JPH02166227A - Manufacture of high strength and high toughness thick steel plate having excellent weldability - Google Patents

Manufacture of high strength and high toughness thick steel plate having excellent weldability

Info

Publication number
JPH02166227A
JPH02166227A JP32179788A JP32179788A JPH02166227A JP H02166227 A JPH02166227 A JP H02166227A JP 32179788 A JP32179788 A JP 32179788A JP 32179788 A JP32179788 A JP 32179788A JP H02166227 A JPH02166227 A JP H02166227A
Authority
JP
Japan
Prior art keywords
slab
rolling
less
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32179788A
Other languages
Japanese (ja)
Inventor
Nobutsugu Takashima
高嶋 修嗣
Masato Shimizu
真人 清水
Kengo Abe
安部 研吾
Mitsuru Ikeda
充 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32179788A priority Critical patent/JPH02166227A/en
Publication of JPH02166227A publication Critical patent/JPH02166227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture the steel plate by heating a steel slab contg. small amounts of specific alloy components to a specific temp., thereafter subjecting it to rolling under limited conditions and immediately to hardening and tempering treatment. CONSTITUTION:A steel slab contg., by weight, 0.01 to 0.10% C, 0.10 to 0.50% Si, 0.5 to 2.0% Mn, 0.01 to 0.10% Al, 0.8 to 1.5% Cu, 0.01 to 0.06% Nb, 0.005 to 0.020% Ti and <0.015% N or furthermore contg. one or more kinds among <3.0% Ni, <1.0% Cr, <0.5% Mo, <0.1% V, <0.0030% B and <0.0050% Ca is heated to a temp. of >=1100 deg.C at which Nb enters a solid solution sufficiently, is immediately rolled down not until the temp. range where the temp. of the surface of the slab comes to 850 to 1000 deg.C and is cooled at >=20 deg.C/sec cooling speed. Then, the slab is rolled at 60% draft and finish rolling is ended at the temp. of >=Ar3-30 deg.C; the slab is immediately subjected to direct hardening and is thereafter tempered, by which the high strength and high toughness thick steel plate of >=35mm thickness having excellent weldability can be manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、溶接施工を受ける高強度高靭性厚肉鋼板の製
造技術に関する。 (従来の技術及び解決しようとする課題)大型構造物用
材料としては、高強度、高靭性で溶接性が良好な厚肉鋼
板が用いられるが、例えば、溶接性を良好とするために
低炭素当量の成分系でCuの時効析出硬化を利用した鋼
としてA、 S T MA710が知られている。この
鋼は、1.0〜1゜3%のCuを含有し、時効処理によ
ってCuを析出させて高強度を得るものである。 しかし、上記鋼の場合、板厚35mm以上の厚肉鋼板に
した場合には、従来の製造方法では優れた低温靭性(破
面遷移温度vTrsで一80″C以下)を確保すること
は困難である。 一方、高強度高靭性を要求されるこの種の鋼板を製造す
る際に制御圧延及びその後に直接焼入れを施す方法が提
案されている。しかし、このような方法を上記鋼に適用
した場合、オーステナイト低温域で大きな累積圧下を加
える必要がある。その結果、圧延仕上温度は800℃以
下という非常に低い温度となり、このため、圧延後直ち
に直接焼入れを行ったとしても、焼入れの効果が十分に
得られず、Cuの時効析出硬化を利用しても引張強さが
70kgf/mm”以上の高強度を得ることは困難であ
る。しかも、鋼板の厚さの増大に伴って、強度確保のた
め、Mn、Cr、Mo等の合金元素を多量に添加しなけ
ればならず、その結果、鋼の炭素当量が高くなって、溶
接性が著しく損なわれるという問題がある。例えば、特
開昭60−59018号では板厚は30mm以下の場合
しか示されていない。 上記の理由により、これまでは、Cu析出硬化を利用し
て、板厚35mm以上の溶接性の優れた高強度高靭性鋼
板を製造することは非常に困難であった。 もっとも、圧延仕上温度をs o o ’c以」二の如
く比較的高くとり、圧延終了後に直接焼入れする方法(
特開昭62−256915号、同61−149845号
)、或いは再加熱焼入れする方法(特開昭61−1−4
94.30号、同62−149845号)が試みられて
いるが、前者の場合は、板厚35mm以上のときに強度
、低温靭性がバランスよく得られるかどうかに問題があ
り、また後者では再加熱によるニス1ヘアツブの問題が
ある。 本発明は、か\る状況のもとでなされたものであって、
低炭素当量の成分系でCuの析出硬化を利用し、更に低
温靭性を改善するために制御圧延を適用して、板厚35
mm以上で、引張強さが70kgf/mm”以上の高強
度を有し、板厚中央部での破面遷移温度が一80℃以下
の高靭性を有し、しかも溶接性の優れた高強度高靭性厚
肉銅板を得る方法を提供することを目的とするものであ
る。 (課題を解決するための手段) 前記目的を達成するため1本発明者らは、制御圧延の効
果を高め、直接焼入れ時に変態強化を促進し、なお且つ
焼もどし時に析出硬化させる作用を有するNbに着目し
、これを有効に活用する方法について鋭意研究を行った
。 その結果、化学成分を適切に調整すると共に、特に圧延
段階での圧延条件を適切にコントロールすることにより
、上記の目的を達成でき、優れた溶接性を有する高強度
高靭性厚肉鋼板を製造できる方法を見い出したのである
。具体的には、主として、 (1)溶接性を向上させるためにC量を0.01〜0.
10%に低減する、 (2)高強度化のためにCuを0.8〜1.5%含有さ
せ、かつ制御圧延の効果を高め、変態強化を促進し、更
に析出硬化作用を有するNbを0.010〜0.060
%含有させる、 (3)加熱段階でNbを十分に固溶させた後、圧延段階
で、まず、圧下を加えることなく一定の冷却速度以上で
冷却した後、圧延を行うのである。 これらの知見に基づいて、更に種々の条件について実験
研究を重ね、ここに本発明をなすに至ったのである。 すなわち、本発明は、C:0.01〜0.10%、Si
:0.10−0.50%、Mn二0.5〜2.0%、八
Ω:0.01〜0.10%、Cu: 0 、8〜1.5
%、Nb:0.01〜0.06%、Ti:0.005〜
0.020%及びN:O,O’15%以下を含有し、更
に必要に応じて、Ni:3.0%以下、Cr:1.0%
以下、Mo二0.5%以下、V:0.1%以下、B:O
,0O30%以下及びCa:0.0050%以下のうち
の1種又は2種以上を含有し、残部が鉄及び不可避的不
純物からなる鋼につき、1100℃以上でNbが十分に
固溶する温度範囲に加熱した後、直ちにスラブ表面温度
が850〜1000℃の温度域まで圧下を加えることな
く20°C/min以上の冷却速度にて冷却し、その後
の圧延において60%以上の圧下を加えて(Ar3変態
点温度−30℃)以上で圧延を完了し、直ちに直接焼入
れを行い、更に焼もどし処理を行うことを特徴とする特
許5mm以上で溶接性の優れた高強度高靭性厚肉鋼板の
製造方法を要旨とするものである。 以下に本発明を更に詳細に説明する。 (作用) まず1本発明における化学成分の限定理由は以下のとお
りである。 C: Cは強度上昇に有効な元素であり、そのためには0.0
1%以上が必要である。しかし、靭性の確保及び耐溶接
割れ性の低下防」Lの観点から上限を0.10%に規制
する必要がある。したがって、C量は0.01〜0.1
0%の範囲とする。 Sl: Siは脱酸元素であり、0.10%以上の添加が必要で
あるが、過度の添加は靭性を劣化させるので上限を0.
50%とする。このため、Si量は0゜10−0.50
%の範囲とする。 Mn: Mnは強度上昇に有効であり、そのためには0゜5%以
上が必要であるが、2.0%を超えて添加すると靭性が
劣化する。したがって、Mn量は0゜5〜2.0%の範
囲とする。 Al: 八〇は脱酸元素であり、0.01%以上が必要であるが
、過度の添加は介在物を形成し、靭性を劣化させるため
、上限を0.10%とする。したがって、ΔΩ量は0.
01〜0.10%の範囲とする。 Nb: Nbは本発明のポイントとなる重要な元素である。すな
わち、Nbは固溶状態で、オーステナイトの再結晶を抑
制し、制御圧延の効果を高め、直接焼入れによる変態強
化を向上させ、且つ焼もどし時に析出して強度及び靭性
の向上に寄与する元素である。このような効果は0.0
1%以上で発揮されるが、0.06%を超えると溶接部
の靭性が劣化するので、好ましくない。したがって、N
b量は0.01〜0.06%の範囲とする。 Tj: T1は難溶性の炭窒化物を形成し、スラブ加熱時又は溶
接時のオーステナイト粒の成長を抑制するため、母材及
び溶接部の靭性を向上させる効果を有する元素である。 また、鋼中のc.Nを固定することにより、固溶Nbが
炭・窒化物として析出することを抑制する効果もある。 そのためには0。 005%以上が必要であるが、0.0 2 0%を超え
て添加すると粗大な介在物を形成し、靭性を劣化させる
。したがって、Ti量は0.0 0 5〜0。 020%の範囲とする。 N : Nは0.0 1 5%を超えて添加すると、母材及び溶
接部の靭性を著しく劣化させるので、N量は0、0 1
 5%以下とする。 Cu: Cuは固溶強化、析出強化或いは焼入性向上による変態
強化に有効な元素である。これらの効果を発揮させるた
めには0.8%以上の添加が必要である。しかし、過度
の添加は靭性を低下させるため、上限を1.5%とする
。したがって、Cu量は0.8〜1,5%の範囲とする
。 以上の各元素を必須成分とするが、必要に応じて、以下
に示すNi.Cr.Mo.V.B及びCaのうちの1種
又は2種以上を適量で添加することができる。 Niは低温靭性を改善する効果があるが、高価であり、
経済性の観点から3.0%以下とする。 また、主として高強度化の目的でCrを1.0%以下、
Moを0.5%以下、■を0.1%以下、Bを0、0 
0 3 0%以下で添加することができる。また靭性改
善の目的でCaを0.0 0 5 0%以下で添加する
ことができる。なお、これらの元素は上限を超えて過度
に添加すると靭性或いは更に溶接性を劣化させるので好
ましくない。 次に本発明における鋳塊加熱、熱間圧延条件の限定理由
について述べる。 スラブの加熱では、強度及び靭性の向上に有効に作用す
る固溶Nbを確保することが必要である。 このためには、少なくとも1100℃以上に加熱する必
要がある。 次に、熱間圧延を行うが、圧延条件を限定する理由は以
下のとおりである。 一般にNbは、固溶状態でオーステナイトの再結晶を抑
制するため、圧延により結晶粒の微細化を図ることがで
き、靭性改善に有効である。しかし、製品厚が35mm
を超える厚物の板厚中央部では、圧延による圧下効果が
十分に及ばないため、結晶粒が微細化されにくく、Nb
添加によっても靭性改善を図ることは困難である。そこ
で、本発明では、厚物材で板厚中央部まで圧下効果を与
えるべく、圧延条件を限定した。 すなわち、上記加熱後、直ちにスラブ表面温度が850
〜10oO℃となる温度域まで圧下を加えることなく2
0°C/min以上の冷却速度にて冷却し、その後、圧
延を行うのである。これは、本発明の最も重要な点であ
る。 上記の如く、加熱後のスラブを直ちに冷却すると、スラ
ブ表面部と中心部で大きな温度差が生し、その結果、ス
ラブ表面部と中心部に変形抵抗の差が生じる。この状態
にて圧下を加えると、スラブ表面部と中心部での温度差
が小さい通常圧延のものに比べ、スラブ中心部への圧下
効果が大きくなる。したがって、特にNbを固溶した鋼
において、圧延しこよる細粒化が可能となり、靭性を向
上させることができるのである。 更にこの方法によると、加熱後のスラブを直ちに、通常
より速い冷却速度で冷却するため、冷却中のNbの析出
を抑制することができ、これにより制御圧延の効果が向
上し、靭性改善が図られると共に、直接焼入れ時の変態
強化の促進、更に焼もどしによるNbの析出強化量の増
大により強度を大幅に向上させることができる。 例えば、第1図は、基礎実験の結果の一例を示したもの
であり、0.04%C−0,25%Si1.4%Mn−
〇、8%Cu−0.4%Ni −0、2%Mo−0,0
45%Nb−0.010%Ti−0,0045%N−0
,035%AD、からなる組成の鋼しこついて、加熱後
直ちに20 ℃/ minの冷却速度で冷却を行った場
合における加熱後スラブの冷却停止温度が強度・靭性に
及ぼす影響を示した図である。なお、圧延完了温度は約
750℃、全圧下率は7o%とし、焼入れ後、600°
Cで焼もどした。 同図において、強度は冷却停止温度が低くなると共に上
昇し、靭性は冷却停止温度が低くなると共に向上する傾
向を示していることがわかる。 以上の基礎実験により、本発明の目的とする弓張強さ7
0kgf/mm2以上、破面遷移温度−80°C以下を
共に達成するためには、冷却停止温度を1000°C以
下とする必要があることが判明した。 一方、冷却停止温度が低くなりすぎると、スラブ表面部
の変形抵抗が大きくなりすぎ、その後の圧延段階で所定
の鋼板形状を確保することが困難となる。これを防止す
るためには、冷却停止温度を850℃以上とする必要が
ある。 また、冷却停止後の圧延段階での圧下は、オーステナイ
ト中に加工歪を付与し、変態後の組織の微細化を促進し
、強度及び靭性を向上させる。そのため、少なくとも6
0%の圧下が必要である。 また、仕上圧延終了温度は、その後の直接焼入れの効果
を十分に発揮させるために、(Ar3変態点温度−30
℃)以上とする必要がある。 圧延後、鋼板は直ちに直接焼入れされる。これは固溶N
bの焼入性向上による変態強化の作用を最大限に発揮さ
せるためである。更にこの鋼板には焼もどし処理が施さ
れるが、これは変態後に固溶状態で存在するNbを析出
させて高強度を得るためである。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有する供試鋼を常法により溶製
、鋳造し、得られた鋳塊を第2表に示す温度に加熱した
後、同表に示す条件にて、冷却、粗圧延及び仕上圧延を
行い、直ちに焼入れし、更に60℃の焼もどしを施した
。 得られた鋼板について板厚中央部での機械的性質(引張
強さTS、破面遷移温度v T rs)を調べた。 その結果を第2表に併記する。 第2表より明らかなように、本発明例であるNα1(1
i1A)、Nn 6 (鋼B)、Nα」、0(鋼F)、
Nα11([G )、Nα12(鋼H)はいずれも引張
強さが70kg f / mm2以上あり、しかも板厚
中央部での破面遷移温度vTrsが一80℃以下となり
、優れた強度靭性バランスを有していることがわかる。 勿論、化学成分、特にC量が低いので、溶接性に優れて
いる。 一方、本発明例と同一化学成分を有する鋼であっても、
プロセス条件(加熱、冷却、圧延条件)の少なくとも1
つが本発明範囲外である比較例、すなわち、No、 2
 (鋼A)−Nn5(鋼A)では強度が70kgf/m
m2に達しておらず、また板厚中央部での破面遷移温度
が一80℃より高くなっている。 また、本発明の化学成分範囲から外れた組成を有する鋼
C−Eに関する比較例NO,’y (鋼c )、Nα8
(鋼D)、No−9(鋼E)では、プロセス条件が本発
明で定めた条件範囲内であっても、引張強さが70kg
f/mm2以下であるか、或いは更に破面遷移温度が一
80°C以上であり、目標とした特性が得られていない
(Field of Industrial Application) The present invention relates to a technology for manufacturing high-strength, high-toughness thick-walled steel plates that undergo welding. (Prior art and problems to be solved) Thick steel plates with high strength, high toughness, and good weldability are used as materials for large structures. A, ST MA710 is known as a steel that utilizes age precipitation hardening of Cu in an equivalent component system. This steel contains 1.0 to 1.3% of Cu, and high strength is obtained by precipitating Cu through aging treatment. However, in the case of the above-mentioned steel, when it is made into a thick steel plate with a thickness of 35 mm or more, it is difficult to ensure excellent low-temperature toughness (fracture surface transition temperature vTrs of -80"C or less) using conventional manufacturing methods. On the other hand, when manufacturing this type of steel sheet that requires high strength and high toughness, a method of controlled rolling followed by direct quenching has been proposed.However, when such a method is applied to the above steel, , it is necessary to apply a large cumulative reduction in the austenite low temperature range.As a result, the finishing rolling temperature is extremely low, below 800°C, and therefore, even if quenching is performed directly after rolling, the quenching effect is not sufficient. It is difficult to obtain a high tensile strength of 70 kgf/mm'' or more even if the aging precipitation hardening of Cu is used. Moreover, as the thickness of the steel plate increases, large amounts of alloying elements such as Mn, Cr, and Mo must be added to ensure strength, and as a result, the carbon equivalent of the steel increases, making it difficult to weld. There is a problem in that it is significantly impaired. For example, JP-A-60-59018 discloses only cases where the plate thickness is 30 mm or less. For the above reasons, it has been extremely difficult to manufacture a high-strength, high-toughness steel plate with a thickness of 35 mm or more and excellent weldability by utilizing Cu precipitation hardening. However, there is a method in which the finishing temperature of the rolling is set relatively high, such as s o o 'c or higher, and quenching is performed directly after the rolling is completed (
JP-A-62-256915, JP-A-61-149845) or reheating and quenching method (JP-A-61-1-4)
No. 94.30, No. 62-149845), but in the former case, there is a problem in whether a good balance of strength and low-temperature toughness can be obtained when the plate thickness is 35 mm or more, and in the latter case, it is difficult to obtain a good balance of strength and low-temperature toughness. There is a problem with varnish hair bubbling due to heating. The present invention was made under such circumstances, and
Utilizing Cu precipitation hardening with a low carbon equivalent component system, and applying controlled rolling to further improve low-temperature toughness, the plate thickness was reduced to 35 mm.
mm or more, has high strength with a tensile strength of 70 kgf/mm” or more, has high toughness with a fracture surface transition temperature of 180°C or less at the center of the plate thickness, and has high strength with excellent weldability. The object of the present invention is to provide a method for obtaining a high toughness thick copper plate. (Means for solving the problem) In order to achieve the above object, the present inventors have improved the effect of controlled rolling and directly Focusing on Nb, which has the effect of promoting transformation strengthening during quenching and precipitation hardening during tempering, we conducted extensive research on how to effectively utilize this.As a result, we found that while appropriately adjusting the chemical components, In particular, by appropriately controlling the rolling conditions at the rolling stage, we have discovered a method that can achieve the above objectives and produce high-strength, high-toughness thick steel plates with excellent weldability.Specifically, Mainly: (1) In order to improve weldability, the amount of C is 0.01 to 0.0.
(2) Contains 0.8 to 1.5% of Cu to increase strength, enhances the effect of controlled rolling, promotes transformation strengthening, and also contains Nb, which has a precipitation hardening effect. 0.010-0.060
(3) After sufficiently solid-dissolving Nb in the heating step, in the rolling step, the steel is first cooled at a cooling rate or higher without applying any rolling reduction, and then rolled. Based on these findings, we have conducted further experimental studies under various conditions, and have now completed the present invention. That is, in the present invention, C: 0.01 to 0.10%, Si
: 0.10-0.50%, Mn2 0.5-2.0%, 8Ω: 0.01-0.10%, Cu: 0, 8-1.5
%, Nb: 0.01~0.06%, Ti: 0.005~
0.020% and N: O, O' 15% or less, and if necessary, Ni: 3.0% or less, Cr: 1.0%
Below, Mo2 0.5% or less, V: 0.1% or less, B: O
, 0O30% or less and Ca: 0.0050% or less, and the balance is iron and unavoidable impurities, the temperature range in which Nb is sufficiently dissolved at 1100°C or higher. After heating, the slab is immediately cooled at a cooling rate of 20°C/min or more without applying any reduction until the slab surface temperature reaches a temperature range of 850 to 1000°C, and in subsequent rolling, a reduction of 60% or more is applied ( Manufacture of high-strength, high-toughness thick-walled steel plates with a thickness of 5 mm or more and excellent weldability, characterized by completing rolling at Ar3 transformation point temperature -30°C) or higher, immediately directly quenching, and further tempering. The gist is the method. The present invention will be explained in more detail below. (Function) First, the reasons for limiting the chemical components in the present invention are as follows. C: C is an effective element for increasing strength, and for that purpose 0.0
1% or more is required. However, from the viewpoint of ensuring toughness and preventing deterioration of weld cracking resistance, it is necessary to limit the upper limit to 0.10%. Therefore, the amount of C is 0.01 to 0.1
The range is 0%. Sl: Si is a deoxidizing element and needs to be added in an amount of 0.10% or more, but excessive addition deteriorates toughness, so the upper limit should be set at 0.10%.
It shall be 50%. Therefore, the amount of Si is 0°10-0.50
% range. Mn: Mn is effective in increasing strength, and for this purpose it is necessary to add 0.5% or more, but if it is added in excess of 2.0%, toughness deteriorates. Therefore, the amount of Mn is set in the range of 0.5% to 2.0%. Al: 80 is a deoxidizing element, and 0.01% or more is required, but excessive addition forms inclusions and deteriorates toughness, so the upper limit is set to 0.10%. Therefore, the amount of ΔΩ is 0.
The range is 0.01 to 0.10%. Nb: Nb is an important element that is the key point of the present invention. In other words, Nb is an element that suppresses recrystallization of austenite in a solid solution state, enhances the effect of controlled rolling, improves transformation strengthening by direct quenching, and precipitates during tempering, contributing to improvement of strength and toughness. be. Such an effect is 0.0
It is effective when the content is 1% or more, but if it exceeds 0.06%, the toughness of the weld zone deteriorates, which is not preferable. Therefore, N
The amount of b is in the range of 0.01 to 0.06%. Tj: T1 is an element that forms hardly soluble carbonitrides and suppresses the growth of austenite grains during slab heating or welding, and thus has the effect of improving the toughness of the base metal and weld zone. Also, c. By fixing N, there is also the effect of suppressing solid solution Nb from precipitating as carbon/nitride. 0 for that. 0.005% or more is required, but if it is added in excess of 0.020%, coarse inclusions will be formed and the toughness will deteriorate. Therefore, the amount of Ti is 0.005 to 0. The range is 0.020%. N: If N is added in excess of 0.015%, it will significantly deteriorate the toughness of the base metal and weld zone, so the amount of N should be 0.015%.
5% or less. Cu: Cu is an element effective for solid solution strengthening, precipitation strengthening, or transformation strengthening by improving hardenability. In order to exhibit these effects, it is necessary to add 0.8% or more. However, since excessive addition deteriorates toughness, the upper limit is set at 1.5%. Therefore, the amount of Cu is in the range of 0.8 to 1.5%. Each of the above elements is an essential component, but if necessary, Ni. Cr. Mo. V. One or more of B and Ca can be added in appropriate amounts. Although Ni has the effect of improving low-temperature toughness, it is expensive;
From the viewpoint of economy, it should be 3.0% or less. In addition, mainly for the purpose of increasing strength, Cr is added to 1.0% or less.
Mo 0.5% or less, ■ 0.1% or less, B 0, 0
It can be added at 0.30% or less. Further, Ca can be added in an amount of 0.0050% or less for the purpose of improving toughness. It should be noted that excessive addition of these elements exceeding the upper limit is undesirable because it deteriorates toughness and further deteriorates weldability. Next, the reasons for limiting the ingot heating and hot rolling conditions in the present invention will be described. When heating the slab, it is necessary to secure solid solution Nb, which effectively works to improve strength and toughness. For this purpose, it is necessary to heat it to at least 1100°C or higher. Next, hot rolling is performed, and the reason for limiting the rolling conditions is as follows. In general, Nb suppresses recrystallization of austenite in a solid solution state, so that rolling can refine crystal grains and is effective in improving toughness. However, the product thickness is 35mm
In the center of the thickness of a plate thicker than
It is difficult to improve toughness even by adding it. Therefore, in the present invention, rolling conditions are limited in order to provide a rolling effect to the center of the thickness of a thick material. That is, immediately after the above heating, the slab surface temperature reaches 850℃.
2 without applying pressure up to a temperature range of ~10oO℃.
It is cooled at a cooling rate of 0°C/min or more, and then rolled. This is the most important point of the invention. As described above, if the heated slab is immediately cooled, a large temperature difference will occur between the slab surface and the center, resulting in a difference in deformation resistance between the slab surface and the center. If rolling is applied in this state, the rolling effect on the center of the slab will be greater than in normal rolling where the temperature difference between the surface and center of the slab is small. Therefore, especially in steel containing Nb as a solid solution, it is possible to refine the grains by rolling and improve toughness. Furthermore, according to this method, since the heated slab is immediately cooled at a faster cooling rate than usual, it is possible to suppress the precipitation of Nb during cooling, which improves the effect of controlled rolling and improves toughness. At the same time, the strength can be significantly improved by promoting transformation strengthening during direct quenching and increasing the amount of Nb precipitation strengthening through tempering. For example, FIG. 1 shows an example of the results of a basic experiment.
〇, 8%Cu-0.4%Ni-0, 2%Mo-0,0
45%Nb-0.010%Ti-0,0045%N-0
, 035%AD, is a diagram showing the influence of the cooling stop temperature of the heated slab on strength and toughness when cooling is performed immediately after heating at a cooling rate of 20 ° C / min. be. The rolling completion temperature is approximately 750°C, the total reduction rate is 7o%, and after quenching, the rolling temperature is approximately 750°C.
Tempered with C. In the same figure, it can be seen that the strength tends to increase as the cooling stop temperature decreases, and the toughness tends to improve as the cooling stop temperature decreases. Through the above basic experiments, the bow tension strength 7, which is the objective of the present invention, was
It has been found that in order to achieve both 0 kgf/mm2 or higher and a fracture surface transition temperature of -80°C or lower, the cooling stop temperature needs to be 1000°C or lower. On the other hand, if the cooling stop temperature becomes too low, the deformation resistance of the slab surface becomes too large, making it difficult to secure a predetermined steel sheet shape in the subsequent rolling step. In order to prevent this, it is necessary to set the cooling stop temperature to 850° C. or higher. Further, the reduction in the rolling stage after stopping cooling imparts processing strain to the austenite, promotes refinement of the structure after transformation, and improves strength and toughness. Therefore, at least 6
0% reduction is required. In addition, the finish rolling finishing temperature is set at (Ar3 transformation point temperature - 30
℃) or higher. After rolling, the steel plate is immediately quenched directly. This is solid solution N
This is to maximize the effect of transformation strengthening by improving hardenability in b. Furthermore, this steel plate is subjected to a tempering treatment in order to obtain high strength by precipitating Nb present in a solid solution state after transformation. Next, examples of the present invention will be shown. (Example) A test steel having the chemical composition shown in Table 1 was melted and cast by a conventional method, and the obtained ingot was heated to the temperature shown in Table 2, and then under the conditions shown in the table. , cooling, rough rolling and finish rolling were performed, immediately quenched, and further tempered at 60°C. The mechanical properties (tensile strength TS, fracture surface transition temperature v T rs) of the obtained steel plate at the center of the plate thickness were investigated. The results are also listed in Table 2. As is clear from Table 2, Nα1(1
i1A), Nn 6 (Steel B), Nα'', 0 (Steel F),
Both Nα11 ([G) and Nα12 (Steel H) have a tensile strength of 70 kg f / mm2 or more, and the fracture surface transition temperature vTrs at the center of the plate thickness is 180 °C or less, providing an excellent strength-toughness balance. It can be seen that it has. Of course, since the chemical components, especially the amount of C, are low, the weldability is excellent. On the other hand, even if the steel has the same chemical composition as the example of the present invention,
At least one of the process conditions (heating, cooling, rolling conditions)
Comparative example where No. 2 is outside the scope of the present invention, i.e., No. 2
(Steel A)-Nn5 (Steel A) has a strength of 70 kgf/m
m2, and the fracture surface transition temperature at the center of the plate thickness is higher than 180°C. Also, comparative example NO,'y (steel c), Nα8 regarding steel C-E having a composition outside the chemical composition range of the present invention.
(Steel D) and No. 9 (Steel E) have a tensile strength of 70 kg even if the process conditions are within the range defined by the present invention.
f/mm2 or less, or even more so, the fracture surface transition temperature is 180°C or more, and the target characteristics are not obtained.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、適切な化学成分
を調整した鋼に、所定の温度に加熱したスラブを圧下を
加えることなく所定の温度域まで速い冷却速度で冷却し
、しかる後に特定の条件で圧延し、直ちに焼入れし、更
に焼もどしを施すので、板厚35mm以上で、引張強さ
70 kgf / mm2以上の高強度を有し、破面遷
移温度−80℃以下の高靭性を有し、強度−延性バラン
スに優れ、且つ溶接性の優れた高強度高靭性厚肉鋼板を
製造することができる。
(Effects of the Invention) As described in detail above, according to the present invention, a slab heated to a predetermined temperature is cooled to a predetermined temperature range at a high rate without applying any reduction to steel with appropriate chemical composition. It is cooled, then rolled under specific conditions, immediately quenched, and then tempered, so it has a high tensile strength of 70 kgf/mm2 or more at a plate thickness of 35 mm or more, and a fracture surface transition temperature of -80 It is possible to produce a high-strength, high-toughness, thick-walled steel plate that has high toughness of 0.degree. C. or lower, has an excellent strength-ductility balance, and has excellent weldability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加熱後スラブの冷却停止温度が強度、靭性に及
ぼす影響を示す図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
FIG. 1 is a diagram showing the influence of the cooling stop temperature of a slab after heating on strength and toughness. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.01〜0.1
0%、Si:0.10〜0.50%、Mn:0.5〜2
.0%、Al:0.01〜0.10%、Cu:0.8〜
1.5%、Nb:0.01〜0.06%、Ti:0.0
05〜0.020%及びN:0.015%以下を含有し
、残部が鉄及び不可避的不純物からなる鋼につき、11
00℃以上でNbが十分に固溶する温度範囲に加熱した
後、直ちにスラブ表面温度が850〜1000℃の温度
域まで圧下を加えることなく20℃/min以上の冷却
速度にて冷却し、その後の圧延において60%以上の圧
下を加えて(Ar_3変態点温度−30℃)以上で圧延
を完了し、直ちに直接焼入れを行い、更に焼もどし処理
を行うことを特徴とする板厚35mm以上で溶接性の優
れた高強度高靭性厚肉鋼板の製造方法。
(1) In weight% (the same applies hereinafter), C: 0.01 to 0.1
0%, Si: 0.10-0.50%, Mn: 0.5-2
.. 0%, Al: 0.01~0.10%, Cu: 0.8~
1.5%, Nb: 0.01-0.06%, Ti: 0.0
05 to 0.020% and N: 0.015% or less, with the balance consisting of iron and inevitable impurities, 11
After heating to a temperature range of 00°C or higher where Nb is sufficiently dissolved, the slab is immediately cooled at a cooling rate of 20°C/min or higher without applying pressure until the slab surface temperature reaches a temperature range of 850 to 1000°C, and then Welding with a thickness of 35 mm or more, characterized by applying a reduction of 60% or more in rolling, completing the rolling at a temperature of (Ar_3 transformation point temperature -30°C) or more, directly quenching immediately, and further tempering. A method for producing high-strength, high-toughness thick-walled steel plates with excellent properties.
(2)前記鋼が、Ni:3.0%以下、Cr:1.0%
以下、Mo:0.5%以下、V:0.1%以下、B:0
.0030%以下及びCa:0.0050%以下のうち
の1種又は2種以上を含有しているものである請求項1
に記載の方法。
(2) The steel has Ni: 3.0% or less and Cr: 1.0%
Below, Mo: 0.5% or less, V: 0.1% or less, B: 0
.. Claim 1: Contains one or more of Ca: 0.0030% or less and Ca: 0.0050% or less.
The method described in.
JP32179788A 1988-12-19 1988-12-19 Manufacture of high strength and high toughness thick steel plate having excellent weldability Pending JPH02166227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32179788A JPH02166227A (en) 1988-12-19 1988-12-19 Manufacture of high strength and high toughness thick steel plate having excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32179788A JPH02166227A (en) 1988-12-19 1988-12-19 Manufacture of high strength and high toughness thick steel plate having excellent weldability

Publications (1)

Publication Number Publication Date
JPH02166227A true JPH02166227A (en) 1990-06-26

Family

ID=18136524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32179788A Pending JPH02166227A (en) 1988-12-19 1988-12-19 Manufacture of high strength and high toughness thick steel plate having excellent weldability

Country Status (1)

Country Link
JP (1) JPH02166227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602885A (en) * 2013-10-22 2014-02-26 内蒙古包钢钢联股份有限公司 Low-alloy and high-strength steel plate and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602885A (en) * 2013-10-22 2014-02-26 内蒙古包钢钢联股份有限公司 Low-alloy and high-strength steel plate and production method thereof

Similar Documents

Publication Publication Date Title
CN108431272B (en) Steel sheet for low-temperature pressure vessel having excellent resistance to PWHT and method for producing same
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPH0277521A (en) Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction
JP3043519B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPH02205627A (en) Production of directly quenched type high tensile steel plate excellent in toughness
JPH02166227A (en) Manufacture of high strength and high toughness thick steel plate having excellent weldability
JPH0583607B2 (en)
JPH0215122A (en) Production of high strength and high toughness thick steel plate having excellent weldability
JPS63277721A (en) Manufacture of rail combining high strength with high toughness
JP3274028B2 (en) Manufacturing method of non-heat treated high strength high toughness hot forged parts
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JPH05271756A (en) Manufacture of thick steel plate for welded structure excellent in toughness at low temperature
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPH03223420A (en) Production of high strength steel
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPH02270913A (en) Manufacture of high toughness and high tension steel plate having low yield ratio
JP2000119747A (en) Production of high tensile strength steel plate small in difference of material in plate thickness direction
JP2708540B2 (en) Method for producing high-strength steel sheet mainly composed of ferrite structure
JPS6350424A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability