JPH02167864A - Method for heat-treating calcined sialon body - Google Patents

Method for heat-treating calcined sialon body

Info

Publication number
JPH02167864A
JPH02167864A JP63322179A JP32217988A JPH02167864A JP H02167864 A JPH02167864 A JP H02167864A JP 63322179 A JP63322179 A JP 63322179A JP 32217988 A JP32217988 A JP 32217988A JP H02167864 A JPH02167864 A JP H02167864A
Authority
JP
Japan
Prior art keywords
strength
calcined
sialon
oxygen gas
containing oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63322179A
Other languages
Japanese (ja)
Inventor
Hiroki Okamoto
寛己 岡本
Shoichi Mutsukawa
庄一 六川
Sazo Nakamura
佐三 中村
Yoshio Takagi
愛夫 高木
Toshio Miyasato
宮里 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63322179A priority Critical patent/JPH02167864A/en
Publication of JPH02167864A publication Critical patent/JPH02167864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high-strength calcined body excellent in thermal shock resistance with hardly any dispersion by specifying heat-treating conditions in subjecting a calcined sialon body to oxidation treatment and increasing the strength thereof. CONSTITUTION:A calcined sialon body is heated at 1000-1300 deg.C in an atmosphere containing oxygen gas for 10-30hr, further kept at 400-500 deg.C for 1-10min in an atmosphere containing oxygen gas and then cooled at >=50 deg.C/min rate. A stable oxide film is formed on the surface of the calcined body by the above- mentioned heating. Thereby, working cracks can be blunted or closed to improve strength, simultaneously enhance thermal shock resistance and raise quenching starting temperature. Furthermore, compressive stress is left on the surface by the afore-mentioned cooling and the strength can be nearly doubled as compared with that of the untreated substance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はサイアロン焼結体の強度を改善する熱処理方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat treatment method for improving the strength of a sialon sintered body.

〔従来の技術] 一般にセラミック焼結体は破壊靭性に乏しくセラミック
製部品の強度は機械加工等により表面にクラックが導入
されると著しく低下する。先に特許出願したサイアロン
焼結体(特願昭63−130339号)も通常60〜8
0kgf/m2の曲げ強度を有するが、仕上げ加工が悪
いと40kgf/mm”に低下し、また強度のバラツキ
も大きくなる。そこで、最終加工を施したセラミック焼
結体の強度上昇を目的とした処理方法にはイオン注入や
PVDSCVDを利用し異材料をコーティングするなど
の表面改質方法が広く知られている。
[Prior Art] Ceramic sintered bodies generally have poor fracture toughness, and the strength of ceramic parts is significantly reduced when cracks are introduced into the surface due to machining or the like. The Sialon sintered body (Patent Application No. 63-130339), for which a patent application was previously applied, is usually 60 to 8
It has a bending strength of 0 kgf/m2, but if the finishing process is poor, the bending strength decreases to 40 kgf/mm'', and the variation in strength becomes large.Therefore, a treatment aimed at increasing the strength of the ceramic sintered body after final processing is carried out. Widely known methods include surface modification methods such as coating with different materials using ion implantation and PVDSCVD.

一方、aizoxやSi、N、焼結体では酸化処理する
と強度上昇することが知られており、サイアロン焼結体
に関しても酸化処理すると表面クランクが鈍化し、未処
理体と比べて強度上昇を示すことが反答用らによって報
告されている(窯業協会誌:89(10) 1981p
533)。
On the other hand, it is known that oxidation treatment increases the strength of aizox, Si, N, and sintered bodies, and oxidation treatment of Sialon sintered bodies also dulls the surface crank and shows an increase in strength compared to untreated bodies. This has been reported by Hanshayo et al. (Ceramic Industry Association Journal: 89 (10) 1981p.
533).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のイオン注入や異材料をコーティングするなどの表
面改質方法は、特殊な装置を必要とし、また量産部品へ
の適用は困難である。
The aforementioned surface modification methods such as ion implantation and coating with different materials require special equipment and are difficult to apply to mass-produced parts.

一方、従来の酸化処理による強度上昇は処理前と比べて
約1.2〜1.5倍程度であり、かつ1200℃で15
日、1300℃で3日という長時間の処理を必要として
いた。
On the other hand, the strength increase due to conventional oxidation treatment is approximately 1.2 to 1.5 times that before treatment, and
This required a long treatment time of 3 days at 1300°C.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれらの問題点を解決したサイアロン焼結体の
強度を改善する方法を提供するべくなされたものであり
、サイアロン焼結体を酸素ガスを含む雰囲気中で100
0−1300℃で10〜30時間加熱し、さらに酸素ガ
スを含む雰囲気中で400〜500℃で1〜10分間保
ち、その後50℃/分以上の速度で冷却することを特徴
とする熱処理方法によってこの目的を達成したものであ
る。
The present invention has been made to provide a method for improving the strength of sialon sintered bodies that solves these problems.
By a heat treatment method characterized by heating at 0-1300°C for 10-30 hours, further holding at 400-500°C for 1-10 minutes in an atmosphere containing oxygen gas, and then cooling at a rate of 50°C/min or more. This purpose has been achieved.

サイアロンは基本となる成分が5iSAl、 OlNの
4元素からなる焼結体であり、特公昭51−15850
号公報、特公昭51−37656号公報、特公昭51−
37657号公報などに開示されている。また、Y2O
3添加を前提としたサイアロンの研究もまた盛んに行わ
れており、β′相(Sib−z^1.0□N1□)や0
′相(S i z −zAIXOI□Nz−x)が現在
することも知られている(N−on 0xide Te
ch、 Eng、 Cernm、 PP 1〜30. 
PP105〜117、“86〉。さらに、5iJaとY
zOiとAINを出発物質にしたα−サイアロン(Mx
(Si、 AI)tz(0,N)16)が存在すること
も知られており、その焼結法についても詳細な報告があ
る(特公昭61−309号公報)。
Sialon is a sintered body whose basic components are 5iSAl and OLN, and it is a sintered body made of
Publication No. 37656, Special Publication No. 51-37656, Special Publication No. 51-37656
This is disclosed in JP-A No. 37657 and the like. Also, Y2O
Sialon research based on the addition of 3 is also actively conducted, and β' phase (Sib-z^1.0□N1□) and 0
' phase (S i z -zAIXOI□Nz-x) is also known to exist (N-on Oxide Te
ch, Eng, Cernm, PP 1-30.
PP105-117, “86〉.Furthermore, 5iJa and Y
α-sialon (Mx) using zOi and AIN as starting materials
(Si, AI)tz(0,N)16) is also known to exist, and there is a detailed report on its sintering method (Japanese Patent Publication No. 309/1983).

そのほか、量に多少の差があるものの、Y、03−5i
O!  5i3Ni  AlzOz系のガラス相、Y2
O,・Si:+N4相(メリライト相)、YAG相等も
存在する場合がある。
In addition, although there are some differences in quantity, Y, 03-5i
O! 5i3Ni AlzOz-based glass phase, Y2
O,.Si:+N4 phase (melilite phase), YAG phase, etc. may also be present.

また、AhOi粉末と5i3Na粉末とを混合した場合
に鴎高温強度の弱い疑似ムライト相とも言われるX′−
サイアロンが生成する(窯業協会誌93 (10) 1
985 PP 629−P635)。サイアロン焼結体
にはこのようにSi、 AI% Ns Oの含有比率、
相状態、微量成分、製造方法などに応じて種々存在し、
形状も用途等に応じて種々のものが存在するが、本発明
の方法はそれらを問わず適用できる。
In addition, when AhOi powder and 5i3Na powder are mixed, X′-
Generated by Sialon (Ceramic Industry Association Magazine 93 (10) 1
985 PP 629-P635). In this way, the content ratio of Si, AI% Ns O,
There are various types depending on the phase state, trace components, manufacturing method, etc.
There are various shapes depending on the purpose and the like, and the method of the present invention can be applied regardless of the shape.

本発明の方法が適用されるサイアロン焼結体は焼結後さ
らに最終加工が施されたものである。このサイアロン焼
結体を酸素ガスを含む雰囲気、例えば大気中でまず約1
000〜1300℃1好ましくは約1100℃の温度で
約10〜30時間、好ましくは約24時間加熱する。こ
の加熱によって焼結体の加工処理等によって生じたクラ
ック等が鈍化されあるいは消滅する。
The sialon sintered body to which the method of the present invention is applied is one that is further subjected to final processing after sintering. This sialon sintered body is first placed in an atmosphere containing oxygen gas, for example, in the air, for about 1 hour.
The mixture is heated at a temperature of 000 to 1300°C, preferably about 1100°C, for about 10 to 30 hours, preferably about 24 hours. This heating blunts or eliminates cracks and the like caused by processing of the sintered body.

次に、酸素ガスを含む雰囲気、例えば大気中で約400
〜500℃、好ましくは約500℃の温度で1〜15分
間程度、好ましくは10分間程度保つ。その後この温度
から50℃/分以上、好ましくは1000℃/分程度の
速度で急冷する。急冷手段としては、例えば水等を掛け
たり、水中に投入したりすればよいが、送風等の手段も
利用することができる。尚、前記の1000〜1300
℃の加熱は酸化被膜の形成によるクラックの鈍化、消滅
させるために行うものあるから、この加熱と400〜5
00℃の加熱との間は連続的に行う必要はなく、必要に
より他の処理を行うこともできる。
Next, in an atmosphere containing oxygen gas, for example, the atmosphere, about 400
The temperature is maintained at a temperature of ~500°C, preferably about 500°C, for about 1 to 15 minutes, preferably about 10 minutes. Thereafter, it is rapidly cooled from this temperature at a rate of 50° C./min or more, preferably about 1000° C./min. As the quenching means, for example, pouring water or putting it into water may be used, but means such as blowing air may also be used. In addition, the above 1000 to 1300
Heating at a temperature of 400°C and
It is not necessary to perform the heating at 00° C. continuously, and other treatments can be performed if necessary.

〔作用] 急冷処理を施す前に、1000〜1300’C大気中で
10〜30時間の加熱処理を施すと、表面に安定した酸
化被膜が形成される。これにより加工クランクは鈍化し
たり、酸化膜により閉じ、強度上界を生じるとともに、
耐熱衝撃性を高めて急冷開始温度を上昇させることがで
きる。さらに、400〜500℃からの急冷処理により
表面に圧縮応力を残留させることにより、未処理物と比
べ強度を約2倍にすることを可能とする。
[Function] If heat treatment is performed for 10 to 30 hours in the atmosphere at 1000 to 1300'C before performing the quenching treatment, a stable oxide film is formed on the surface. As a result, the machined crank becomes dull or closed by an oxide film, creating an upper limit on strength.
It is possible to increase the thermal shock resistance and raise the quenching start temperature. Furthermore, by leaving compressive stress on the surface by rapid cooling treatment from 400 to 500°C, it is possible to approximately double the strength compared to untreated material.

大気中加熱処理を施さないサイアロン焼結体は、400
〜450℃から急冷すると熱応力により破壊する。
Sialon sintered body without heat treatment in the atmosphere is 400
When rapidly cooled from ~450°C, it breaks due to thermal stress.

また、処理前に加工クラックが存在すると、その程度に
より400℃以下からの急冷によってもクランクが進展
し、強度低下を招く。
Furthermore, if processing cracks exist before treatment, depending on the severity, the cracks may develop even when rapidly cooled from 400° C. or lower, leading to a decrease in strength.

〔実施例〕〔Example〕

サイアロン焼結体より°通常の部品程度の加工(Rma
x 1〜3 即)を施した幅4mm、高さ3am、長さ
49mmの曲げ試験片を作製した。この状態で曲げ強度
を測定したところ、平均曲げ強度は45kgf/mm2
でワイブル係数は6〜7程度であった。また水中急冷に
よって破壊を生じる急冷開始温度は400〜425℃で
あり、中には300℃からの象、冷によりクランクを生
じる試験片もあった。
Processing of ordinary parts (Rma) from Sialon sintered body
A bending test piece having a width of 4 mm, a height of 3 am, and a length of 49 mm was prepared. When the bending strength was measured in this state, the average bending strength was 45 kgf/mm2
The Weibull coefficient was about 6 to 7. Moreover, the quenching start temperature at which breakage occurs due to quenching in water is 400 to 425°C, and some specimens showed cracks when cooled from 300°C.

この試験片に1000〜1400℃大気中で24時間の
加熱処理を施して得られた加熱処理後の試験片の助げ強
度と加熱処理温度との関係を第1図に実線で示す。また
、同図中の点線は未処理の試験片の強度を示している。
This test piece was heat-treated at 1,000 to 1,400° C. in the atmosphere for 24 hours, and the relationship between the support strength of the test piece after the heat treatment and the heat treatment temperature is shown by a solid line in FIG. Furthermore, the dotted line in the figure indicates the strength of the untreated test piece.

同図に示すように、強度上界を生じ、特に1100’C
で24時間の処理を施したものは常温3点曲げ強度が7
0kgf/mm”で未処理の試験片と比べて約1.6倍
に上昇しワイブル係数も15に増加した。また、110
0℃の大気中で24時間加熱処理した試験片(実線)及
び未処理の試験片(点線)、をさらに各種の温度から水
中急冷し、各試験片の曲げ強度を測定した結果を第2図
に示す。同図に示すように、400〜500℃から急冷
したものは常温3点曲げ強度が91kgf/mm2以上
で未処理の試験片と比べて約2倍に上昇した。また、本
処理により強度低下を示す試験片は皆無であった。
As shown in the figure, there is an upper limit on the intensity, especially at 1100'C.
The one treated for 24 hours has a 3-point bending strength of 7 at room temperature.
0 kgf/mm", the Weibull coefficient increased approximately 1.6 times compared to the untreated test piece, and the Weibull coefficient also increased to 15.
Figure 2 shows the results of measuring the bending strength of each test piece after quenching the test piece (solid line) and untreated test piece (dotted line) in the atmosphere at 0°C for 24 hours and quenching them in water from various temperatures. Shown below. As shown in the figure, the three-point bending strength at room temperature of the specimen rapidly cooled from 400 to 500° C. was 91 kgf/mm 2 or more, which was about twice as high as that of the untreated specimen. Furthermore, no test pieces showed a decrease in strength due to this treatment.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によりバラツキの少ない高強度で耐熱衝撃
性に優れたサイアロン焼結体を作ることができる。また
、1300℃に維持できる大気炉のような単純な設備で
、バッチ処理により多量の熱処理を行うことが可能であ
る。
By the method of the present invention, it is possible to produce a sialon sintered body having high strength with little variation and excellent thermal shock resistance. Further, it is possible to perform a large amount of heat treatment by batch processing using simple equipment such as an atmospheric furnace that can maintain a temperature of 1300°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサイアロン焼結体を1000〜1400℃大気
中に24時間加熱処理を施した試験片の強度と加熱温度
の関係を示す。また、第2図は1100’Cで24時間
大気中で加熱処理を施した試験片および比較として未処
理試験片に水中急冷処理を施したものの強度と急冷開始
温度の関係を示す。 特許出願人  日本調管株式会社 代 理 人  弁理士 国中 政浩
FIG. 1 shows the relationship between the strength and heating temperature of a test piece obtained by heating a Sialon sintered body in the atmosphere at 1000 to 1400° C. for 24 hours. Further, FIG. 2 shows the relationship between the strength and the quenching start temperature of a test piece heat-treated at 1100'C for 24 hours in the air and, for comparison, an untreated test piece quenched in water. Patent applicant: Nippon Chokan Co., Ltd. Representative: Masahiro Kuninaka, patent attorney

Claims (1)

【特許請求の範囲】[Claims]  サイアロン焼結体を酸素ガスを含む雰囲気中で100
0〜1300℃で10〜30時間加熱し、さらに酸素ガ
スを含む雰囲気中で400〜500℃で1〜15分間保
ち、その後50℃/分以上の速度で冷却することを特徴
とするサイアロン焼結体の熱処理方法
The sialon sintered body was heated to 100% in an atmosphere containing oxygen gas.
Sialon sintering characterized by heating at 0 to 1300°C for 10 to 30 hours, further holding at 400 to 500°C for 1 to 15 minutes in an atmosphere containing oxygen gas, and then cooling at a rate of 50°C/min or more. Body heat treatment method
JP63322179A 1988-12-22 1988-12-22 Method for heat-treating calcined sialon body Pending JPH02167864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63322179A JPH02167864A (en) 1988-12-22 1988-12-22 Method for heat-treating calcined sialon body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63322179A JPH02167864A (en) 1988-12-22 1988-12-22 Method for heat-treating calcined sialon body

Publications (1)

Publication Number Publication Date
JPH02167864A true JPH02167864A (en) 1990-06-28

Family

ID=18140826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63322179A Pending JPH02167864A (en) 1988-12-22 1988-12-22 Method for heat-treating calcined sialon body

Country Status (1)

Country Link
JP (1) JPH02167864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679616A2 (en) * 1994-04-26 1995-11-02 Sumitomo Electric Industries, Ltd. Method of producing silicon nitride ceramic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679616A2 (en) * 1994-04-26 1995-11-02 Sumitomo Electric Industries, Ltd. Method of producing silicon nitride ceramic component
EP0679616A3 (en) * 1994-04-26 1995-11-29 Sumitomo Electric Industries
US5599493A (en) * 1994-04-26 1997-02-04 Sumitomo Electric Industries, Ltd. Method of producing silicon nitride ceramic component

Similar Documents

Publication Publication Date Title
JPH02167864A (en) Method for heat-treating calcined sialon body
US7527866B2 (en) Glass infiltrated metal oxide infrastructures
KR100555222B1 (en) Method for surface modification of oxide ceramics using glass and oxide ceramics resulted therefrom
US20030121475A1 (en) Wafer support and peripheral parts thereof
JPS61110758A (en) Method for carburizing wc-co sintered hard alloy at low temperature
JPS61209975A (en) Enhancement for silicon carbide ceramic body
JPH05301780A (en) Joined body of ceramics and its production
JPH11147769A (en) Silicon nitride ceramic material and its production
He et al. Oxidation of sintered silicon nitride: Part II Mechanical properties
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JPS6191083A (en) Enhancement for alumina ceramics
RU2677548C1 (en) Method of boronizing steel parts
JPH01133981A (en) Silicon nitride composite body
JPS61155279A (en) Manufacture of ceramics
SU1164290A1 (en) Method of hardening steel components
US5118646A (en) Process for improving the strength of sialon
US3540915A (en) Method of strengthening alumina and spinel bodies and strengthened alumina and spinel bodies produced thereby
SU1188213A1 (en) Method of machining die steel with carbide hardening
JPS63156087A (en) Manufacture of ceramic sintered body
JP3215625B2 (en) Method for producing silicon nitride based sintered body
JPH037633B2 (en)
Wang et al. The Influence of Precooling on Liquid Metal Embrittlement and Microstructure Properties of Galvanized 22MnB5 Tubes
JPH04114973A (en) Sintered sialon and production thereof
JPH0579625B2 (en)
SU827588A1 (en) Method of thermal oxidizing of articles