JPH02169031A - Coated surface for self-cleaning - Google Patents
Coated surface for self-cleaningInfo
- Publication number
- JPH02169031A JPH02169031A JP63324086A JP32408688A JPH02169031A JP H02169031 A JPH02169031 A JP H02169031A JP 63324086 A JP63324086 A JP 63324086A JP 32408688 A JP32408688 A JP 32408688A JP H02169031 A JPH02169031 A JP H02169031A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- self
- coated surface
- fiber layer
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 10
- 239000000835 fiber Substances 0.000 claims abstract description 22
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 10
- 239000012790 adhesive layer Substances 0.000 claims abstract description 5
- 239000002131 composite material Substances 0.000 claims description 18
- 230000003197 catalytic effect Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 37
- 239000003054 catalyst Substances 0.000 description 19
- 240000008415 Lactuca sativa Species 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 235000012045 salad Nutrition 0.000 description 12
- 239000011247 coating layer Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000010411 cooking Methods 0.000 description 6
- 239000012784 inorganic fiber Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 230000010718 Oxidation Activity Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011973 solid acid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910016978 MnOx Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002320 enamel (paints) Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- -1 oil Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、オーブン等の加熱調理器の油汚れを、分解す
る触媒作用を有するセルフクリーニング用被覆面を提供
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a self-cleaning coated surface that has a catalytic action to decompose oil stains on cooking appliances such as ovens.
従来の技術
従来、このような調理器の壁面に油脂等が付着した場合
、水洗して除去することも、また炭化して固着したもの
を、機械的に落とすことも困難であった。BACKGROUND OF THE INVENTION Conventionally, when fats and oils adhere to the walls of cooking appliances, it has been difficult to remove them by washing with water, or to mechanically remove the charred and fixed substances.
このような不都合を解消するためにlηれが付着する表
面を触媒作用を有する被膜で被覆し油分を分解すること
が試みられ既に実用化されている。In order to overcome these inconveniences, an attempt has been made to coat the surface to which the leta adheres with a film having a catalytic action to decompose the oil, and this has already been put to practical use.
これは触媒をホウロウフリントや塗料のような結合剤に
分散させ、これを塗布し焼付硬化などにより器壁表面に
被膜を形成させたものであり、セルフクリーニング被覆
面と称して各種の箱型調理器の加熱室壁面に適用されて
いる。This is made by dispersing the catalyst in a binder such as enameled flint or paint, applying this and baking it to harden it to form a film on the surface of the container. It is applied to the wall of the heating chamber of the device.
例えば、無機のリン酸塩等の無機耐熱ポリマーをバイン
ダーとし、この中に固体酸や金属酸化物を分散した組成
物より得られる被覆層を調理室内面に形成したり、ある
いはポウロウの中に遷移金属酸化物を入れ、ホウロウ質
の被覆層を調理室内面に形成するなどの技術があった。For example, a coating layer obtained from a composition in which a solid acid or metal oxide is dispersed in a binder made of an inorganic heat-resistant polymer such as an inorganic phosphate may be formed on the inside of the cooking chamber, or a coating layer may be formed inside the cooking chamber. Techniques included adding metal oxides and forming an enamel coating on the inside of the cooking chamber.
この場合、固体酸や遷移金属酸化物は油類をある温度以
上で酸化分解する触媒であり、そのような触媒作用をも
つ被覆層を形成することにより調理室内面に付着した油
汚れをなくそうとするものである。また、触媒を使わす
P、す分解だけで油汚れをなくす方法もとられているが
、この場合、温度約soo’cで1〜2時間が必要とな
る。In this case, solid acids and transition metal oxides are catalysts that oxidize and decompose oils above a certain temperature, and by forming a coating layer with such catalytic action, it is possible to eliminate oil stains that adhere to the inside of the cooking chamber. That is. There is also a method of eliminating oil stains by simply decomposing P, using a catalyst, but in this case, it takes 1 to 2 hours at a temperature of about soo'C.
発明が解決しようとする課題 しかし、従来の技術は、以下の点で課題があった。Problems that the invention aims to solve However, the conventional technology has the following problems.
油の基本的な構造は高級脂肪酸のトリグリセリドである
が、前記の固体酸や遷移全屈酸化物は、450°C以上
に温度を上げないと油を分解してしまうことはない、さ
らに、このような触媒をバインダーやホウロウ中に分散
することで触媒表面が覆われてしまい露出面積が小さく
なり、油と触媒表面との接触面積が小さくなり、油を分
解しに(くなる。かつ、酸素の拡散が悪くなり、活性低
下の要因になる。また、油自身も450°C以上500
’C位になれば、熱分解してしまうので被覆層の効果が
不明瞭になる。被覆層温度を約400’Cに保持すると
油は炭化が進行し、その結果被覆層は、表面をタール状
のもので覆われてしまう。The basic structure of oil is triglyceride of higher fatty acids, but the solid acids and transition total oxides mentioned above will not decompose the oil unless the temperature is raised above 450°C. By dispersing such a catalyst in a binder or enamel, the surface of the catalyst is covered and the exposed area becomes smaller, which reduces the contact area between the oil and the catalyst surface, which makes it difficult for the oil to decompose. Diffusion of the oil becomes poor, causing a decrease in activity.Also, the oil itself is heated to temperatures above 450°C and 500°C.
If it reaches the 'C' position, it will thermally decompose and the effect of the coating layer will become unclear. When the temperature of the coating layer is maintained at about 400'C, carbonization of the oil progresses, and as a result, the surface of the coating layer is covered with tar-like material.
ホウロウ質の被覆層を得るには、800’C程度の高温
が必要であり、このような高温では金属酸化物の表面積
が小さくなり活性も低下する。In order to obtain an enamellic coating layer, a high temperature of about 800'C is required, and at such a high temperature the surface area of the metal oxide decreases and its activity decreases.
以上のように、従来の被覆層については、活性が低く、
油汚れを400℃以下で完全に分解ができないという課
題があり、この原因は触媒自身の活性が低いことと、さ
らに、触媒表面の露出が少なく、油と触媒表面との接触
部分が小さくなること、また、被膜への酸素の拡散が抑
制されるためであ本発明は、上記課題を解決し、山軸的
低温で油汚れを分解するセルフクリーニング用′llj
、覆面を提供するものである。As mentioned above, conventional coating layers have low activity and
There is a problem that oil stains cannot be completely decomposed at temperatures below 400℃, and this is due to the low activity of the catalyst itself, and also because the catalyst surface is less exposed and the contact area between the oil and the catalyst surface is smaller. In addition, since the diffusion of oxygen into the film is suppressed, the present invention solves the above problems and is a self-cleaning product that decomposes oil stains at mountain-axis low temperatures.
, which provides a mask.
課題を解決するための手段
上記課題を解決するために本発明は、支持物と接着層と
繊維層とからなり、前記繊維層は支持物に接着層により
接着されており、SiO□、Alg Os 、ZrO□
のうち、いずれか少なくとも一種の酸化物を主成分とす
る繊維状多孔体にCe、Cu、Mnの複合酸化物を担持
してなるものであり、前記複合酸化物のCe、Cu、M
nの比率が、モル比でCe:Cu:Mn=1:X:IX
(但し、O<X<1)である触媒作用を持つ被覆面を提
供する。Means for Solving the Problems In order to solve the above problems, the present invention consists of a support, an adhesive layer, and a fiber layer, the fiber layer is adhered to the support by the adhesive layer, and the fiber layer is made of SiO□, Alg Os. , ZrO□
A composite oxide of Ce, Cu, and Mn is supported on a fibrous porous body containing at least one of the oxides as a main component, and the composite oxide of Ce, Cu, and Mn
The molar ratio of n is Ce:Cu:Mn=1:X:IX
(However, O<X<1) A coated surface having a catalytic action is provided.
作用
上記手段によるセルフクリーニング用?I1.rIi面
の作用について説明する1本発明で目的としている油汚
れの分解では、触媒の表面積を太き(することと酸素の
供給を多くすることが必要となる0本発明は、無4!!
!繊維を用いることにより高い空隙率をもつ被覆層を形
成して、酸素が被覆内部へ拡散し易く、かつ表面積も従
来方式の被覆に比べてはるかに大きくなるようにした。Action For self-cleaning by the above means? I1. Explaining the action of the rIi surface 1 In the decomposition of oil stains, which is the objective of the present invention, it is necessary to increase the surface area of the catalyst and increase the supply of oxygen.
! The use of fibers creates a coating layer with high porosity, allowing oxygen to easily diffuse into the coating and providing a much larger surface area than conventional coatings.
これにより、目的の反応はより有利に進行し易くなる。This makes it easier for the desired reaction to proceed more advantageously.
無機繊維を用いたセラミンクペーパーと称するものは、
密度にして0015〜0.69g/ctl程度、空隙率
にして約70〜90%程度である。このような高い空隙
率を持つ繊維上に触媒を担持させることにより、酸素の
供給が改善され、触媒活性を十分に発揮させることがで
きる。The so-called ceramic paper made of inorganic fibers is
The density is about 0.015 to 0.69 g/ctl, and the porosity is about 70 to 90%. By supporting the catalyst on fibers having such a high porosity, oxygen supply is improved and the catalyst activity can be fully exhibited.
以上、無機繊維について、述べてきたが担持する触媒の
活性について以下に述べると、本発明の触媒であるCe
、Cu、Mnの複合酸化物でCe、Cu、Mnの比率が
、モル比でCe:Cu:Mn=I :X: 1−X (
但し、0<X<+、)である複合酸化物は、単一元素あ
るいは2種以上の元素の複合酸化物に比べ炭化水素の酸
化にダJして高い活性を示す。これは、CeとCu、M
nの3元素系酸化物においては酸化物の表面における元
素が多くの原子価をとるからであり(例えばMnは3価
、4価、Cuは1価、2価など)、つまりは弔−あるい
は2成分系では見られない異元素間での原子価制御が行
われ、反応に関してより適した表面を作るからである。The inorganic fibers have been described above, but the activity of the supported catalyst will be described below.
, Cu, and Mn composite oxide, the ratio of Ce, Cu, and Mn is as follows in molar ratio: Ce:Cu:Mn=I:X: 1-X (
However, a composite oxide in which 0<X<+, ) exhibits higher activity in oxidizing hydrocarbons than a composite oxide of a single element or two or more elements. This is Ce, Cu, M
This is because in the ternary oxide of n, the elements on the surface of the oxide have many valences (for example, Mn is trivalent and tetravalent, Cu is monovalent and divalent, etc.), which means that This is because valence control between different elements, which cannot be seen in two-component systems, is performed, creating a surface more suitable for reactions.
このことはXPS (X線光電子分光装;η)で認めら
れる。このような活性の高い触媒を、無機繊維に担持す
ることによって、さらに酸化分解活性が向上し、従来に
ない低温で油分等を分解する被覆面が得られるのである
。This is confirmed by XPS (X-ray photoelectron spectroscopy; η). By supporting such a highly active catalyst on inorganic fibers, the oxidative decomposition activity is further improved, and a coated surface that decomposes oil and the like at an unprecedented low temperature can be obtained.
実施例 以下本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.
本発明に被rR層のテストピースを作り、加熱条件下で
、サラダオイルの酸化分解テストを実施した。A test piece of the rR layer was prepared according to the present invention, and a salad oil oxidation decomposition test was conducted under heating conditions.
5US304を支持物とし、接着剤として、無機耐熱性
バインダー(例えば、住友化学社製スミセラム(S−1
8c))を用い、pl繊維としてシリカ・アルミナ繊維
(SiOz :Alz O□−53: 47、平均繊
維径2.8μ銅、空隙率92%、厚み1.0柵)を用い
た。テストピースサイズは、50 X 50 wsとし
た。支持物上に、スプレーガン(デビルビス製スプレー
ガン、ノズル口径1.4Mφ、空気圧4〜4.5kg/
cIi)で、スミセラム(S−18C)を0.020
g /c己塗布し、前記シリカ・アルミナ繊維を、加圧
接着し、110°Cで30分加熱硬化した後、Ce、C
u、Mnの硝酸塩の混合水溶液(Ce :Cu :Mn
= 1.0: 0.3: 0.7mat/I)をス
プレーガン(デビルビス製スプレーガン、ノズル口径1
.4Mφ、空気圧1.5〜2kg/c+i)で、0.5
0g/cd塗布し、450’Cで30分焼成し作成した
。テストピースの温度分布、300±10゛Cにおいて
、サラダオイルを、110l11/cd滴下し、60分
間放置すると、サラダオイルは、完全に消失した。これ
に対して、M n Ox 、Cu OX 、を含む被覆
層では350±lO°Cでも完全に焼切れなかった。ま
た、Ce、Cu、Mnの複合酸化物(Ce : Cu
: Mn= 1.0: 0.3: 0.7mol/
1 )のテストピースについては、サラダオイルによる
テストを何度繰り返しても完全に消失した。第1図に、
本発明のセルフクリーニング用被覆面の断面構成の概念
図を示した。5US304 as a support and an inorganic heat-resistant binder (for example, Sumiceram (S-1 manufactured by Sumitomo Chemical Co., Ltd.) as an adhesive.
8c)), and silica-alumina fibers (SiOz:AlzO□-53: 47, average fiber diameter 2.8μ copper, porosity 92%, thickness 1.0) were used as the PL fibers. The test piece size was 50 x 50 ws. Place a spray gun (DeVilbiss spray gun, nozzle diameter 1.4 Mφ, air pressure 4 to 4.5 kg/
cIi), Sumiceram (S-18C) at 0.020
g/c self-coated, the silica/alumina fibers were bonded under pressure, and after heating and curing at 110°C for 30 minutes, Ce, C
Mixed aqueous solution of u, Mn nitrates (Ce:Cu:Mn
= 1.0: 0.3: 0.7mat/I) using a spray gun (DeVilbiss spray gun, nozzle diameter 1
.. 4Mφ, air pressure 1.5-2kg/c+i), 0.5
It was prepared by applying 0g/cd and baking at 450'C for 30 minutes. At a temperature distribution of 300±10°C on the test piece, 110 l11/cd of salad oil was added dropwise to the test piece, and when it was left to stand for 60 minutes, the salad oil completely disappeared. On the other hand, the coating layer containing MnOx and CuOX was not completely burnt out even at 350±1O°C. In addition, a composite oxide of Ce, Cu, and Mn (Ce: Cu
: Mn= 1.0: 0.3: 0.7 mol/
Regarding the test piece 1), no matter how many times the test with salad oil was repeated, the problem completely disappeared. In Figure 1,
A conceptual diagram of the cross-sectional structure of the self-cleaning coating surface of the present invention is shown.
次に、触媒に灼する酸素の供給量の効果について検討し
た0本発明の触媒であるCe、Cu、Mnの複合酸化物
のサラダオイルの酸化活性をDTAにより測定した。測
定は、市販のサラダオイルと酸化物の重量比を2.5:
1.0にして十分に混合し、石英セルに入れてDT
Aカーブを得た。第2図にCe、Cu、Mnの比率(C
e : Cu : Mn= 1.0: 0.3:
0.7)の複合酸化物を酸素雰囲気中と窒素雲間気中で
測定した結果を示した。図から分かるように酸素の供給
量が多いと、より低温で油を焼切ることができ、触媒の
活性を高めることができる。Next, the effect of the amount of oxygen supplied to the catalyst was investigated.The oxidation activity of the salad oil of the composite oxide of Ce, Cu, and Mn, which is the catalyst of the present invention, was measured by DTA. The measurement was carried out using a weight ratio of commercially available salad oil and oxide of 2.5:
1.0, mix thoroughly, put into a quartz cell, and transfer to DT.
I got an A curve. Figure 2 shows the ratio of Ce, Cu, and Mn (C
e: Cu: Mn= 1.0: 0.3:
The results of measuring the composite oxide of 0.7) in an oxygen atmosphere and in a nitrogen cloud atmosphere are shown. As can be seen from the figure, if the amount of oxygen supplied is large, the oil can be burned off at a lower temperature and the activity of the catalyst can be increased.
次に、シリカ・アルミナ繊維(SiOz、A 1t O
x =53+47、平均繊維径2.8μm、厚み1.0
in)の空隙率を68%から94%まで変えて、サラダ
オイルによる焼切りテストを行ったところ、第1表のよ
うになった。Next, silica-alumina fiber (SiOz, A 1t O
x = 53 + 47, average fiber diameter 2.8 μm, thickness 1.0
When the porosity of in) was changed from 68% to 94% and a burn-off test with salad oil was conducted, the results were as shown in Table 1.
第1表
第1表より、従来のセルフクリーニングに比べて低温で
油の焼切りが可能であることが分かる。空隙率にして8
5%程度以上あれば300°Cという低〆昌で油の焼切
りが可能である。Table 1 From Table 1, it can be seen that oil can be burned off at a lower temperature than conventional self-cleaning. 8 in terms of porosity
If it is about 5% or more, it is possible to burn off the oil at a low temperature of 300°C.
また、シリカ・アルミナ繊維の代わりに、ジルコニア繊
維(Z r Ox 、 Y! 01 =89 : 6、
平均繊維径5.01tra 、 qみ0.5m、空隙率
84%)を用いて行った。5US304を支持物とし、
接着剤として、住友化学社製スミセラム(S−18c)
を用い、ジルコニア繊維を、加圧接着し、+10°Cで
30分間加熱硬化した後、Ce、 Cu、 M nの硝
酸塩の混合水:6液(Ce : Cu :Mn−1,0
: 0.3: 0.?mol /I)を塗布し焼成
し、サラダオイルの焼切実験を行ったところ300’C
160minで完全に消失した。Also, instead of silica/alumina fiber, zirconia fiber (Z r Ox , Y! 01 = 89: 6,
The average fiber diameter was 5.01 tra, the q diameter was 0.5 m, and the porosity was 84%. 5US304 as a support,
As an adhesive, Sumiceram (S-18c) manufactured by Sumitomo Chemical Co., Ltd.
After bonding zirconia fibers under pressure and curing by heating at +10°C for 30 minutes, a mixture of Ce, Cu, and Mn nitrates in water: 6 liquid (Ce: Cu: Mn-1,0
: 0.3: 0. ? mol/I) was applied and baked, and a salad oil burn-off experiment was conducted at 300'C.
It completely disappeared after 160 min.
接着剤としてシリカ・アルミナ系のスミセラムを用いた
が、Cc、Cu、Mnの複合酸化物と反応しないポリボ
ロシロキサンポリマーやポリチタノシロキサンポリマー
なども使える。Although silica-alumina-based Sumiceram was used as the adhesive, polyborosiloxane polymers or polytitanosiloxane polymers that do not react with composite oxides of Cc, Cu, and Mn can also be used.
以上、無機繊維に触媒を担持した場合の効果について述
べたが、次にCe、Cu、Mnの複合酸化物の活性につ
いて述べる。The effect of supporting a catalyst on inorganic fibers has been described above, and next, the activity of a composite oxide of Ce, Cu, and Mn will be described.
第2表にBET法による表面禎を示した。比較のために
Ce、Cu、Mnの単一酸化物についても示した。焼成
は、450’Cで行った。Table 2 shows the surface roughness determined by the BET method. For comparison, single oxides of Ce, Cu, and Mn are also shown. Firing was performed at 450'C.
(1りT次&)
第2表
全体的に表面積が、約70−120rrf/gと大きい
のは、焼成温度が450°Cであり、酸化物としては低
温にしているからである。また、単一酸化物に比べ複合
酸化物が表面積が大である。これは、CeO2の効果に
よるものと考えられる。実際にCe / CuOxid
eやCe/Mn 0xideでは、それぞれ第2表中
のCu O,M n z Oxの表面積に比べ大であっ
た。第2表でCeCuo、s Mno、s Oyの表面
積が大きいことを示したがCe 、 Cu 、 M n
?1合酸化物(モル比率 Ce、Cu、Mn= ]、
、O: X :1−X)(ただし、O<X<I)の表面
積のxへの依存性を第3図に示した。第3図から表面積
のピークは、X=0.3付近にあることが分かった。(1st order &) The reason why the overall surface area in Table 2 is as large as about 70-120rrf/g is because the firing temperature is 450°C, which is a low temperature for an oxide. Moreover, a composite oxide has a larger surface area than a single oxide. This is considered to be due to the effect of CeO2. Actually Ce/CuOxid
The surface areas of e and Ce/Mn oxide were larger than those of Cu 2 O and M nz Ox in Table 2, respectively. Table 2 shows that CeCuo, s Mno, and s Oy have large surface areas, but Ce, Cu, M n
? 1 composite oxide (molar ratio Ce, Cu, Mn= ],
, O: X : 1-X) (where O<X<I), the dependence of the surface area on x is shown in FIG. It was found from FIG. 3 that the surface area peak was around X=0.3.
上記したCe、Cu、Mnの比率(Ce+Cu+Mr+
= 1.0: X : 1−X)の複合酸化物のサラダ
オイルの酸化活性をDTAにより測定した。θII定は
、市販のサラダオイルと酸化物の重量比を2.5:
1.0にして十分に混合し、石英セルに入れてD T
Aカーブを得た。第4図に第2表中に示された4種mの
酸化物のTGカーブを示した。第4図では、型組減少速
度が大で、より低温側で重置減少が完了してしまうもの
が酸化活性が高いと言える。従って、CeCuo、s
Mno、s Oyが活性が高いことは明らかであり酸化
触奴として有効である。第5図ば、Ce、Cu、Mnの
比率(Ce :Cu :Mn= 1.0+X:1−X(
但し、(1<X<1)の複合酸化物のTGカーブのXへ
の依存性を示している。X−03が、活性が最も高いよ
うである。このことは表面積のXへの依存性と対応して
いると考えられる。第4図、第5図よりCe、Cu、M
nの複合酸化物の活性は、粉末のみで、400°Cでサ
ラダオイルを分解する性能があることが分かるが、無機
繊維に担持することSこより300’Cでサラダオイル
を分解することができるようになる。The above ratio of Ce, Cu, and Mn (Ce+Cu+Mr+
= 1.0: X: 1-X) The oxidation activity of the salad oil of the composite oxide was measured by DTA. The θII constant is determined by setting the weight ratio of commercially available salad oil and oxide to 2.5:
1.0, mix thoroughly and place in a quartz cell.
I got an A curve. FIG. 4 shows the TG curves of the four types of oxides shown in Table 2. In FIG. 4, it can be said that the oxidation activity is high if the mold reduction rate is high and the overlapping reduction is completed at a lower temperature. Therefore, CeCuo,s
It is clear that Mno and sOy have high activity and are effective as oxidizing agents. Figure 5 shows the ratio of Ce, Cu, and Mn (Ce:Cu:Mn=1.0+X:1-X(
However, the dependence of the TG curve on X of the composite oxide (1<X<1) is shown. X-03 appears to be the most active. This is considered to correspond to the dependence of surface area on X. From Figures 4 and 5, Ce, Cu, M
Regarding the activity of the composite oxide of n, it can be seen that the powder alone has the ability to decompose salad oil at 400°C, but when it is supported on inorganic fibers, salad oil can be decomposed at 300°C. It becomes like this.
発明の効果
以上、説明したように本発明のセルフクリーニング用被
覆面は、無機繊維を用いることにより高い空隙率をもつ
被覆層を形成することができ、酸素をより多く供給する
ことができ、サラダオイルのようなトリグリセリドに対
する酸化分解活性が高く、油汚れが発生する機器、例え
ば藷1理器の庫内壁面に通用すれば、300’C位の温
度に昇温することにより、油汚れをなくすことができる
。これによって、調理器を常にクリーンな状態で使用す
ることが可能である。Effects of the Invention As explained above, the self-cleaning coating surface of the present invention can form a coating layer with a high porosity by using inorganic fibers, and can supply more oxygen. It has a high oxidative decomposition activity for triglycerides such as oil, and if it can be used on the internal walls of equipment that generates oil stains, such as industrial equipment, it will eliminate oil stains by raising the temperature to about 300'C. be able to. This allows the cooker to be used in a clean state at all times.
また、300°C位で油汚れの分解が可能なので、調理
器の設計上、断熱構造の軽減化(触媒を使わなければ5
00’C位の熱分解温度がd・要ンやヒータの容置を大
きくしなくて済むので省エネルギーにもなる。In addition, since oil stains can be decomposed at around 300°C, it is possible to reduce the heat insulation structure in the design of the cooker (if a catalyst is not used,
Since the thermal decomposition temperature is around 00'C, there is no need to increase the size of the container or heater, which also results in energy savings.
第1図は本発明の一実施例におけるセルフクリーニング
用被覆面の断面図、第2図、第3図、第4図、第5図は
それぞれ同特性図である。
1・・・・・・繊維層、2・・・・・・接着層、3・・
・・・・支持物、4・・・・・・複合酸化物。
代理人の氏名 弁理士 粟野重孝 はか1名Cつ
憾
続
閘
(秋ン
!
は
第
図
$F温・′V′グーンFIG. 1 is a sectional view of a self-cleaning coated surface according to an embodiment of the present invention, and FIGS. 2, 3, 4, and 5 are characteristic diagrams of the same. 1...Fiber layer, 2...Adhesive layer, 3...
...Support, 4...Composite oxide. Name of agent: Patent attorney Shigetaka Awano
Claims (1)
層により接着されており、SiO_2、Al_2O_3
、ZrO_2のうち、いずれか少なくとも一種の酸化物
を主成分とする繊維状多孔体に、Ce、Cu、Mnの複
合酸化物を担持してなるものであり、前記複合酸化物の
Ce、Cu、Mnの比率が、モル比でCe:Cu:Mn
=1:X:1−X(但し、0<x1)である触媒作用を
持つセルフクリーニング用被覆面。It consists of a support and a fiber layer, the fiber layer is adhered to the support by an adhesive layer, and SiO_2, Al_2O_3
, ZrO_2, a composite oxide of Ce, Cu, and Mn is supported on a fibrous porous body containing at least one kind of oxide as a main component, and the composite oxide Ce, Cu, The ratio of Mn is Ce:Cu:Mn in molar ratio
=1:X:1-X (however, 0<x1) A self-cleaning coated surface having a catalytic action.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63324086A JPH088986B2 (en) | 1988-12-22 | 1988-12-22 | Self-cleaning coated surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63324086A JPH088986B2 (en) | 1988-12-22 | 1988-12-22 | Self-cleaning coated surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02169031A true JPH02169031A (en) | 1990-06-29 |
JPH088986B2 JPH088986B2 (en) | 1996-01-31 |
Family
ID=18161997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63324086A Expired - Lifetime JPH088986B2 (en) | 1988-12-22 | 1988-12-22 | Self-cleaning coated surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH088986B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004205146B2 (en) * | 2003-08-19 | 2006-09-28 | Garth Australia Pty Ltd | Self Cleaning Barbecue Roasting Hood |
-
1988
- 1988-12-22 JP JP63324086A patent/JPH088986B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004205146B2 (en) * | 2003-08-19 | 2006-09-28 | Garth Australia Pty Ltd | Self Cleaning Barbecue Roasting Hood |
Also Published As
Publication number | Publication date |
---|---|
JPH088986B2 (en) | 1996-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6125318B2 (en) | Thermal spray composition and thermal spray coating | |
JPS5919052B2 (en) | frit composition | |
JPH02169031A (en) | Coated surface for self-cleaning | |
JPH02169037A (en) | Coated surface | |
JPH0338254A (en) | Heat-resisting film | |
JPS5836987A (en) | Heat-resistant composite material | |
JPH0399125A (en) | Cooking utensil | |
JPH02183728A (en) | Soot purifying catalyst and cooker | |
JPH0132883B2 (en) | ||
JPS63303049A (en) | Fiber-reinforced vitreous thermal spraying material | |
JPH02225918A (en) | Heat-cooking apparatus | |
JPH0343476A (en) | Heat resistant coating film material and cooking utensil provided with the same material | |
JP2833113B2 (en) | Wall material for heating cooker | |
JPH01167379A (en) | Self-cleaning film material | |
JPH0698308B2 (en) | Cooking device | |
JPH029451A (en) | Coated layer for self-cleaning | |
JPH01304049A (en) | Self-cleaning coating surface | |
JPH0147219B2 (en) | ||
JPS62273048A (en) | Catalyst body for combustion device | |
JPS5836988A (en) | Manufacture of heat-resistant composite material | |
CA1150615A (en) | Apparatus for burning liquid fuel equipped with heating-type fuel vaporizer | |
JPH01304047A (en) | Coating layer and preparation thereof | |
JPH0269575A (en) | Cured paint | |
JPS6351194B2 (en) | ||
JPH0269574A (en) | Coated surface for self-cleaning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080131 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090131 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |