JPH02170436A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02170436A
JPH02170436A JP63325187A JP32518788A JPH02170436A JP H02170436 A JPH02170436 A JP H02170436A JP 63325187 A JP63325187 A JP 63325187A JP 32518788 A JP32518788 A JP 32518788A JP H02170436 A JPH02170436 A JP H02170436A
Authority
JP
Japan
Prior art keywords
film
diffusion region
type
implanted
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63325187A
Other languages
Japanese (ja)
Inventor
Osamu Kudo
修 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63325187A priority Critical patent/JPH02170436A/en
Publication of JPH02170436A publication Critical patent/JPH02170436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a dielectric breakdown of a gate oxide film and to reduce a contact resistance of a wiring part with a sourcedrain region by a method wherein ions are implanted into an opening part in a state that a high-melting- point metal film has been grown on the whole surface. CONSTITUTION:An n-type well 2 is formed selectively on a main face of a substrate 1; a field oxide film 3 is formed selectively; an element formation region is partitioned. Then, a gate oxide film 4 is formed; a polycrystalline silicon film is deposited; a gate electrode 5 is formed; impurity ions are implanted in a self-aligned manner; a p<+> type diffusion region and an n<+> type diffusion region 6, 7 are formed; a p-channel transistor and an n-channel transistor are formed. Then, a silicon oxide film 8 is deposited; opening parts 9 are formed; a Ti film 10 is deposited; a titanium silicide film 11 is formed; As ions 13 are implanted by making use of a photoresist film 12 and the film 8 as a mask; an n<+> type auxiliary diffusion region 14 is formed. Then, B ions 16 are implanted by making use of a photoresist film 15 and the film 8 as a mask; a p<+> type auxiliary diffusion region 17 is formed. The regions 14, 17 are activated; an Al-Si layer is deposited; a wiring part 18 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分骨〕 本発明は半導体装置の製造方法に関し、特にMOSトラ
ンジスタを有する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device having a MOS transistor.

〔従来の技術〕[Conventional technology]

従来のM OS +−ランジスタを有する半導体装置の
製造方法は、高集積化を向上させるために、ソース・ド
レイン領域とコンタクト用開口部との写真蝕刻時の目合
せ余裕を縮小し、その結果、目合わせ誤差によりソース
・ドレイン領域から一部はみ出して形成された開口部の
領域にそれぞれのソース・トレイン領域と同一導電型の
不純物をそれぞれの開口部にイオン注入してソース・ド
レイン領域に隣接する部分に補助拡散領域を設は熱処理
により活性化を行った後、AI又はAf−3i合金で開
口部のソース・ドレイン領域と接続する配線を選択的に
形成していた。
In the conventional manufacturing method of a semiconductor device having a MOS +- transistor, in order to improve high integration, the alignment margin during photolithography between the source/drain region and the contact opening is reduced, and as a result, Impurity ions of the same conductivity type as the respective source/train regions are implanted into the respective openings, which are formed partially protruding from the source/drain regions due to alignment errors, to form adjacent regions to the source/drain regions. After providing an auxiliary diffusion region in a portion and activating it by heat treatment, wiring connected to the source/drain region of the opening was selectively formed using AI or Af-3i alloy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の製造方法は、次の2点が問
題となっていた。
The conventional semiconductor device manufacturing method described above has the following two problems.

(A)イオン注入法により開口部を通してn型又はp型
不純物を導入する際、加速されたイオンにより基板表面
がチャージアップし、薄いゲート酸化膜が絶縁破壊され
る場合がしばしば発生する。
(A) When n-type or p-type impurities are introduced through an opening by ion implantation, the surface of the substrate is charged up by the accelerated ions, which often causes dielectric breakdown of a thin gate oxide film.

(B)A、ff又はAJ−Si合金による配線とn型又
はp型拡散領域からなるソース・ドレイン領域が直接開
口部において接触する場合のコンタクト抵抗が大きい。
(B) Contact resistance is large when wiring made of A, ff or AJ-Si alloy and source/drain regions made of n-type or p-type diffusion regions are in direct contact at the opening.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、−導電型シリコン基
板の一主面に選択的に逆導電型の拡散領域を設ける工程
と、前記拡散領域を含む表面に設けた絶縁膜を選択的に
エツチングして前記拡散領域及び前記拡散領域に隣接す
る前記シリコン基板の表面を含む開口部を設ける工程と
、前記開口部を含む表面に高融点金属膜を堆積する工程
と、熱処理により前記開口部の前記拡散領域及び前記シ
リコン基板の表面に高融点金属硅化物膜を形成する工程
と、逆導電型不純物を選択的にイオン注入して前記開口
部の前記シリコン基板の表面に前記拡’aflA域と接
続する逆導電型の補助拡散領域を形成する工程とを含ん
で構成される。
The method for manufacturing a semiconductor device of the present invention includes: - selectively providing a diffusion region of an opposite conductivity type on one main surface of a conductivity type silicon substrate; and selectively etching an insulating film provided on a surface including the diffusion region; forming an opening including the diffusion region and the surface of the silicon substrate adjacent to the diffusion region; depositing a high melting point metal film on the surface including the opening; forming a high melting point metal silicide film on the diffusion region and the surface of the silicon substrate, and selectively ion-implanting opposite conductivity type impurities to connect the surface of the silicon substrate in the opening with the expanded aflA region; forming an auxiliary diffusion region of opposite conductivity type.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(d)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a first embodiment of the present invention.

まず、第1図(a)に示すように、p型シリコン基板1
の主面に選択的にn型ウェル2を設け、n型ウェル2の
表面及びn型ウェル2以外の領域の表面のそれぞれに選
択的にフィールド酸化膜3を設けて素子形成領域を区画
する0次に、前記素子形成領域の表面にゲート酸化s4
を設け、ゲート酸化fl14を含む表面に多結晶シリコ
ン膜を堆積してこれを選択的にエツチングしゲート電極
5を形成する。次に、ゲート電極5及びフィールド酸化
膜3をマスクとして自己整合的に不純物をイオン注入し
、n型ウェル2の前記素子形成領域にはp+型拡散領域
6を形成し、n型ウェル2以外の前記素子形成領域には
n+型拡散領域7を形成して、それぞれソース・ドレイ
ン領域を設けnチャネルトランジスタ及びnチャネルト
ランジスタを形成する。次に、ゲート電極5を含む表面
にリン及びホウ素を含む酸化シリコン膜(以下BPSG
膜と記す)8を堆積し、p+型拡散領域6及びn“型拡
散領域7の上のBPSG膜8及びゲート酸化膜4を選択
的に順次エツチングしてコンタクト用の開口部9を設け
る。ここで、開口部9は高集積度化のために位置合わせ
余裕を小さくしているのでp+型拡散領域6又はn1型
拡散領域7より逸脱してn型ウェル2又はp型Si基板
1の領域の表面まではみ出して形成される。
First, as shown in FIG. 1(a), a p-type silicon substrate 1
An n-type well 2 is selectively provided on the main surface of the n-type well 2, and a field oxide film 3 is selectively provided on each of the surface of the n-type well 2 and the surface of a region other than the n-type well 2 to partition an element formation region. Next, gate oxidation s4 is applied to the surface of the element formation region.
A polycrystalline silicon film is deposited on the surface including the gate oxide fl14 and selectively etched to form the gate electrode 5. Next, impurity ions are implanted in a self-aligned manner using the gate electrode 5 and field oxide film 3 as masks, and a p+ type diffusion region 6 is formed in the element formation region of the n-type well 2. An n+ type diffusion region 7 is formed in the element formation region, and source and drain regions are provided respectively to form an n-channel transistor and an n-channel transistor. Next, a silicon oxide film containing phosphorus and boron (hereinafter referred to as BPSG) is formed on the surface including the gate electrode 5.
A contact opening 9 is formed by selectively and sequentially etching the BPSG film 8 and the gate oxide film 4 on the p+ type diffusion region 6 and the n" type diffusion region 7. Since the opening 9 has a small alignment margin for high integration, it deviates from the p+ type diffusion region 6 or the n1 type diffusion region 7 and forms the area of the n-type well 2 or the p-type Si substrate 1. It is formed by protruding to the surface.

次に、第1図(b)に示すように、開口部9を含む表面
にスパッタ法によりTi膜10を堆積し、ランプ加熱法
により開口部9のSiとTiを反応させて硅化チタン膜
11を形成する。
Next, as shown in FIG. 1(b), a Ti film 10 is deposited on the surface including the opening 9 by sputtering, and the Si in the opening 9 is reacted with Ti by a lamp heating method to form a titanium silicide film 11. form.

次に、第1図(c)に示すように、n型ウェル2の素子
形成領域に形成したPチャネルトランジスタの領域上に
選択的にホトレジスト膜12を設ける。次に、ホトレジ
スト膜12及びB P S G Jl’18をマスクと
してAsイオン13をイオン注入し、硅化チタン膜11
の下のp型St基板1の表面に補助n+型拡散領域14
を形成する。
Next, as shown in FIG. 1(c), a photoresist film 12 is selectively provided on the region of the P channel transistor formed in the element formation region of the n-type well 2. Next, As ions 13 are implanted using the photoresist film 12 and the B P S G Jl' 18 as a mask, and the titanium silicide film 11 is
Auxiliary n+ type diffusion region 14 on the surface of p type St substrate 1 under
form.

次に、第1図(d)に示すように、ホトレジスト膜2を
除去し、nチャネルトランジスタの領域上に選択的にホ
トレジスト膜15を設け、ホトレジスト膜15及びBP
SG膜8をマスクとしてBイオン16をイオン注入し、
硅化チタン膜11の下のn型ウェルの表面に補助p+型
拡散領域17を形成する。ここで、Ti膜10のために
前述した2回のイオン注入時に局所的なチャージアップ
を防ぐことができ、薄いゲート酸化M4の絶縁破壊を防
止することができる。
Next, as shown in FIG. 1(d), the photoresist film 2 is removed, a photoresist film 15 is selectively provided on the n-channel transistor region, and the photoresist film 15 and BP
Using the SG film 8 as a mask, B ions 16 are implanted,
An auxiliary p + -type diffusion region 17 is formed on the surface of the n-type well under the titanium silicide film 11 . Here, local charge-up can be prevented during the above-described two ion implantations for the Ti film 10, and dielectric breakdown of the thin gate oxide M4 can be prevented.

次に、第1図(e)に示すように、NH4OH十H2o
2+H20溶液中で未反応のTi膜10を除去した後、
900℃の熱処理を行い補助n+型拡散領域14及び補
助p+型拡散領域17の活性化を行う。
Next, as shown in FIG. 1(e), NH4OH+H2o
After removing the unreacted Ti film 10 in the 2+H20 solution,
Heat treatment at 900° C. is performed to activate the auxiliary n+ type diffusion region 14 and the auxiliary p+ type diffusion region 17.

次に、第1図に(f)に示すように、開口部9を含む表
面にA、&−3i層を堆積し、これを選択的にエツチン
グしてρ“型拡散領域6及びn+型拡散領域7のそれぞ
れと電気的に接続する配線18をそれぞれ形成して半導
体装置を構成する。
Next, as shown in FIG. 1(f), an A, &-3i layer is deposited on the surface including the opening 9, and this is selectively etched to form the ρ" type diffusion region 6 and the n+ type diffusion region. Wirings 18 electrically connected to each region 7 are formed to constitute a semiconductor device.

なお、ここでTi膜10の代りにCoやNi等の高融点
金属を使用しても良い。
Note that here, instead of the Ti film 10, a high melting point metal such as Co or Ni may be used.

第2図(a)、(b)は本発明の第2の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 2(a) and 2(b) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a second embodiment of the present invention.

第2図(a)に示すように、第1図(a)(b)で説明
した第1の実施例と同じ工程によりTi膜10までを形
成し、熱処理により開口部9のSiとTiを反応させて
硅化チタン膜11を形成する。次に、全面にBイオンを
イオン注入して硅化チタン膜11及び開口部9のn型ウ
ェル2及びP型St基板1の表面にp型不純物を導入す
る。
As shown in FIG. 2(a), up to the Ti film 10 is formed by the same steps as in the first embodiment explained in FIGS. 1(a) and (b), and the Si and Ti in the opening 9 are removed by heat treatment. A titanium silicide film 11 is formed by the reaction. Next, B ions are implanted into the entire surface to introduce p-type impurities into the titanium silicide film 11, the n-type well 2 in the opening 9, and the surfaces of the P-type St substrate 1.

次に、第2図(b)に示すように、nチャネルトランジ
スタの領域上に選択的にホトレジスト膜12を設けてA
sイオンをイオン注入し、nチャネルトランジスタの領
域の開口部9のp型不純物をうち消して補助n+型拡散
領域14を形成する。以後、第1の実施例と同様に熱処
理により補助n+型拡散領域14及び補助p+型拡散領
域17の活性化を行い、CMOSトランジスタを形成す
る。第2の実施例では、Bイオンをマスクを用いずに導
入することができるなめ、第1の実施例に比べて工程が
簡略化できる効果がある。
Next, as shown in FIG. 2(b), a photoresist film 12 is selectively provided on the region of the n-channel transistor.
S ions are implanted to cancel out the p-type impurity in the opening 9 in the n-channel transistor region to form an auxiliary n + -type diffusion region 14 . Thereafter, the auxiliary n+ type diffusion region 14 and the auxiliary p+ type diffusion region 17 are activated by heat treatment in the same manner as in the first embodiment, thereby forming a CMOS transistor. In the second embodiment, since B ions can be introduced without using a mask, the process can be simplified compared to the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、高融点金属膜か全面に成
長された状態で開口部へのイオン注入を行うことができ
るので、この工程でのチャージアップによるゲート酸化
膜破壊等のESD(EJectro −St、atic
 Damage )をほぼ完全に防止でき、歩留の高い
信頼性の高い半導体装置を製造できる。また、本発明は
、コンタクト用開口部に、高融点金属硅化物膜を選択的
に形成することにより、A!2又はAffl−3i配線
とソース、ドレイン領域を構成する拡散領域との間のコ
ンタクト抵抗を低減でき、高速動作の可能な半導体装置
の製造方法を実現できる効果がある。
As explained above, in the present invention, ions can be implanted into the opening with the refractory metal film grown on the entire surface, so that ESD (Ejectro -St, atic
Damage) can be almost completely prevented, and highly reliable semiconductor devices with high yields can be manufactured. Furthermore, the present invention provides A! This has the effect that the contact resistance between the 2 or Affl-3i wiring and the diffusion regions forming the source and drain regions can be reduced, and a method of manufacturing a semiconductor device capable of high-speed operation can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)及び第2図(a)、  (b)は
、本発明の第1及び第2の実施例を説明するための工程
順に示した半導体チップの断面図である。 1・・・p型Si基板、2・・・n型ウェル、3・・・
フィールド酸化膜、4・・・ゲート酸化膜、5・・・ゲ
ート電極、6・・・p+型拡散領域、7・・・n+型拡
散領域、8・・・BPSG膜、9・・・開口部、10・
・・Ti膜、硅化チタン膜、12・・・ホトレジスト膜
、13・・・Asイオン、14・・・補助n+型拡散領
域、15・・・ホトレジスト膜、16・・・Bイオン、
17・・・補助p+型拡散領域、18・・・配線。
FIGS. 1(a) to (f) and FIGS. 2(a) and 2(b) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the first and second embodiments of the present invention. . 1...p-type Si substrate, 2...n-type well, 3...
Field oxide film, 4... Gate oxide film, 5... Gate electrode, 6... P+ type diffusion region, 7... N+ type diffusion region, 8... BPSG film, 9... Opening part , 10・
...Ti film, titanium silicide film, 12...photoresist film, 13...As ion, 14...auxiliary n+ type diffusion region, 15...photoresist film, 16...B ion,
17... Auxiliary p+ type diffusion region, 18... Wiring.

Claims (1)

【特許請求の範囲】[Claims] 一導電型シリコン基板の一主面に選択的に逆導電型の拡
散領域を設ける工程と、前記拡散領域を含む表面に設け
た絶縁膜を選択的にエッチングして前記拡散領域及び前
記拡散領域に隣接する前記シリコン基板の表面を含む開
口部を設ける工程と、前記開口部を含む表面に高融点金
属膜を堆積する工程と、熱処理により前記開口部の前記
拡散領域及び前記シリコン基板の表面に高融点金属硅化
物膜を形成する工程と、逆導電型不純物を選択的にイオ
ン注入して前記開口部の前記シリコン基板の表面に前記
拡散領域と接続する逆導電型の補助拡散領域を形成する
工程とを含むことを特徴とする半導体装置の製造方法。
A step of selectively providing a diffusion region of an opposite conductivity type on one main surface of a silicon substrate of one conductivity type, and selectively etching an insulating film provided on a surface including the diffusion region to form the diffusion region and the diffusion region. a step of providing an opening including a surface of the adjacent silicon substrate; a step of depositing a high melting point metal film on the surface including the opening; and a step of depositing a high melting point metal film on the surface including the opening, a step of forming a melting point metal silicide film; and a step of selectively ion-implanting impurities of opposite conductivity type to form an auxiliary diffusion region of opposite conductivity type connected to the diffusion region on the surface of the silicon substrate in the opening. A method for manufacturing a semiconductor device, comprising:
JP63325187A 1988-12-22 1988-12-22 Manufacture of semiconductor device Pending JPH02170436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63325187A JPH02170436A (en) 1988-12-22 1988-12-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325187A JPH02170436A (en) 1988-12-22 1988-12-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02170436A true JPH02170436A (en) 1990-07-02

Family

ID=18173982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325187A Pending JPH02170436A (en) 1988-12-22 1988-12-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02170436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368122A (en) * 1991-06-17 1992-12-21 Sharp Corp Ion implantation method of semiconductor device
JPH07326595A (en) * 1994-05-31 1995-12-12 Nec Kyushu Ltd Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213277A (en) * 1986-03-14 1987-09-19 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213277A (en) * 1986-03-14 1987-09-19 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368122A (en) * 1991-06-17 1992-12-21 Sharp Corp Ion implantation method of semiconductor device
JPH07326595A (en) * 1994-05-31 1995-12-12 Nec Kyushu Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP3249292B2 (en) Complementary MIS semiconductor device with dual gate structure
JPS58175846A (en) Manufacture of semicondutor device
JPH10223770A (en) Semiconductor device and manufacture thereof
JP3093620B2 (en) Method for manufacturing semiconductor device
JP3190858B2 (en) Semiconductor device and method of manufacturing the same
JP2833468B2 (en) Method for manufacturing semiconductor device
JPH02170436A (en) Manufacture of semiconductor device
JPH08264769A (en) Manufacture of semiconductor device
JP2927257B2 (en) Method for manufacturing semiconductor device
JPS61258447A (en) Manufacture of semiconductor device
JPH09321233A (en) Manufacturing semiconductor device
JP2010067912A (en) Semiconductor device and method of manufacturing the same
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JP3387518B2 (en) Semiconductor device
JPH07273197A (en) Semiconductor device and its fabrication
JP3311125B2 (en) Method for manufacturing semiconductor device
JPH07161826A (en) Manufacture of semiconductor device
JPH07221300A (en) Manufacture of semiconductor device
JP2709714B2 (en) Semiconductor device and manufacturing method thereof
JP2001110912A (en) Manufacturing method of semiconductor device
JPS60219771A (en) Manufacture of mos type semiconductor device
JPS62147777A (en) Manufacture of mos field effect transistor
JPH0666331B2 (en) Method for manufacturing semiconductor device
JPH0427166A (en) Manufacture of semiconductor nonvolatile memory
JP2000332130A (en) Manufacture of semiconductor integrated circuit device