JPS61110758A - Method for carburizing wc-co sintered hard alloy at low temperature - Google Patents

Method for carburizing wc-co sintered hard alloy at low temperature

Info

Publication number
JPS61110758A
JPS61110758A JP23383284A JP23383284A JPS61110758A JP S61110758 A JPS61110758 A JP S61110758A JP 23383284 A JP23383284 A JP 23383284A JP 23383284 A JP23383284 A JP 23383284A JP S61110758 A JPS61110758 A JP S61110758A
Authority
JP
Japan
Prior art keywords
carburizing
paste
low
hard alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23383284A
Other languages
Japanese (ja)
Other versions
JPS6143429B2 (en
Inventor
Tetsuo Sakai
坂井 徹郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIRAITO KOGYO KK
Original Assignee
HAIRAITO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIRAITO KOGYO KK filed Critical HAIRAITO KOGYO KK
Priority to JP23383284A priority Critical patent/JPS61110758A/en
Publication of JPS61110758A publication Critical patent/JPS61110758A/en
Publication of JPS6143429B2 publication Critical patent/JPS6143429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To execute carburizing treatment suited for precision tools at a low temp., by subjecting the WC-Co sintered hard alloy to degreasing, to application of activated carbon-contg. carburizing paste, and to heat treatment. CONSTITUTION:The WC-Co sintered hard alloy is degreased with an adequate cleaning agent. The activated carbon-contg. carburizing paste is applied to the surface of the sintered hard alloy, which is dried and heated at a temp. as low as 500-600 deg.C by high-frequency heating or other methods to be carburized; the carburizing paste has a composition consisting of, for example, 60% activated carbon, 20% yellow prussiate of potash, and 20% barium carbonate. On this low-temp. treatment, the treated products are capable of minimizing their thermal stress as well as thermal deformation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はW C−Co系層硬合金の低温浸炭方法に圓す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a low-temperature carburizing method for a WC-Co layered hard alloy.

(従来の技術) 被熱処理材を適当な媒質中で500〜e o O”Cの
温度範囲に加熱して、その表面層に窒素を浸透させる低
温窒化は公知の熱処理法であるが、低温浸炭について報
告した文献は今までほとんど見当たらない(普通鋼の浸
炭では910〜1050℃の温度を採用する)。
(Prior Art) Low-temperature nitriding is a well-known heat treatment method in which a material to be heat-treated is heated in a suitable medium to a temperature range of 500 to 500 °C to infiltrate nitrogen into its surface layer, but low-temperature carburization Until now, there have been almost no documents reporting this (temperatures of 910 to 1050°C are used for carburizing ordinary steel).

(発明が解決しようとする問題点) 鉄鋼材料の低温窒化では下記のごとき利点があることが
既知であるから、もし超硬合金の低温浸炭が可能となれ
ばやはり下記のごときlIaの利点が期待され、工業的
に非常に魅力的である。
(Problem to be solved by the invention) It is known that low-temperature nitriding of steel materials has the following advantages, so if low-temperature carburizing of cemented carbide becomes possible, the following advantages of lIa are expected. and is very attractive industrially.

■従来の鉄鋼材料の浸炭温度より約400℃低温で、即
ち500〜600℃での加熱下で表面硬度は一定の高い
値になる。
(2) The surface hardness reaches a certain high value when heated at about 400°C lower than the carburizing temperature of conventional steel materials, that is, 500 to 600°C.

■引かき抵抗は減少し、摩耗抵抗は増加する。■ Scratch resistance decreases and abrasion resistance increases.

■疲れ限度と耐キャビテーン1ン性は増加する。■Fatigue limit and cavitane resistance increase.

■処理製品の熱変形や熱応力は小さい。■Thermal deformation and thermal stress of treated products are small.

■浸透層は切削、研摩などの仕上加工がで終る。■The permeation layer is finished by cutting, polishing, etc.

本発明は、処理製品の熱変形や熱応力が最小となり、木
材切削用精密工A等の熱処理に応用するのに適するW 
C−Co系層硬合金の低温浸炭方法を提供することを目
的としている。
The present invention minimizes thermal deformation and thermal stress of the treated product, and is suitable for application to heat treatment for precision wood cutting A.
It is an object of the present invention to provide a low-temperature carburizing method for a C--Co layered hard alloy.

(問題点を解決するための手段、作用)本発明の要旨は
、W C−Co系層硬合金を適当な洗浄剤で脱脂処理し
、活性炭を含む浸炭ベーストを塗4iL、500〜60
0℃で加熱処理することよりなるW C−Co系超硬合
金の低温浸炭方法である。
(Means and effects for solving the problems) The gist of the present invention is to degrease a W C-Co layered hard alloy with a suitable cleaning agent, and coat it with a carburized base containing activated carbon.
This is a low-temperature carburizing method for W C-Co cemented carbide, which comprises heat treatment at 0°C.

本発明によれば、低温浸炭処理を行なうWC−Co系超
硬合金の表面をまず例えばエチルアルコールで脱脂処理
する。
According to the present invention, the surface of the WC-Co cemented carbide to be subjected to low-temperature carburizing treatment is first degreased with, for example, ethyl alcohol.

次に、脱脂処理されたW C−Co系超硬合會の表面に
活性炭を含む浸炭ペースト、例えば60%活性炭+20
%黄血塩[K 4F e(CN )si + 20%炭
酸バリウム[13aCOslの組成の浸炭ペーストを塗
布し、乾燥させる。
Next, a carburizing paste containing activated carbon, for example 60% activated carbon + 20% activated carbon, is applied to the surface of the degreased W C-Co cemented carbide.
A carburizing paste with the composition of % yellow blood salt [K 4 Fe (CN ) si + 20% barium carbonate [13 aCOsl] is applied and dried.

そして、例えば高周波加熱により500〜600℃に加
熱処理し、浸炭させるのである。
Then, it is heat-treated at 500 to 600° C., for example, by high-frequency heating, and carburized.

本発明方法においでは、洗浄剤例えばエチルアルコール
による洗浄効果とペースト中に配合した活性炭の浸炭性
を太き(評価すべきであると考えられる。
In the method of the present invention, it is considered that the cleaning effect of a cleaning agent such as ethyl alcohol and the carburizing property of activated carbon blended in the paste should be evaluated.

<*施例) 木材切削工具用超硬合金ハイアロイGl(WC−5%C
o ) 、G 2  (WC−7%Co)お上びG3 
 (WC−9%Co)規格の3$1の試験片を用い、本
発明方法により低温浸炭を行なった。
<*Example) Cemented carbide high alloy Gl (WC-5%C) for wood cutting tools
o), G2 (WC-7%Co) and G3
(WC-9%Co) Standard 3 $1 test piece was used for low-temperature carburizing according to the method of the present invention.

まず、これら試験片をエチルアルコールで脱脂処理し、
その後ffl量を直示天秤で秤量した。この秤量操作か
ら後は試験片はすべてビンセットで取り扱った。
First, these test pieces were degreased with ethyl alcohol,
Thereafter, the amount of ffl was measured using a direct scale. After this weighing operation, all test pieces were handled in a bottle set.

試験片上に60%活性炭+20%黄血塩[K、Fe(C
N)、]+20%炭酸バリウム[B ac Osi)組
成の浸炭ペーストを塗布し、100℃の温度で1時間、
電気乾燥器内で乾燥させた。なお、浸炭ペーストの結合
剤には片栗粉を使用した。
60% activated carbon + 20% yellow blood salt [K, Fe (C
N), ] + 20% barium carbonate [Bac Osi] composition was applied, and the carburizing paste was heated at a temperature of 100°C for 1 hour.
Dry in an electric dryer. Note that potato starch was used as the binder for the carburizing paste.

乾燥後、試験片を゛大気中で高周波加熱により加熱処理
した。
After drying, the test piece was heat-treated by high-frequency heating in the atmosphere.

条件は、処理温度500.550おより eoo℃、処
理時間2.5および10分、ペースト厚さ1および21
である。
The conditions were: processing temperature 500.550°C, processing time 2.5 and 10 minutes, paste thickness 1 and 21.
It is.

以上のようにして浸炭処理を施した試験片と比較対照す
るために、同様な条件で熱履歴を与えた試験片(以下無
処理という)を作製した。無処理の試験片には、脱脂処
理後の酸化防止のため人造氷晶石(N a3A IF 
g)を片栗粉で粘結して塗布し、100℃の温度で30
分間乾燥させた。さらに、剥離防止のため酸化鉄(Fe
20.)を水〃ラスで粘結して塗布し、同温度で1時間
電気乾燥させた。
In order to compare and contrast with the test piece that was carburized as described above, a test piece that was given a thermal history under similar conditions (hereinafter referred to as untreated) was prepared. The untreated specimen was coated with artificial cryolite (N a3A IF) to prevent oxidation after degreasing.
g) was applied by caking with potato starch and heated at a temperature of 100℃ for 30 minutes.
Let dry for a minute. Furthermore, iron oxide (Fe) is added to prevent peeling.
20. ) was applied by caking it with a glass of water and then electrically dried at the same temperature for 1 hour.

浸炭処理および無処理の試験片について、処理前後の!
11量変化の測定、微小硬度試験(試験荷重1 kg)
、抗折力試験(同一処理条件の試料4個を作製してそれ
らの平均値を算出)、X線回折および金属顕微鏡と走査
型電顕による組織観察などを行なった。
Before and after treatment for carburized and untreated specimens!
11 Measurement of quantity change, microhardness test (test load 1 kg)
, a transverse rupture strength test (four samples were prepared under the same processing conditions and their average value was calculated), X-ray diffraction, and structure observation using a metallurgical microscope and a scanning electron microscope.

第1表に超硬合金の表面硬度の増加率を系すが、約6〜
16%増加させることができた。第2表から、硬度の上
昇率は01合金が最大で、G2と03合金はほぼ同率で
あり、これはCo含有量の少ない合金はど硬度が大きく
なることが既知であるので当然の結果と考えられる。
Table 1 shows the increase rate of surface hardness of cemented carbide, which is about 6 to
We were able to increase it by 16%. From Table 2, the rate of increase in hardness is the highest for alloy 01, and the rate is almost the same for alloys G2 and 03. This is a natural result since it is known that alloys with a low Co content have a large hardness. Conceivable.

第21t  浸炭による硬さの増加率の最大値(%)第
1図によれば、試験片のl!重量増加約0.8〜4.5
%に遠し、G1、G2およびG3の各合金の重量増加率
は処理温度、処理時間およびペースト厚さの関数となっ
ていることがわかる。第1図の上欄に列記した数字は処
理温度、処理時間、ペースト厚さの処理条件を示すが、
ここで、同図の(a)は試験片の重量増加に及ぼす処理
温度の影響、(b)はペースト厚さの影響、(e)は処
理時間の影響を見るためにこの31!:因についてそれ
ぞれ大きさの順に配列し、さらにその要因と岨み合わせ
た他の2要因の岨み合わせの積を、試料に投入されるエ
ネルギーと考えてそれらの値の小さいものから大きいも
のへと配列したものである。これらの図から試験片の重
量増加は明らかに投入エネルギーの関数であり、破線に
示すごと軽指敗関敗曲繰を描くことが認められる。
21t Maximum value (%) of increase rate of hardness due to carburization According to Fig. 1, l! of the test piece! Weight increase approximately 0.8-4.5
It can be seen that the weight increase rate of each alloy G1, G2 and G3 is a function of processing temperature, processing time and paste thickness. The numbers listed in the upper column of Figure 1 indicate the processing conditions such as processing temperature, processing time, and paste thickness.
In this figure, (a) shows the effect of processing temperature on the weight increase of the test piece, (b) shows the effect of paste thickness, and (e) shows the effect of processing time. : Arrange each factor in order of magnitude, and then consider the product of the difference between that factor and the other two factors as the energy input to the sample, and sort them from smallest to largest. It is arranged as follows. From these figures, it is clear that the weight increase of the test piece is a function of the input energy, and it is recognized that the increase in weight of the test piece is a function of the input energy, and a slight curve of failure and failure is depicted as shown by the broken line.

本処理後の試験片をX線回折した結果を第2図に示す、
この図によれば、試験片表面における生成化合物はCo
、Cであり、Co s Cなる化合物のピークは発見さ
れなかった。従って、この形成が本流による超硬合金の
硬化や重量変化の主因であると考えられる。
The results of X-ray diffraction of the test piece after this treatment are shown in Figure 2.
According to this figure, the produced compound on the surface of the test piece is Co
, C, and no peak of the compound CosC was found. Therefore, this formation is considered to be the main cause of hardening and weight change of cemented carbide due to mainstream flow.

次に、本処理後の試験片の硬度と処理時間との関係を第
3図に示す、この図によれば、処理時間が長時間である
ほど硬度が増加するのが一般であるが、これはペースト
厚さにも関係があるので上記の例外現象を生ずる場合も
多い1例えば、ペーストを1−厚さに塗布した試験片を
浸炭する場合、処理時間を5分から10分に増加すると
かえって硬度が減少することもある。この原因は焼結材
料の硬度測定時の問題点(多孔性による)のみではなく
、ペースト塗布量の多少にも帰せられるべきである。即
ち、ペーストの塗布量が少ないため炭素の供給が最後ま
で打なわ厩ず、一旦拡散浸透した炭素でも温度が浸炭温
度に保持されていると、活性を失なわず、低炭素濃度の
方へ拡散していく、いわゆる脱炭現象が生ずるためであ
ろうと考えられる。そのため、ベース゛ト厚さに応じて
適当な処理時間を選定しなければならない。
Next, Figure 3 shows the relationship between the hardness of the test piece after this treatment and the treatment time.According to this figure, the longer the treatment time, the more the hardness generally increases. is also related to the thickness of the paste, so the above-mentioned exceptions often occur.1 For example, when carburizing a test piece coated with paste to a thickness of 1, increasing the processing time from 5 to 10 minutes will actually increase the hardness. may also decrease. The cause of this should be attributed not only to the problem in measuring the hardness of the sintered material (due to porosity) but also to the amount of paste applied. In other words, since the amount of paste applied is small, the carbon supply does not reach the end, and even if the carbon has once diffused and penetrated, if the temperature is maintained at the carburizing temperature, it will not lose its activity and will diffuse toward a lower carbon concentration. This is thought to be due to the so-called decarburization phenomenon occurring. Therefore, an appropriate processing time must be selected depending on the base thickness.

さらに、浸炭処理試験片の抗折力と処理時間との関係を
調べた結果を第3図に破線で示す、これによれば、処理
時間が長いほど、炭素の拡散層の深さが次第に深(なる
ため、硬度と逆の傾向、即ち処理時間が長くなると抗折
力値が低下する現象を生じたものと考えられる。
Furthermore, the relationship between the transverse rupture strength of the carburized specimen and the treatment time is shown by the broken line in Figure 3. According to this, the longer the treatment time, the deeper the carbon diffusion layer becomes. (This is considered to be the reason why the transverse rupture strength value decreases as the processing time increases, which is the opposite trend to hardness.

最後に、浸炭処理と無処理の抗折力用試験片について走
査型電顕で破面を観察した写真を第4図に示す。これに
よれば、処理材(G2、ペースト厚さ1 +s+*、 
550℃、5分の処理条件時に得られた浸炭層の深さは
、硬度の測定結果および組織の観察結果より約20μ鴫
であることが判明)と無処理材の表面状況の差異が明瞭
に確認され、本方法の有効性が実証された。
Finally, FIG. 4 shows photographs of the fracture surfaces of carburized and untreated transverse rupture strength specimens observed with a scanning electron microscope. According to this, the treated material (G2, paste thickness 1 +s+*,
The depth of the carburized layer obtained under treatment conditions of 550°C for 5 minutes was found to be approximately 20μ from the hardness measurement results and microstructure observation results) and the difference in the surface condition of the untreated material was clearly seen. This confirmed the effectiveness of this method.

(発明の効果) 本発明方法によりWC−Coi!、M1硬合會に浸炭ペ
ーストを用いて500〜600℃の低温で浸炭させるこ
とができ、被処理合金の表面にはCO2Cなろ組成の炭
化物層を形成することがで軽る。
(Effect of the invention) By the method of the present invention, WC-Coi! It is possible to carburize at a low temperature of 500 to 600° C. using a carburizing paste in M1 hardening, and the surface of the alloy to be treated is lightened by forming a carbide layer with a composition similar to CO2C.

この低温浸炭方法はあらゆる熱処理技術中で最低温度の
熱処理法であり、処理製品の熱変形や熱応力は最小とな
り、精密工具等に適用するのに最適である。
This low-temperature carburizing method is the lowest-temperature heat treatment method among all heat treatment techniques, and the thermal deformation and thermal stress of the treated product are minimized, making it ideal for application to precision tools and the like.

最後に、本方法の超硬工具への適用について簡単に述べ
る。従来周知の高温浸炭法では、銅ろうで超硬チップを
ろう付は後、工具全体をペースト被覆して浸炭すれば、
銅ろうが溶融するのでこの作業は実行不能である。しか
し、本方法のごと軽低温浸炭法により (超硬チップの
部分には浸炭用ペースト、基板部分には前記の無処理時
に使用したペーストを酸化防止のために塗布する)この
ような加工を実行することが可能となったことは、従来
の超硬工具よりも高硬度、長寿命および対摩耗性が約3
倍に向上した工具が製造可能となる。1ユで特筆すべき
効果である。
Finally, we will briefly discuss the application of this method to cemented carbide tools. In the conventionally well-known high-temperature carburizing method, after brazing the carbide tip with copper solder, the entire tool is coated with paste and carburized.
This operation is impracticable because the copper solder will melt. However, in this method, such processing is carried out using a light low-temperature carburizing method (carburizing paste is applied to the carbide chip part, and the paste used when no treatment is applied is applied to the substrate part to prevent oxidation). This makes it possible to improve hardness, longer life, and wear resistance by approximately 30% compared to conventional carbide tools.
It becomes possible to manufacture tools that are twice as improved. This is a remarkable effect with just 1 unit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料の浸炭後のfL′gk増加を示す図であり
、同図(a)は試料の重量増加に与える浸炭温度の影響
を示す図、同図(b)は試料のit増加に与えるペース
ト厚さの影響を示す図、同図(a)は試料のm風増加に
与える処理時間の影響を示す図である。 第2図は浸炭後の試料のX線回折パターンを示す図であ
る。 第3図は各温度における浸炭後の試料の処理時間、峻さ
および抗折力値の関係を示す図である。 第4図はSEMによる試料の組織写真である。
Figure 1 shows the increase in fL'gk after carburizing the sample, (a) shows the effect of carburizing temperature on the weight increase of the sample, and (b) shows the effect of the carburizing temperature on the increase in the weight of the sample. FIG. 10(a) is a diagram showing the influence of the paste thickness on the increase in m wind of the sample. FIG. 2 is a diagram showing the X-ray diffraction pattern of the sample after carburization. FIG. 3 is a diagram showing the relationship between processing time, steepness, and transverse rupture strength value of a sample after carburization at each temperature. FIG. 4 is a photograph of the structure of the sample taken by SEM.

Claims (2)

【特許請求の範囲】[Claims] (1)WC−Co系超硬合金を脱脂処理し、活性炭を含
む浸炭ペーストを塗布し、500〜600℃で加熱処理
することよりなるWC−Co系超硬合金の低温浸炭方法
(1) A low-temperature carburizing method for WC-Co-based cemented carbide, which comprises degreasing WC-Co-based cemented carbide, applying a carburizing paste containing activated carbon, and heat-treating at 500 to 600°C.
(2)浸炭ペースト中の活性炭の含有量が10〜90%
である特許請求の範囲第1項記載の低温浸炭方法。
(2) Activated carbon content in carburizing paste is 10-90%
A low temperature carburizing method according to claim 1.
JP23383284A 1984-11-06 1984-11-06 Method for carburizing wc-co sintered hard alloy at low temperature Granted JPS61110758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23383284A JPS61110758A (en) 1984-11-06 1984-11-06 Method for carburizing wc-co sintered hard alloy at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23383284A JPS61110758A (en) 1984-11-06 1984-11-06 Method for carburizing wc-co sintered hard alloy at low temperature

Publications (2)

Publication Number Publication Date
JPS61110758A true JPS61110758A (en) 1986-05-29
JPS6143429B2 JPS6143429B2 (en) 1986-09-27

Family

ID=16961260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23383284A Granted JPS61110758A (en) 1984-11-06 1984-11-06 Method for carburizing wc-co sintered hard alloy at low temperature

Country Status (1)

Country Link
JP (1) JPS61110758A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248324A (en) * 2004-02-04 2005-09-15 Honda Motor Co Ltd Method for surface treatment of metal material
JP2005256165A (en) * 2004-02-09 2005-09-22 Honda Motor Co Ltd Passive film removal method
CN100341647C (en) * 2003-09-24 2007-10-10 自贡硬质合金有限责任公司 Production process of wire drawing hard alloy die with gradient varying performance
JP2008101248A (en) * 2006-10-19 2008-05-01 Toyota Motor Corp Surface treatment method for steel, and surface-treated steel
JP2009544852A (en) * 2006-07-24 2009-12-17 スウエイジロク・カンパニー Metal article having a high concentration of interstitial components
WO2011092998A1 (en) * 2010-01-29 2011-08-04 国立大学法人熊本大学 Method for treatment of metal surface, and surface-modified metal product
US8414710B2 (en) 2004-02-04 2013-04-09 Honda Motor Co., Ltd. Method for surface treatment of metal material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341647C (en) * 2003-09-24 2007-10-10 自贡硬质合金有限责任公司 Production process of wire drawing hard alloy die with gradient varying performance
JP2005248324A (en) * 2004-02-04 2005-09-15 Honda Motor Co Ltd Method for surface treatment of metal material
JP4494995B2 (en) * 2004-02-04 2010-06-30 本田技研工業株式会社 Metal surface treatment method
US8414710B2 (en) 2004-02-04 2013-04-09 Honda Motor Co., Ltd. Method for surface treatment of metal material
JP2005256165A (en) * 2004-02-09 2005-09-22 Honda Motor Co Ltd Passive film removal method
JP4494996B2 (en) * 2004-02-09 2010-06-30 本田技研工業株式会社 Passivation membrane removal method
JP2009544852A (en) * 2006-07-24 2009-12-17 スウエイジロク・カンパニー Metal article having a high concentration of interstitial components
JP2008101248A (en) * 2006-10-19 2008-05-01 Toyota Motor Corp Surface treatment method for steel, and surface-treated steel
WO2011092998A1 (en) * 2010-01-29 2011-08-04 国立大学法人熊本大学 Method for treatment of metal surface, and surface-modified metal product
JP5927646B2 (en) * 2010-01-29 2016-06-01 国立大学法人 熊本大学 Metal surface treatment

Also Published As

Publication number Publication date
JPS6143429B2 (en) 1986-09-27

Similar Documents

Publication Publication Date Title
US6037061A (en) Method of forming passive oxide film based on chromium oxide, and stainless steel
EP0863223B1 (en) Surface-hardened titanium-base material and method of surface-hardening titanium material
JPS61110758A (en) Method for carburizing wc-co sintered hard alloy at low temperature
JPS63502673A (en) Thin layer surface hardening and corrosion prevention method
US2887420A (en) Surface treatments for articles made from heat resisting alloys
Gildersleeve Relationship between decarburisation and fatigue strength of through hardened and carburising steels
KR20080092142A (en) Method for treat of heat resisting steel by gas nitriding
JP3018804B2 (en) Surface treatment method for titanium alloy members
US20100139812A1 (en) Case hardening titanium and its alloys
US2489838A (en) Powder metallurgy process for producing steel parts
US3892597A (en) Method of nitriding
FR2483468A2 (en) IMPROVEMENT IN THE CHROMIZATION OF STEELS BY GAS
US2875112A (en) Process for improving the physical properties of chromized articles
TW460621B (en) Method for codeposition of silicon and nitrogen on stainless steel surface
JPH01111858A (en) Titanium-aluminum alloy
JPH09324255A (en) Gas carburizing method
JPH05179420A (en) Aluminum material excellent in wear resistance and its production
JPS60108204A (en) Ceramic tool for high-speed cutting
SU1168626A1 (en) Composition for alumosilicating chrome=nickel steels
JPH02190403A (en) Production of cutting tool made of surface-coated tungsten carbide-based sintered hard alloy
JPH0218383B2 (en)
Wang et al. The Influence of Precooling on Liquid Metal Embrittlement and Microstructure Properties of Galvanized 22MnB5 Tubes
CN117265463A (en) Method for improving wear resistance and corrosion resistance of zirconium alloy surface by thermal oxygen-nitrogen co-permeation under atmosphere
WO2002053793A1 (en) Duplex process of diffusion forming of hard carbide layers on metallic materials
RU2081936C1 (en) Method of applying multicomponent coating onto steel objects