JPH02169037A - Coated surface - Google Patents

Coated surface

Info

Publication number
JPH02169037A
JPH02169037A JP63324087A JP32408788A JPH02169037A JP H02169037 A JPH02169037 A JP H02169037A JP 63324087 A JP63324087 A JP 63324087A JP 32408788 A JP32408788 A JP 32408788A JP H02169037 A JPH02169037 A JP H02169037A
Authority
JP
Japan
Prior art keywords
layer
oil
metal
oxide
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63324087A
Other languages
Japanese (ja)
Other versions
JPH0813336B2 (en
Inventor
Mamoru Isoya
守 礒谷
Yasunori Kaneko
金子 康典
Akio Fukuda
明雄 福田
Makiko Waki
脇 真起子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63324087A priority Critical patent/JPH0813336B2/en
Publication of JPH02169037A publication Critical patent/JPH02169037A/en
Publication of JPH0813336B2 publication Critical patent/JPH0813336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a hardly scratchable coated surface decomposing oil by holding a fiber layer, which is formed by supporting a multiple oxide on a fibrous porous body, between a support and a reticular metal layer, and also supporting the same kind of multiple oxide on the surface of the metal layer. CONSTITUTION:A fiber layer 2 is held between a support 1 and a reticular metal layer 3 and a multiple oxide contg. Ce, Cu and Mn 1:X:(1-X) (0<X<1) molar ratio of Ce:Cu:Mn is supported on a fibrous porous body based on oxides such as SiO2 and Al2O3 to form the fiber layer 2. A metal oxide layer of the same multiple oxide is formed on the surface of the metal layer 3. Since the resulting coating layer has high void volume, a hardly scratchable coated surface for self-cleaning capable of feeding much oxygen and having high activity to the decomposition of oil is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、オーブン等の加熱調理器の油汚れを、分解す
る触媒作用を有する被覆面を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a coated surface that has a catalytic action to decompose oil stains in cooking appliances such as ovens.

従来の技術 従来、このような調理器の壁面に油脂等が付着した場合
、水洗して除去することも、また炭化して固着したもの
を、i械的に落とすことも困難であった。
BACKGROUND ART Conventionally, when fats and oils adhered to the walls of such cooking appliances, it was difficult to remove them by washing with water, or to remove them mechanically if they were carbonized and stuck.

このような不都合を解消するためにlηれが付着する表
面を触媒作用を有する被膜で?]ffし油分を分解する
ことが試みられ既に実用化されている。
In order to eliminate this inconvenience, the surface to which leta will adhere is coated with a coating that has a catalytic effect. ]ff to decompose oil has already been attempted and put to practical use.

これは触媒をホウロウフリントや塗料のような結合剤に
分散させ、これを塗布し焼付硬化などにより器壁表面に
被膜を形成させたものであり、各種の箱型調理器の加熱
室壁面に適用されている。
This is a method in which a catalyst is dispersed in a binder such as enameled flint or paint, which is applied and hardened by baking to form a film on the surface of the cooking chamber.It is applied to the heating chamber walls of various box-shaped cooking devices. has been done.

例えば、無機のリン酸塩等の無機耐熱ポリマーをバイン
ダーとし、この中に固体酸や金属酸化物を分散した組成
物より得られる被rI層を調理室内面に形成したり、あ
るいはホウロウの中に遷移金属酸化物を入れ、ホウロウ
室の被覆層を調理室内面に形成するなどの技術があった
。この場合、固体酸や遷移金属酸化物は油類をある温度
以上で酸化分解する触媒であり、そのような触媒作用を
もつ被覆層を形成することにより調理室内面に付着した
油汚れをなくそうとするものである。また、触媒を使わ
ず熱分解だけで油汚れをなくす方法もとられているが、
この場合、温度約500“Cで1〜2時間が必要となる
For example, an inorganic heat-resistant polymer such as an inorganic phosphate is used as a binder, and a layer obtained from a composition in which a solid acid or a metal oxide is dispersed is formed on the inside of the cooking chamber, or in enamel. There were techniques such as adding transition metal oxides to form a coating layer on the inside of the cooking chamber. In this case, solid acids and transition metal oxides are catalysts that oxidize and decompose oils above a certain temperature, and by forming a coating layer with such catalytic action, it is possible to eliminate oil stains that adhere to the inside of the cooking chamber. That is. There is also a method of eliminating oil stains using only thermal decomposition without using a catalyst.
In this case, 1 to 2 hours at a temperature of about 500"C is required.

