコン21は、シート抵抗を高く
した多結晶シリコンもしくはアモルファスシリコン等で
形成された高抵抗23を介してゲートパッド24に接続
されている。
A power MOSFE according to an embodiment of the present invention.
As shown in FIG. 1, T is formed so that polycrystalline silicon 21 serving as a gate electrode at the periphery of the chip surrounds the periphery of the chip in a stripe shape. The polycrystalline silicon 22, which is another gate electrode, is formed in a lattice shape. The lattice-shaped polycrystalline silicon 22 is directly connected to a gate pad 24 serving as a gate electrode wire bonding portion, and the striped polycrystalline silicon 21 is made of polycrystalline silicon or amorphous silicon having a high sheet resistance. It is connected to a gate pad 24 via a resistor 23.

【0010】したがって、実施例であるパワーMOSF
ETは、図2に示すように、ゲートに高抵抗を持ったチ
ップ周辺部に存在するパワーMOSFET(以下MOS
−Aという)と、その他のパワーMOSFET(以下M
OS−Bという)が並列に接続された回路構成となる。
上記のように構成された実施例装置の動作について説明
する。図2に示す回路において、ゲ−トがOFFになる
とMOS−Bのチャネルが閉じる。しかし、MOS−A
はゲート抵抗23が大きいためチャネルが閉じるのに時
間がかかる。もし、ブレークダウンが生じた場合、この
チャネルが閉じる間に周辺部に集中するブレークダウン
電流がMOS−Aのチャネルを通りドレイン電極1から
ソース電極8へ抜けることになる。このため、チップ周
辺部に生じる寄生バイポーラトランジスタの動作が抑制
されるので、パワーMOSFETが破壊されることを防
止して逆方向安全動作領域の拡大を図ることができる。
Therefore, the power MOSF of the embodiment is
ET is, as shown in FIG. 2, a power MOSFET (hereinafter referred to as a MOS) existing in a peripheral portion of a chip having a high resistance gate.
-A) and other power MOSFETs (hereinafter M
OS-B) is connected in parallel.
The operation of the embodiment device configured as described above will be described. In the circuit shown in FIG. 2, when the gate is turned off, the channel of the MOS-B is closed. However, MOS-A
Takes a long time to close the channel because the gate resistance 23 is large. If a breakdown occurs, a breakdown current concentrated in the peripheral portion while the channel closes will flow from the drain electrode 1 to the source electrode 8 through the MOS-A channel. For this reason, the operation of the parasitic bipolar transistor generated in the peripheral portion of the chip is suppressed, so that the power MOSFET can be prevented from being destroyed and the reverse safe operation area can be expanded.

【0011】図4はR−ASOレベルを示す特性図であ
り、上記した実施例装置のR−ASOレベルが従来品に
比べて約2倍に増加していることを示している。
FIG. 4 is a characteristic diagram showing the R-ASO level, and shows that the R-ASO level of the above-described embodiment device is about twice as large as that of the conventional device.

【0012】[0012]

【発明の効果】この発明の縦型MOS電界効果トランジ
スタによれば、ブレークダウンが生じても、チップ周辺
に形成されたパワーMOSFETのゲートのシート抵抗
が高いため、チャネルが閉じるのに時間がかかり、その
間にチップ周辺部に集中するブレークダウン電流が、こ
のMOSFETのチャネルを通りドレイン電極からソー
ス電極から抜けるので、チップ周辺部の寄生バイポーラ
トランジスタの動作が抑制されることになり、パワーM
OSFETが破壊されることを防止して逆方向安全動作
領域の拡大を図ることができる。
According to the vertical MOS field effect transistor of the present invention, even if a breakdown occurs, it takes a long time to close the channel because the sheet resistance of the gate of the power MOSFET formed around the chip is high. In the meantime, the breakdown current concentrated on the peripheral portion of the chip passes through the channel of this MOSFET and escapes from the drain electrode to the source electrode, so that the operation of the parasitic bipolar transistor on the peripheral portion of the chip is suppressed, and the power M
It is possible to prevent the OSFET from being destroyed and to extend the reverse safe operation area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はこの発明の実施例である単一のシリコ
ンチップ上に集積されたパワーMOSFETのマスクを
示す平面図であり、(b)は(a)におけるA−A’部
分で切断したセルの断面構造を示す図である。
FIG. 1A is a plan view showing a power MOSFET mask integrated on a single silicon chip according to an embodiment of the present invention, and FIG. 1B is an AA ′ portion in FIG. FIG. 3 is a diagram illustrating a cross-sectional structure of a cut cell.

【図2】実施例におけるパワ−MOSFETの等価回路
を示す回路図である。
FIG. 2 is a circuit diagram showing an equivalent circuit of a power MOSFET in the embodiment.

【図3】(a)は従来例である単一のシリコンチップ上
に集積されたパワーMOSFETのマスクを示す平面図
であり、(b)は(a)におけるB−B’部分で切断し
たセルの断面構造図を示す図である。
FIG. 3A is a plan view showing a mask of a power MOSFET integrated on a single silicon chip as a conventional example, and FIG. 3B is a cell cut along a line BB ′ in FIG. FIG. 3 is a view showing a sectional structural view of FIG.

【図4】R−ASOレベルの比較図である。FIG. 4 is a comparison diagram of R-ASO levels.

【符号の説明】[Explanation of symbols]

1 ドレイン領域 2 ゲート酸化膜 3 多結晶シリコン 4 高濃度領域 5 ウェル領域 6 ソース領域 7 層間絶縁膜 8 ソース電極 9 ドレイン電極 21 ストライプ状の多結晶シリコン 22 格子状の多結晶シリコン 23 高抵抗 24 ゲートパッド DESCRIPTION OF SYMBOLS 1 Drain region 2 Gate oxide film 3 Polycrystalline silicon 4 High concentration region 5 Well region 6 Source region 7 Interlayer insulating film 8 Source electrode 9 Drain electrode 21 Striped polycrystalline silicon 22 Lattice polycrystalline silicon 23 High resistance 24 Gate pad

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 29/78

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ドレイン領域となる一導電型の半導体基
板内に複数形成された他導電型のウェル領域のうちチッ
プ周辺に形成されたウェル領域のゲート電極と、ゲート
電極用ワイヤーボンディグ部であるゲートパッドとをシ
ート抵抗の高い高抵抗体を介して電気的に接続したこと
を特徴とする縦型MOS電界効果トランジスタ。
A gate electrode of a well region formed around a chip among a plurality of well regions of another conductivity type formed in a semiconductor substrate of one conductivity type serving as a drain region, and a wire bonding part for a gate electrode. A vertical MOS field-effect transistor wherein a certain gate pad is electrically connected via a high-resistance body having a high sheet resistance.
JP04136947A 1992-05-28 1992-05-28 Vertical MOS field-effect transistor Expired - Lifetime JP3100755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04136947A JP3100755B2 (en) 1992-05-28 1992-05-28 Vertical MOS field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04136947A JP3100755B2 (en) 1992-05-28 1992-05-28 Vertical MOS field-effect transistor

Publications (2)

Publication Number Publication Date
JPH05335583A JPH05335583A (en) 1993-12-17
JP3100755B2 true JP3100755B2 (en) 2000-10-23

Family

ID=15187242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04136947A Expired - Lifetime JP3100755B2 (en) 1992-05-28 1992-05-28 Vertical MOS field-effect transistor

Country Status (1)

Country Link
JP (1) JP3100755B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933301B1 (en) * 2017-03-21 2019-04-05 주식회사 도어코코리아 Frame for door

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000513B2 (en) * 2011-02-17 2016-09-28 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Insulated gate semiconductor device
WO2019187509A1 (en) * 2018-03-28 2019-10-03 三菱電機株式会社 Semiconductor device
JP7040423B2 (en) * 2018-11-28 2022-03-23 株式会社デンソー Semiconductor device
JP7310356B2 (en) * 2019-06-27 2023-07-19 富士電機株式会社 semiconductor equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933301B1 (en) * 2017-03-21 2019-04-05 주식회사 도어코코리아 Frame for door

Also Published As

Publication number Publication date
JPH05335583A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
US5723890A (en) MOS type semiconductor device
JPH09102607A (en) Trench gate power mosfet
JPH0433139B2 (en)
JP3173268B2 (en) Semiconductor device having MIS field-effect transistor
JPH0324791B2 (en)
JP3076468B2 (en) Semiconductor device
JPH09102605A (en) Accumulation mode field-effect transistor
JP2644342B2 (en) Semiconductor device with input protection circuit
JP3100755B2 (en) Vertical MOS field-effect transistor
US5874767A (en) Semiconductor device including a lateral power device
JP2937185B2 (en) High breakdown voltage MOS type semiconductor device
JP3186405B2 (en) Horizontal MOSFET
JPH08186254A (en) Insulation gate type semiconductor device and its production
JP3185292B2 (en) Semiconductor device
JP3240896B2 (en) MOS type semiconductor device
JPH05218438A (en) Mos transistor for electric power switching
JPS63197374A (en) High voltage drift type drain mos transistor
JP3211529B2 (en) Vertical MIS transistor
JPH0763075B2 (en) Semiconductor integrated circuit device
JP3074064B2 (en) Lateral MOS field effect transistor
JP2624373B2 (en) Semiconductor device
JPH0427713B2 (en)
JP2680846B2 (en) Semiconductor memory device
JPH05335584A (en) Vertical mos field effect transistor
JPH0613619A (en) Vertical type mos electric field-effect transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12