発明が解決しようとする課題 しかし、従来の技術は、以下の点で課題があった。Problems that the invention aims to solve However, the conventional technology has the following problems.

油の基本的な構造は高級脂肪酸のトリグリセリドである
が、前記の固体酸や遷移金属酸化物は、450℃以上に
温度を上げないと油を分解してしまうことはない、さら
に、このような触媒をバインダーやホウロウ中に分散す
ることで触媒表面が覆われてしまい露出面積が小さくな
り、油と触媒表面との接触面積が小さくなり、油を分解
しにくくなる。かつ、酸素の拡散が悪くなり、活性低下
の要因になる。また、油自身も450°C以上500℃
位になれば、熱分解してしまうので被覆層の効果が不明
瞭になる。被覆層温度を約400’Cに保持すると油は
炭化が進行し、その結果被覆層は、表面をタール状のも
ので覆われてしまう。
The basic structure of oil is triglyceride of higher fatty acids, but the solid acids and transition metal oxides mentioned above will not decompose the oil unless the temperature is raised above 450°C. By dispersing the catalyst in a binder or enamel, the catalyst surface is covered and the exposed area becomes smaller, which reduces the contact area between the oil and the catalyst surface, making it difficult to decompose the oil. In addition, oxygen diffusion becomes poor, which causes a decrease in activity. Also, the temperature of the oil itself is 450°C or higher and 500°C.
If it reaches a certain level, it will thermally decompose, making the effect of the coating layer unclear. When the temperature of the coating layer is maintained at about 400'C, carbonization of the oil progresses, and as a result, the surface of the coating layer is covered with tar-like material.

ホウロウ質の被覆層を得るには、800°C程度の高温
が必要であり、このような高温では金属酸化物の表面積
が小さくなり活性も低下する。
In order to obtain an enamellic coating layer, a high temperature of about 800° C. is required, and at such a high temperature, the surface area of the metal oxide decreases and its activity decreases.

以上のように、従来の被覆層については、活性が低く、
油汚れを400’C以下で完全に分解ができないという
課題があり、この原因は触媒自身の活性が低いことと、
さらに、触媒表面の露出が少なく、油と触媒表面との接
触部分が小さくなること、また、被膜への酸素の拡散が
抑制されるためであった。
As mentioned above, conventional coating layers have low activity and
There is a problem that oil stains cannot be completely decomposed at temperatures below 400'C, and this is due to the low activity of the catalyst itself.
Furthermore, this was because the catalyst surface was less exposed, the contact area between the oil and the catalyst surface became smaller, and the diffusion of oxygen into the coating was suppressed.

また、このような被覆面をオーブン等の加熱調理器の壁
面に適用した場合、皿などの調理用器などが接触する可
能性が考えられる時には、表面が傷付きにくいことが必
要とされる。
Furthermore, when such a coated surface is applied to the wall surface of a heating cooking device such as an oven, the surface needs to be hard to be scratched when there is a possibility that cooking utensils such as plates may come into contact with the wall surface.

本発明は、上記課題を解決し、油汚れを分解する被覆面
を促供するものである。
The present invention solves the above problems and provides a coated surface that dissolves oil stains.

L?!題を解決するだめの手段 上記課題を解決するために本発明は、支持物と繊維層と
網目状金属層からなり、前記繊維層は、支持物と網目状
金属層により決着されておりSing 、Aft 03
 、Zr0zのうち、いずれか一種以上の酸化物を主成
分とする繊維状多孔体にCe、Cu、Mnの複合酸化物
を担持してなるものであり、前記複合酸化物のCe、C
u、Mnの比率が、モル比でCe :Cu :Mn=!
 :X:1−X(但し、0<x<1)である被覆面で前
記絹目状金属層の表面に金属酸化物層を設け、前記金属
酸化物層にCe、Cu、Mnの比率が、モル比でCe:
Cu:Mn=1:X:1−X(但し、0<X<1)であ
る複合酸化物を担持してなるものである。
L? ! Means for Solving the Problems In order to solve the above problems, the present invention comprises a support, a fibrous layer and a mesh metal layer, the fiber layer being bound by the support and the mesh metal layer. After 03
, Zr0z, a composite oxide of Ce, Cu, and Mn is supported on a fibrous porous body containing any one or more of the oxides as a main component, and the composite oxide Ce, C
The molar ratio of u and Mn is Ce:Cu:Mn=!
:X:1-X (however, 0<x<1) A metal oxide layer is provided on the surface of the silky metal layer, and the metal oxide layer has a ratio of Ce, Cu, and Mn. , Ce in molar ratio:
It supports a composite oxide in which Cu:Mn=1:X:1-X (however, 0<X<1).

作用 」二記手段による被覆面の作用について説明する。action ” The action of the coated surface by means 2 will be explained.

本発明で目的としている油汚れの分解では、触媒の表面
積を大きくすることと酸素の供給を多くすることが必要
となる0本発明は、無m繊維を用いることにより高い空
隙率をもつ被覆層を形成して、酸素が被覆内部へl+i
敗し易く、かつ表面積も従来方式の被覆に比べてシよる
かに大きくなるようにした。これにより、目的の反応は
より仔利に進行し易くなる。
In order to decompose oil stains, which is the objective of the present invention, it is necessary to increase the surface area of the catalyst and increase the supply of oxygen. is formed, and oxygen enters the interior of the coating l+i
It is easy to destroy and has a much larger surface area than conventional coatings. This makes it easier for the desired reaction to proceed more efficiently.

!iA機繊維を用いたセラミンクペーパーと称するもの
は、密度にして0.15〜0.69g/cJ程度、空隙
率にして約70〜90%程度である。このような高い空
隙率を持つ繊維上に触媒を担持させることにより、酸素
の供給が改拵され、触媒活性を十分に発揮させることが
できる。
! Ceramink paper using iA machine fibers has a density of about 0.15 to 0.69 g/cJ and a porosity of about 70 to 90%. By supporting the catalyst on fibers having such a high porosity, the supply of oxygen can be improved and the catalyst activity can be fully exhibited.

以上、無機繊維について、述べてきたが担持する触媒の
活性について以下に述べると、本発明の触媒であるCe
、Cu、Mnの複合酸化物でCe、Cu、Mnの比率が
、モル比でCe :Cu :Mn=l :X: I−X
 (但し、0<x<1)である複合酸化物は、単一元素
あるいは2種以上の元素の腹合酸化物に比べ炭化水素の
酸化に対して高い活性を示す。これは、CeとCu、M
nの3元素系酸化物において二よ酸化物の表面における
元素が多くの原子価をとるからであり(例えばMnは3
価、4価、Cuは1価、2価など)、つまりは単一ある
いは2成分系では見られない異元素間での原子価制御が
行われ、反応に関してより適した表面を作るからである
。このことはXPS(X線光電子分光装置)で認められ
る。このような活性の高い触媒を、無機繊維に担持する
ことによって、さらに酸化分解活性が向上し、従来にな
い低温で油分等を分解する被覆面が得られるのである。
The inorganic fibers have been described above, but the activity of the supported catalyst will be described below.
, Cu, Mn composite oxide, the ratio of Ce, Cu, Mn in molar ratio is Ce:Cu:Mn=l:X:I-X
(However, 0<x<1) Composite oxides exhibit higher activity for oxidizing hydrocarbons than composite oxides of a single element or two or more elements. This is Ce, Cu, M
This is because in the ternary oxide of n, the elements on the surface of the dioxide have many valences (for example, Mn has a valence of 3).
(Cu is monovalent, divalent, etc.), in other words, valence control is performed between different elements that cannot be seen in single or binary systems, creating a surface that is more suitable for reactions. . This is recognized by XPS (X-ray photoelectron spectroscopy). By supporting such a highly active catalyst on inorganic fibers, the oxidative decomposition activity is further improved, and a coated surface that decomposes oil and the like at an unprecedented low temperature can be obtained.

さらに、このような無機繊維層を、支持物と網目状金属
層により挟着することによってオーブン等の加熱調理器
の壁面に適用した場合、皿などの調理用器などが接触し
ても表面が傷付きにくくなり、金属を網目状にすること
によって、酸素の拡散を妨げないでかつ、油分等の汚れ
の浸透を損なうことなく、また、網目状金属層の表面に
金属酸化物層を設け、前記金属酸化物MにCe、Cu、
Mnの比率が、モル比でCe:Cu:Mn=l:X:1
−X(但し、0<X<1)である複合酸化物を担持する
ことによって、網目状金属の表面に付着した油汚れなど
も分解することができる。
Furthermore, if such an inorganic fiber layer is applied to the wall of a cooking device such as an oven by sandwiching it between a support and a mesh metal layer, the surface will remain intact even if a cooking utensil such as a plate comes into contact with it. By making the metal mesh-like, it does not impede the diffusion of oxygen and impair the penetration of dirt such as oil, and by providing a metal oxide layer on the surface of the mesh-like metal layer, The metal oxide M includes Ce, Cu,
The molar ratio of Mn is Ce:Cu:Mn=l:X:1
By supporting a complex oxide of −X (0<X<1), oil stains and the like attached to the surface of the mesh metal can also be decomposed.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

本発明による被覆層のテストピースを作り、加熱条件下
で、サラダオイルの酸化分解テストを実施した。
A test piece of the coating layer according to the present invention was prepared, and a salad oil oxidation decomposition test was conducted under heating conditions.

5US304を支持物とし、綱目状金属として、ステン
レスメツシュ(SUS304、線径0.05胴、孔径0
.12■)を用い、無機繊維として、シリカ・アルミナ
繊維(S i Oi  : A Iz Os =53:
41、平均繊維径2.8μm、空隙率92%、厚み1.
、On)を用いた。
5US304 was used as the support, and stainless steel mesh (SUS304, wire diameter 0.05 body, hole diameter 0
.. 12■), and as the inorganic fiber, silica/alumina fiber (S i Oi : A Iz Os =53:
41, average fiber diameter 2.8 μm, porosity 92%, thickness 1.
, On) was used.

テストピースサイズは、50 X 50mmとした。The test piece size was 50 x 50 mm.

前記シリカ・アルミナ繊維をCe、Cu、Mnの硝酸塩
の混合水溶液(Ce : Cu : Mn =1.0:
0.3: 0.7mol/ l )中に浸漬した後、8
0°Cで乾燥し、450゛Cで焼成し、5US304と
前記ステンレスノンシュとで挟着した。挟着の方法は、
第1図のように支持物と網目状金属との間に金属ビンを
設け、各々と溶接により接合した。前記ステンレスメツ
シュは、表面にA1.03を厚さで5μm溶射により形
成したものであり、AI!03上にCe、Cu、Mnの
硝酸塩の混合水溶液(Ce : Cu :Mn= 1.
0+  0.3: 0.7mol/ 1. )をスプレ
ーガン(デビルビス製スプレーガン、ノズル口径1.4
mφ、Ajr圧1.5〜2kg / cd )で、lo
ng/c−塗布し、450°Cで30分焼成し作成した
The silica/alumina fibers were treated with a mixed aqueous solution of nitrates of Ce, Cu, and Mn (Ce: Cu: Mn = 1.0:
0.3: 0.7 mol/l), then 8
It was dried at 0°C, fired at 450°C, and sandwiched between 5US304 and the stainless steel nonche. The method of clamping is
As shown in FIG. 1, a metal bottle was provided between the support and the mesh metal, and each was joined by welding. The stainless steel mesh is formed by thermal spraying A1.03 to a thickness of 5 μm on the surface, and has an AI! A mixed aqueous solution of nitrates of Ce, Cu, and Mn (Ce:Cu:Mn=1.
0+ 0.3: 0.7mol/1. ) with a spray gun (DeVilbiss spray gun, nozzle diameter 1.4
mφ, Ajr pressure 1.5-2kg/cd), lo
It was prepared by applying ng/c-coating and baking at 450°C for 30 minutes.

テストピースの温度分布、300+1(1℃において、
サラダオイルを、10111g/di下し、60分間放
置すると、サラダオイルは、完全に消失した。これに対
して、M n Ox 、Cu Ox 、を含む被覆面で
は350±10゛Cでも完全には焼切れなかった。また
、Ce、Cu、Mnの複合酸化物(Cc : Cu :
 Mn= 1.0:  0.3 : 0.7+iol/
 1 )のテストピースにライては、サラダオイルによ
るテストを何度繰り返しても完全に消失した。また、テ
ストピース表面をオーブン皿を用い40g/cd荷重(
50X 50mのテストピースにして1kgの荷重)を
かけて往復の摩耗試験を行ったところ、傷つきも少なく
、綱目状全屈部分でも油分は分解され、繊維層部分の触
媒性能の低下も見られなかった。
Temperature distribution of test piece, 300+1 (at 1℃,
When the salad oil was added at a rate of 10111 g/di and left for 60 minutes, the salad oil completely disappeared. On the other hand, the coated surface containing MnOx and CuOx was not completely burnt out even at 350±10°C. In addition, a composite oxide of Ce, Cu, and Mn (Cc:Cu:
Mn= 1.0: 0.3: 0.7+iol/
No matter how many times I repeated the salad oil test, the stain on the test piece 1) completely disappeared. In addition, the surface of the test piece was applied with a load of 40 g/cd (
When we performed a reciprocating abrasion test using a 50×50m test piece and applying a load of 1kg, there was little damage, the oil was decomposed even in the fully curved part, and no deterioration in catalyst performance in the fiber layer part was observed. Ta.

第1図(a)に、本発明の被覆面の断面構成の概念図を
示した。第1図〜)に、本発明の複合酸化物を担持した
綱目状金属の断面構成の概念図を示した。
FIG. 1(a) shows a conceptual diagram of the cross-sectional structure of the coated surface of the present invention. Figures 1-) are conceptual diagrams of the cross-sectional structure of a wire-shaped metal supporting the composite oxide of the present invention.

次に、触媒に対する酸素の供給量の効果について検討し
た0本発明の触媒であるCe、Cu、、Mnの複合酸化
物のサラダオイルの酸化活性をDTAにより測定した。
Next, the effect of the amount of oxygen supplied to the catalyst was investigated.The oxidation activity of the salad oil of the composite oxide of Ce, Cu, and Mn, which is the catalyst of the present invention, was measured by DTA.

測定は、市販のサラダオイルと酸化物の重量辻を2.5
:  1.0にして十分に混合し、石英セルに入れてD
TAカーブを得た。第2図にCe、Cu、Mnの比率(
Ce :Cu :Mn= 1.0:  0.3:  0
.7)の複合酸化物を酸素雰囲気中と窒素雰囲気中で測
定した結果を示した。図から分かるように酸素の供給量
が多いと、より低温で油を焼切ることができ、触媒の活
性を高めることができる。
The measurement was based on the weight of commercially available salad oil and oxides being 2.5.
: Adjust to 1.0, mix thoroughly, and place in a quartz cell.D
A TA curve was obtained. Figure 2 shows the ratio of Ce, Cu, and Mn (
Ce:Cu:Mn=1.0:0.3:0
.. The results of measuring the composite oxide 7) in an oxygen atmosphere and a nitrogen atmosphere are shown. As can be seen from the figure, if the amount of oxygen supplied is large, the oil can be burned off at a lower temperature and the activity of the catalyst can be increased.

次に、シリカ・アルミナ繊維(SiO□、A lx 0
3=53:47、平均繊維径2.8μm、J’7:み1
.0ffIIl)の空隙率を68%から94%まで変化
させて、サラダオイルによる焼切りテストを行ったとこ
ろ、第1表のようになった。
Next, silica/alumina fiber (SiO□, Alx 0
3=53:47, average fiber diameter 2.8 μm, J'7: Mi1
.. When the porosity of 0ffIIl) was changed from 68% to 94% and a burn-off test with salad oil was conducted, the results were as shown in Table 1.

(イ丁・16) 第1表 第1表より、従来のセルフクリーニングに比べて低温で
油の焼切りが可能であることが分かる。空隙率にして8
5%程変以上あれば300°Cという低温で油の焼切り
が可能である。
(Item 16) Table 1 From Table 1, it can be seen that it is possible to burn off oil at a lower temperature than conventional self-cleaning. 8 in terms of porosity
If the change is about 5% or more, it is possible to burn off the oil at a low temperature of 300°C.

また、シリカ・アルミナ繊維の代わりに、ジルコニア繊
維(Z r Ox 、 Yz 0s−89=6、平均繊
維f15.0μIl+、*み0.5MA、空隙率84%
)を用い、S[JS304を支持物とし、網目状金属と
して、ステン1/ス、’ y 、:z、 (S U S
 304、線径0.2mm、孔径0.2M)を用いて、
同様に、テストピースを作成し、サラダオイルの焼切実
験を行ったところ300’C160m1nで完全に消失
し、摩耗試験後も性能の低下は見られなかった。
In addition, instead of silica/alumina fibers, zirconia fibers (ZrOx, Yz0s-89=6, average fiber f15.0μIl+, *0.5MA, porosity 84%) were used.
), using S[JS304 as a support and a mesh metal, stainless steel 1/S,' y , :z, (S U S
304, wire diameter 0.2 mm, hole diameter 0.2 M),
Similarly, a test piece was prepared and a salad oil burn-out experiment was conducted, and the burnout completely disappeared at 300'C160m1n, and no deterioration in performance was observed even after the abrasion test.

また、網目状金属として、ステンレスメ/シュを用いた
が、ラス網やパンチングメタルなども使える。
Further, although stainless steel mesh was used as the mesh metal, lath mesh or punched metal may also be used.

また、網目状金属層の表面に設ζJた金属酸化物層とし
てA1.O,を示したが、Ce、Cu、Mnの複合酸化
物と反応しない金属酸化物であればよく、例えば、シリ
カ・アルミナやシリカ、ジルコニアなどがあげられる。
Further, as the metal oxide layer provided on the surface of the mesh metal layer, A1. Although O, is shown, any metal oxide that does not react with the composite oxide of Ce, Cu, and Mn may be used, such as silica/alumina, silica, and zirconia.

また、支持物と、網目状金属層による秋着方法として、
金属ピンで溶接する方法を示したが、かしめ等も使える
。また、綱目状金属層の表面に金属酸化物層を設ける方
法として、溶射方法を示したが、アルミナゾルなどの塗
料をスプレーにより塗装する等も使える。
In addition, as an autumn wearing method using a support and a mesh metal layer,
Although we have shown how to weld with metal pins, caulking, etc. can also be used. Further, as a method for providing a metal oxide layer on the surface of the mesh-like metal layer, a thermal spraying method has been shown, but spraying a paint such as alumina sol may also be used.

以上、無機繊維に触媒を担持した場合の効果と支持物と
網目状金属とで決着した場合の効果と前記網目状金属に
前記複合酸化物を度持した効果について述べたが、次に
Ce、、Cu、Mnの複合酸化物の活性について述べる
Above, we have described the effect when the catalyst is supported on the inorganic fiber, the effect when the catalyst is supported by the support and the mesh metal, and the effect when the complex oxide is supported on the mesh metal. , Cu, and Mn.

第2表にBET法による表面積を示した。比較のために
Ce、Cu、Mnの単一酸化物についても示した。焼成
は、450’Cで行った。
Table 2 shows the surface area determined by the BET method. For comparison, single oxides of Ce, Cu, and Mn are also shown. Firing was performed at 450'C.

第2表 全体的に表面積が、約70〜+20r+(7gと大きい
のは、焼成温度が450’Cであり、酸化物としては低
温にしているからである。また、単一酸化物に比べ複合
酸化物が表面積が大である。これは、Centの効果に
よるものと考えられる。実際にCe / CuOxid
e’PCe/Mn  0xideでは、それぞれ第2表
中のCub、Mn、O,の表面積に比べ大であった。第
2表でCe Cuo、5 Mno、s Oyの表面積が
大きいことを示したがCe、Cu、Mn91合酸化物(
モル比率 Ce、Cu、Mn−1: X : 1X)の
表面積の×への依存性を第3図に示した。
The overall surface area in Table 2 is approximately 70~+20r+ (7g), which is large because the firing temperature is 450'C, which is a low temperature for an oxide.Also, compared to a single oxide, a composite Oxide has a large surface area. This is thought to be due to the effect of Cent. In fact, Ce/CuOxid
The surface areas of e'PCe/Mn 0xide were larger than those of Cub, Mn, and O in Table 2, respectively. Table 2 shows that Ce Cuo, 5 Mno, and s Oy have large surface areas, but Ce, Cu, and Mn91 composite oxide (
The dependence of the molar ratio Ce, Cu, Mn-1:X:1X) on the surface area is shown in FIG.

第3図から表面積のピークは、X=0.3伺近にあるこ
とが分かった。
From FIG. 3, it was found that the peak of the surface area was located near X=0.3.

上記したCe、、Cu、Mnの比率(Ce:CuMn−
1,0: X : 1−X)の複合酸化物のサラダオイ
ルの酸化活性をDT八により測定した。測定は、市販の
サラダオイルと酸化物の重量比を2.5:  1.0に
して十分に混合し、石英セルに入れてDTAカーブを得
た。第4図に第2表中に示された4種類の酸化物のTG
カーブを示した。第4図では、重5+減少速度が大で、
より低温側で重量減少が完了してしまうものが酸化活性
が高いと言える。従って、CeCuo、sM口。1.O
yが活性が高いことは明らかであり酸化触媒として有効
である。第5図は、Ce、、CuSMnの比率(Ce 
: Cu :Mn= 1.0:x:1−X(但し、o<
X<])の複合酸化物のTOカーブのXへの依存性を示
している。X=0.3が、活性が最も問いようである。
The above ratio of Ce, Cu, Mn (Ce:CuMn-
The oxidation activity of the salad oil of the composite oxide (1,0:X:1-X) was measured by DT8. For the measurement, commercially available salad oil and oxide were thoroughly mixed at a weight ratio of 2.5:1.0, and the mixture was placed in a quartz cell to obtain a DTA curve. Figure 4 shows the TG of the four types of oxides shown in Table 2.
showed a curve. In Figure 4, weight 5 + decreasing speed is large,
It can be said that a substance whose weight loss is completed at a lower temperature side has a high oxidation activity. Therefore, CeCuo, sM mouth. 1. O
It is clear that y has high activity and is effective as an oxidation catalyst. Figure 5 shows the ratio of Ce, CuSMn (Ce
: Cu :Mn= 1.0:x:1-X (however, o<
It shows the dependence of the TO curve of the composite oxide on X of X<]). When X=0.3, the activity seems to be the most important.

このことは表面積のXへの依存性と対応していると考え
られる。
This is considered to correspond to the dependence of surface area on X.

発明の効果 以上説明したように本発明のセルフクリーニング用被覆
面は、無機繊維を用いることにより高い空隙率をもつ被
覆層を形成することができ、酸素をより多く供給するこ
とができ、サラダオイルのようなトリグリセリドに対す
る酸化分解活性が高く、油汚れが発生ずる機器、例えば
調理器の庫内壁面に適用すれば、300’C位の温度に
昇温することにより、油汚れをなくすことができ、かつ
、このような無機繊維層を、支持物と綱目状金属層によ
り挟着することによって、オーブン等の加熱調理器の壁
面に適用した場合、皿などの調理器などが接触しても、
表面が傷付きにくくなり、金属を網目状にすることによ
って、酸崇の拡散を妨げないで、かつ、油分等の汚れの
浸透を1■なうことなく、また、綱目状金属層の表面に
金属酸化物層を設け、前記金属酸化物層にCe、Cu、
Mnの複合酸化物を担持することによって、網目状金属
の表面に付着した油汚れなども分解することができる。
Effects of the Invention As explained above, the self-cleaning coating surface of the present invention can form a coating layer with a high porosity by using inorganic fibers, and can supply more oxygen. It has a high oxidative decomposition activity for triglycerides, and if applied to equipment that generates oil stains, such as the inner wall of a cooker, it can eliminate oil stains by raising the temperature to around 300'C. , and when such an inorganic fiber layer is sandwiched between a support and a mesh metal layer and applied to the wall of a cooking device such as an oven, even if a cooking device such as a plate comes into contact with it,
The surface is less likely to be scratched, and by making the metal mesh-like, it does not impede the diffusion of acid, and also prevents dirt such as oil from penetrating. A metal oxide layer is provided, and the metal oxide layer contains Ce, Cu,
By supporting the composite oxide of Mn, oil stains and the like attached to the surface of the mesh metal can also be decomposed.

これによって、調理器を常にクリーンな状態で使用する
ことが可能である。また、300゛C位で油lηれの分
AIが可能なので、調理器の設計上、断熱構造の軽減化
(触媒を使ねなげねば500’C位の熱分解温度が必要
)やヒータの容量を大きくしなくて済むので省エネルギ
ーにもなる。
This allows the cooker to be used in a clean state at all times. In addition, AI is possible for oil lη at around 300°C, so in the design of the cooker, the insulation structure can be reduced (if the catalyst cannot be used, a thermal decomposition temperature of around 500°C is required) and the capacity of the heater. It also saves energy because it does not need to be large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の被覆面の断面図、第
1図(b)は同被覆面の複合酸化物を担持した網目状金
属の断面図、第2図、第3図、第4図、第5図は同特性
図である。 1・・・・・・支持物、2・・・・・・無機繊維層、3
,7・・・・・・前口状金属、4・・・・・・無機繊維
、5,9・・・・・・複合酸化物、6・・・・・・金属
ビン、8・・・・・・Al2O3層。 代理人の氏名 弁理士 粟野重孝 ばか1名/−X y
T−勿 Z −無機揄嘔冒 3、7−・網目1大食2翼 4−゛熊槍G気芝魚 嘉 2 図 吟 間 (分) (a、ン ε・−AJLtθ31 一ゝ〜〜−で 昇五八′ダ一ン の 呼 大を 憾 −一数4
FIG. 1(a) is a cross-sectional view of the coated surface of an embodiment of the present invention, FIG. 1(b) is a cross-sectional view of the mesh metal supporting the composite oxide on the same coated surface, FIGS. 4 and 5 are the same characteristic diagrams. 1...Support, 2...Inorganic fiber layer, 3
, 7... Front opening metal, 4... Inorganic fiber, 5, 9... Composite oxide, 6... Metal bottle, 8... ...Al2O3 layer. Name of agent: Patent attorney Shigetaka Awano Idiot 1/-X y
T-Muz - Inorganic vomiting 3, 7-・Mesh 1 Gluttony 2 Wings 4-゛Kumayari G Kishiba Uoka 2 Zugin (min) (a, ε・-AJLtθ31 1ゝ〜〜− I regret the call of Noboru 58'Da1 - 1 number 4

Claims (1)

【特許請求の範囲】[Claims] 支持物と繊維層と網目状金属層とからなり、前記繊維層
は前記支持物と前記網目状金属層により挟着されており
、SiO_2、Al_2O_3、ZrO_2のうち、い
ずれか少なくとも一種の酸化物を主成分とする繊維状多
孔体に、Ce、Cu、Mnの複合酸化物を担持してなる
ものであり、前記複合酸化物をCe、Cu、Mnの比率
が、モル比でCe:Cu:Mn=1:X:1−X(但し
、0<x1)である被覆面で、前記網目状金属層の表面
に金属酸化物層を設け、前記金属酸化物層にCe、Cu
、Mnの比率が、モル比でCe:Cu:Mn=1:X:
1−X(但し、0<x1)である複合酸化物を担持した
被覆面。
Consisting of a support, a fiber layer, and a mesh metal layer, the fiber layer is sandwiched between the support and the mesh metal layer, and contains at least one oxide of any one of SiO_2, Al_2O_3, and ZrO_2. It is made by supporting a composite oxide of Ce, Cu, and Mn on a fibrous porous body as a main component, and the ratio of Ce, Cu, and Mn in the composite oxide is Ce:Cu:Mn in molar ratio. = 1:
, the molar ratio of Mn is Ce:Cu:Mn=1:X:
1-X (however, 0<x1) The coated surface supports a composite oxide.
JP63324087A 1988-12-22 1988-12-22 Covered surface Expired - Fee Related JPH0813336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63324087A JPH0813336B2 (en) 1988-12-22 1988-12-22 Covered surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63324087A JPH0813336B2 (en) 1988-12-22 1988-12-22 Covered surface

Publications (2)

Publication Number Publication Date
JPH02169037A true JPH02169037A (en) 1990-06-29
JPH0813336B2 JPH0813336B2 (en) 1996-02-14

Family

ID=18162009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63324087A Expired - Fee Related JPH0813336B2 (en) 1988-12-22 1988-12-22 Covered surface

Country Status (1)

Country Link
JP (1) JPH0813336B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493526A (en) * 1990-08-08 1992-03-26 Matsushita Electric Ind Co Ltd Heat-cooking apparatus
JPH04203810A (en) * 1990-11-30 1992-07-24 Matsushita Electric Ind Co Ltd Wall material of cooking device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493526A (en) * 1990-08-08 1992-03-26 Matsushita Electric Ind Co Ltd Heat-cooking apparatus
JPH04203810A (en) * 1990-11-30 1992-07-24 Matsushita Electric Ind Co Ltd Wall material of cooking device

Also Published As

Publication number Publication date
JPH0813336B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
GB2094656A (en) Oxide-whisker-covered structural member
US5094222A (en) Catalytic composite and a cooker having the same
US20060003889A1 (en) Silicon carbide-based catalytic material and process for producing the same
JP2006513747A (en) Heater covered with self-cleaning coating
JPH02169037A (en) Coated surface
US3627560A (en) Self-cleaning cooking apparatus
RU2283389C2 (en) Iron with self-cleaning bottom
JPH088986B2 (en) Self-cleaning coated surface
JP4798604B2 (en) Prevention of sulfide corrosion of high temperature components
US3545423A (en) Self-cleaning cooking apparatus
JP2833113B2 (en) Wall material for heating cooker
JPH0132883B2 (en)
JP2833142B2 (en) Paint cured film and cooker having the same
JP2010125371A (en) Method of supporting oxide catalyst particle
JPH0210030A (en) Cooking apparatus
JPH088987B2 (en) Heating cooker
JPH05115798A (en) Formation of supporting layer reinforcing interlayer on metal substrate for catalyst
JPH02261542A (en) Production of metallic catalyst supporting platinum family metal
JP2007083204A (en) Pretreatment method when producing metal filter for cleaning exhaust gas, method for producing metal filter for cleaning exhaust gas, and metal filter for cleaning exhaust gas
JPH07108800B2 (en) Structure with oil removal capability
JPS5821534B2 (en) catalyst body
JPS59199023A (en) Nitrogen oxide treating apparatus of burning appliance
JPH04341343A (en) Palladium-lanthanum composite oxide catalyst and its immobilized catalyst
JPH0810209B2 (en) Oxygen sensor element
JPH029451A (en) Coated layer for self-cleaning

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees