JPH02165668A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02165668A
JPH02165668A JP63321267A JP32126788A JPH02165668A JP H02165668 A JPH02165668 A JP H02165668A JP 63321267 A JP63321267 A JP 63321267A JP 32126788 A JP32126788 A JP 32126788A JP H02165668 A JPH02165668 A JP H02165668A
Authority
JP
Japan
Prior art keywords
layer
semiconductor substrate
insulating layer
resist
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63321267A
Other languages
Japanese (ja)
Other versions
JPH088307B2 (en
Inventor
Kunihiro Mori
森 邦弘
Katsuya Okumura
勝弥 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63321267A priority Critical patent/JPH088307B2/en
Publication of JPH02165668A publication Critical patent/JPH02165668A/en
Publication of JPH088307B2 publication Critical patent/JPH088307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce the size of a cell and the size of a chip by providing an insulating layer which is selectively formed at a position facing a one- conductivity type impurity region, and forming another impurity region having another conductivity type based on a step between the exposed surfaces of a substrate. CONSTITUTION:A B-implanted layer 4 is formed in a semiconductor substrate 1 or in an insulating layer 2 which is grown on the semiconductor substrate 1 with resist 3 as a mask. Thereafter, a silicon dioxide layer 5 is deposited only on the semiconductor substrate 1 or the insulating layer 2 covering the semiconductor layer 1. Then, the resist layer 3 is peeled away. With the insulating layer 5 as a mask, P ions are implanted, and both well regions 7 are formed. Si steps are formed by utilizing the difference in growing speeds of Si oxide films covering the P- and B-implanted layers. The level differences are utilized in the following steps. Thus the semiconductor substrate can be reduced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はセルファライン(Self Align)法に
よりP/N型の拡散層を形成した半導体装置に係わり、
特にD−RA)lを始め高集積度に形成された半導体装
置の周辺装置などに利用されるc/mosのP/Nウェ
ル(Twin Well)に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device in which a P/N type diffusion layer is formed by the Self Align method.
In particular, the present invention relates to c/mos P/N wells (Twin Wells) used in peripheral devices of highly integrated semiconductor devices such as D-RA).

(従来の技術) 現在使用されているc/mos構造のP/Nウェル方式
では、シリコン半導体基板に互いに隣接してPウェル領
域とNウェル領域を形成し、夫々に高濃度層のソース、
ドレイン領域更にゲートを設置してFET構造を得てい
る。このPウェル領域とNウェル領域は2回のPEP 
(Photo Engravingprocess)工
程により実現させていた。即ち第3図(a)〜(d)に
示すように、比抵抗ρ〜2.5ΩcmのN(100)基
板20に先ず1000オングストロームの熱酸化膜21
を形成後(第3図−a) 、Pウェル用レジスト22の
パターニングを行う。
(Prior art) In the currently used P/N well method of c/mos structure, a P well region and an N well region are formed adjacent to each other in a silicon semiconductor substrate, and a highly doped source layer,
A gate is further provided in the drain region to obtain an FET structure. This P-well region and N-well region are subjected to PEP twice.
This was achieved through the (Photo Engraving process) process. That is, as shown in FIGS. 3(a) to 3(d), a thermal oxide film 21 of 1000 angstroms is first formed on an N(100) substrate 20 with a specific resistance ρ~2.5 Ωcm.
After forming (FIG. 3-a), the P-well resist 22 is patterned.

次にレジストパターン22をマスクとして第1のイオン
種BをVacc=100KeV、Q=1.5 xlO’
3cmの条件で注入してN(100)基板20表面付近
にBイオン注入P層23を第3図−aに示ずように形成
する。続いて、レジストパターン22をマスクとし、N
84 Fにより熱酸化膜21に等方性エツチングを行っ
た後、レジストパターン22を剥離する。それから95
0℃のWet雰囲気(M素を数容量%含むNを主体とす
る)で酸化して、B注入領域と非注入領域間に50オン
グストロ一ム程度の段差24を形成する(第3図−b図
−b)。この段差はマスク合せ用として予めN型半導体
基板20に形成したアライメントマーク(Alignm
ent Mark)にも使用する。
Next, using the resist pattern 22 as a mask, the first ion species B is heated at Vacc=100KeV, Q=1.5xlO'
A B ion-implanted P layer 23 is formed near the surface of the N (100) substrate 20 as shown in FIG. 3-a by implanting at a depth of 3 cm. Next, using the resist pattern 22 as a mask, N
After performing isotropic etching on the thermal oxide film 21 using 84 F, the resist pattern 22 is peeled off. Then 95
A step 24 of about 50 angstroms is formed between the B implanted region and the non-implanted region by oxidizing in a wet atmosphere (mainly composed of N containing several volume percent of M elements) at 0° C. (Fig. 3-b). Figure-b). This step is an alignment mark (Alignm) previously formed on the N-type semiconductor substrate 20 for mask alignment.
Also used for ent Mark).

ところで、ツインウェル領域に必要なNウェル領域26
の形成には第3図−〇に示すように半導体基板20表面
に新たに被覆したレジスト層26の段差24をもとにパ
ターニングし、次にこのレジスト層26をマスクに第2
のイオン種PをVacc=160KeV、 Q=I×1
0130「2で注入してPイオン注入層23をN(10
0)基板20の地表面付近に形成する。
By the way, the N well region 26 necessary for the twin well region
To form the resist layer 26, as shown in FIG.
Vacc=160KeV, Q=I×1
0130 "2 implantation to form the P ion implantation layer 23 with N(10
0) Formed near the ground surface of the substrate 20.

その後、レジスト層26を溶除してから1190℃酸化
雰囲気(N主体で酸素I容母%含有)で150分のドラ
イブイン([)rive In)工程を行って第3図−
dの断面図に示すようなPウェル領域27.Nウェル領
域28からなるツインウェル構造を1qる。
Thereafter, after the resist layer 26 was dissolved, a drive-in process was performed for 150 minutes in an oxidizing atmosphere (mainly N and containing 1% oxygen) at 1190° C., as shown in FIG.
P-well region 27.d as shown in cross-section. A twin well structure consisting of an N well region 28 is shown in 1q.

この例ではP、Nウェル領域のドライブイン工程を一括
して施す例を示したが、各ウェル領域の表面濃度Nsと
拡散深さXjを調整するために夫々の注入後の2回実施
することもある。なお、第4図に明らかなように、両ウ
ェル領域の表面付近には反対導電型の不純物を導入して
高濃度層P、N層29゜30を形成してソース(S)、
ドレイン(0)及びゲート(G)からなるセルの母体を
作成するが、段差24を持つPウェル領域を基準とした
PEP工程による。
In this example, the drive-in process for the P and N well regions is performed all at once, but in order to adjust the surface concentration Ns and diffusion depth Xj of each well region, it is necessary to perform the drive-in process twice after each injection. There is also. As is clear from FIG. 4, impurities of opposite conductivity type are introduced into the vicinity of the surfaces of both well regions to form high concentration layers P and N layers.
A cell base consisting of a drain (0) and a gate (G) is created by a PEP process using the P well region having the step 24 as a reference.

(発明が解決しようとする問題点) 従来の技術側に明らかにしたように、Nウェル領域及び
S、D、G用のPEP工程はいずれもPウェル領域を基
準パターンとして行うので、Nウェル領域ならびにS、
 D、 G用のPEP工程のマスク合せは間接的になる
。例えば1.2μmルール(Rule)で作成した25
6にFull c/mosの現行設計基準では、第4図
に示した両ウェル領域の境界と高濃度層29.30端と
両ウェル領域27.28端部間の距離a、bはa+b=
3μm(a=b=1.5μm)としてマスク合せの余裕
を取っている。
(Problems to be Solved by the Invention) As clarified in the conventional technology, the PEP process for the N-well region and S, D, and G is performed using the P-well region as a reference pattern. and S,
Mask alignment in the PEP process for D and G is indirect. For example, 25 created using the 1.2 μm rule (Rule)
6. According to the current design standard for Full c/mos, the distances a and b between the boundaries of both well regions, the ends of the high concentration layer 29.30, and the ends of both well regions 27.28 shown in FIG. 4 are a+b=
A margin of 3 μm (a=b=1.5 μm) is provided for mask alignment.

一方、電気的には距離aとbは、パンチスル(Punc
h Through)耐圧とラッチアップ(Latch
 Up)耐性の観点からa=b=1μmで十分であるが
、上記のようにNウェル領域用PEP工程が必要なため
に間接合せ用とし各々0.5μmずつマージン(+ar
gine)を取ってa=b=1.5 μmの設計になッ
テいる。
On the other hand, electrically, the distances a and b are
h Through) withstand voltage and latch up (Latch
Up) From the viewpoint of resistance, a = b = 1 μm is sufficient, but since the PEP process for the N-well region is required as described above, the margin (+ar
gin) and design a = b = 1.5 μm.

ところで、256にFull c/mos程度の集積度
のセル構造は縦が21μmなので、PEP工程用の合せ
余裕分1μmの寄与はたかだか数%にしかならず、将来
実施が確実視されており縦長5μmと予想される0、5
μmルールでは、PEP工程用の合せ余裕分がセルサイ
ズに及ぼす影響が大きくなる。
By the way, the cell structure with a degree of integration of Full C/MOS in 256 has a vertical length of 21 μm, so the contribution of 1 μm of allowance for the PEP process is only a few percent at most, and it is expected that it will be implemented in the future and the vertical length will be 5 μm. 0,5
In the μm rule, the alignment margin for the PEP process has a large influence on the cell size.

なお、1.2μmルールによる半導体装置製造用PEP
工程では、直接合せが0.3μm5間接合せ0.5μm
h’a’)計基準であり、アライナ−ではこの寸法によ
り実際の作業を行う。
In addition, PEP for semiconductor device manufacturing according to the 1.2 μm rule
In the process, direct bonding is 0.3 μm, and bonding is 0.5 μm between 5
This is the h'a') measurement standard, and the aligner performs actual work using this dimension.

本発明はこのような事情から成されたもので、特に合せ
余裕マージンを小さくしてセルサイズならびにチップサ
イズの縮小につなげ、更にI PEP工程を省略して生
産性の向上にも寄与させる。
The present invention has been developed in view of the above circumstances, and in particular, it reduces the alignment margin, leading to a reduction in cell size and chip size, and also contributes to improving productivity by omitting the IPEP process.

[発明の構成] (課題を解決するための手段) 本発明は半導体基板に互いに隣接して形成する導電型の
異なる不純物領域と、この−5導電型の不純物領域に対
向する位置に選択的に形成する絶縁物層と、この絶縁物
層と露出した前記半導体基板表面部分間の段差をもとに
形成する他方導電型の不純物領域からなる半導体装置に
特徴がある。
[Structure of the Invention] (Means for Solving the Problem) The present invention provides impurity regions of different conductivity types that are formed adjacent to each other in a semiconductor substrate, and a selective impurity region that faces the -5 conductivity type impurity region. The semiconductor device is characterized by an insulating layer formed and an impurity region of the other conductivity type formed based on a step between the insulating layer and the exposed surface portion of the semiconductor substrate.

(作 用) 本発明に係わる半導体装置は、使用する半導体基板また
は半導体基板に成長させた絶縁物層に、ウェル領域形成
用のレジストのパターニングを行い、レジストをマスク
とするBのイオン注入によりB注大層を形成する。
(Function) In the semiconductor device according to the present invention, a resist for forming a well region is patterned on the semiconductor substrate used or an insulating layer grown on the semiconductor substrate, and B is ion-implanted using the resist as a mask. Forms a large layer.

その後、プラズマまたは中性種雰囲気で表面処理を施し
てから例えばLPO法や陽極酸化法などによりレジスト
層には成長せず、半導体基板または半導体基板を被覆す
る絶縁物層にだけ2M化けい素層を堆積させる。次いで
レジスト層を剥離してからこの絶縁物層をマスクとして
 Pのイオン注入を行って両ウェル領域をセルファライ
ン(SelfAlign)法により形成する。
After that, after performing surface treatment in plasma or neutral species atmosphere, for example, by LPO method or anodic oxidation method, the 2M silicon oxide layer does not grow on the resist layer, but only on the semiconductor substrate or the insulating layer covering the semiconductor substrate. deposit. Next, after peeling off the resist layer, P ions are implanted using this insulating layer as a mask, and both well regions are formed by the Self Align method.

この P及びB注入層上を被覆するSiの酸化膜成長速
度差を利用してSi段差を形成し、以後の工程ではこの
段差を利用すると共に、半導体基板の縮小が可能になる
大きな利点がある。
This difference in the growth rate of the Si oxide film covering the P and B injection layers is used to form a Si step, and this step is used in subsequent steps, which has the great advantage of making it possible to reduce the size of the semiconductor substrate. .

(実施例) (1)  第1図を参照して本発明の一実施例を説明す
る。半導体基板1に8注入層を形成するまでは従来例第
3図a、bと同様な製法なので詳細な説明は省略し、ま
た第1図でも対応する図面は割愛した。
(Embodiment) (1) An embodiment of the present invention will be described with reference to FIG. Since the manufacturing method is the same as that of the conventional example shown in FIGS. 3A and 3B until the 8 injection layers are formed on the semiconductor substrate 1, a detailed explanation is omitted, and the corresponding drawings are also omitted in FIG.

即ら、比抵抗ρ〜2.5オームcmのN(100)半導
体基板1の表面には1000オングストロームの熱酸化
膜2を被覆後、被覆したレジストにパターン3を形成す
る。このレジストパターン層3をマスクとしてB注入層
4を半導体基板1に形成する。
That is, a thermal oxide film 2 of 1000 angstroms is coated on the surface of an N(100) semiconductor substrate 1 having a specific resistance .rho.~2.5 ohm-cm, and then a pattern 3 is formed on the coated resist. Using this resist pattern layer 3 as a mask, a B injection layer 4 is formed on the semiconductor substrate 1.

次いで、レジストパターン層3の表面をOプラズマ(P
lasma)雰囲気に30秒間さらして表面処理後、珪
フッ素過飽和溶液から二酸化珪素層を下記反応式により
析出させるLP[)法により、半導体基板1表面を被覆
した熱酸化膜2にだけ6000オングストロームのしP
D(LiqLIid phase Depositio
n)法による二酸化珪素層5(以後絶縁物層と記載する
)を第1図−aのように堆積させる。
Next, the surface of the resist pattern layer 3 is exposed to O plasma (P
After surface treatment by exposing the semiconductor substrate 1 to a thermal oxide film 2 for 30 seconds, a 6000 angstrom layer is deposited only on the thermal oxide film 2 covering the surface of the semiconductor substrate 1 using the LP method, in which a silicon dioxide layer is deposited from a silicon fluorine supersaturated solution using the following reaction formula. P
D (LiqLIid phase Depositio
A silicon dioxide layer 5 (hereinafter referred to as an insulating layer) is deposited by method n) as shown in FIG. 1-a.

このLPG 21化珪素層は、例えば珪フッ酸の2酸化
珪素過飽和溶液から析出し、その反応式はH2S ! 
F+H20=2S i 02 +HFである。
This LPG silicon 21ide layer is deposited, for example, from a supersaturated silicon dioxide solution of silicofluoric acid, and its reaction formula is H2S!
F+H20=2S i 02 +HF.

また、酸素プラズマか、フレオンガス放電により発生す
る中性種かによる前処理(ChemicalDryEt
ching)を施したレジストには、上記反応式により
生成されるLPo 2 M化珪素層は析出しにくいこと
が確認されている。
In addition, pretreatment using oxygen plasma or neutral species generated by Freon gas discharge (Chemical DryEt
It has been confirmed that the LPo 2 M silicon oxide layer produced by the above reaction formula is difficult to precipitate on the resist subjected to the above reaction formula.

次にレジストパターン層1を剥離し、この絶縁物層5を
マスクにして Pイオンの注入をvacc=160 K
eV、Q=I X10X1013Cの条件で行ってP注
入層6を第1図−bのように形成する。
Next, the resist pattern layer 1 is peeled off, and using this insulating layer 5 as a mask, P ions are implanted at vacc=160K.
The P injection layer 6 is formed as shown in FIG. 1-b under the conditions of eV and Q=I.times.10.times.10.sup.13C.

更ニ、1190°CN +Q (765B)(7)ff
囲気テウエルドライブイン工程を行い、8注入層4とP
注入層6によるNウェル領域7とPウェル領域8を自己
整合により第1図−〇に示すように形成する。この結果
、半導体基板1にはPウェル領域6とNウェル領域4が
互いに隣接して形成される。
Sarani, 1190°CN +Q (765B) (7)ff
Perform the ambient Tewel drive-in process, and add 8 injection layers 4 and P
An N well region 7 and a P well region 8 are formed by self-alignment using the injection layer 6 as shown in FIG. 1--. As a result, P well region 6 and N well region 4 are formed adjacent to each other in semiconductor substrate 1.

この1190’CN202 (7容母%)の雰囲気によ
るドライブ イン工程では、P注入層6を被覆する熱酸
化膜2とNウェル領域4を覆う絶縁物層5の成長速度差
により〜500オングストローム程度のシリコン段差が
第1図Cのように形成される。
In this drive-in process using an atmosphere of 1190'CN202 (7% by volume), the difference in growth rate between the thermal oxide film 2 covering the P injection layer 6 and the insulating layer 5 covering the N well region 4 results in a growth of approximately 500 angstroms. A silicon step is formed as shown in FIG. 1C.

この段差は以後のソース、ドレイン、ゲートのPEP工
程時のアライメントに利用するので、両ウェル層のマス
ク合せ工程は要らなくなり、工数削減及び半導体基板の
縮小につながる。
Since this step is used for alignment during the subsequent PEP process for the source, drain, and gate, the mask alignment process for both well layers is no longer necessary, leading to a reduction in the number of steps and a reduction in the size of the semiconductor substrate.

(2)上記実施例では半導体基板に成長させた熱酸化膜
に被覆したレジストのバターニング工程以降のプロセス
を説明したが、半導体基板に直接被着したレジストをも
とにして上記のプロセスを施しても何等差支えない。
(2) In the above example, the process after the patterning step of the resist coated on the thermal oxide film grown on the semiconductor substrate was explained, but the above process was performed based on the resist directly deposited on the semiconductor substrate. It doesn't make any difference.

(3) LPo法に代えて陽極酸化法による例を説明す
る。
(3) An example using an anodic oxidation method instead of the LPo method will be explained.

即ち実施例1におけるB注入層の形成1麦、レジストパ
ターン層3をマスクとして熱酸化膜2を除去し、次にN
メチルアセトアミド、KNO3、URイオン水からなる
混合溶液により半導体基板を陽極酸化(メツキ)して二
酸化珪素膜を形成し、この後は、実施例1と全く同様な
工程によりツインウェル領域を備えた半導体装置を形成
する、重視を避けるために説明は省略する。
That is, in the first step of forming the B injection layer in Example 1, the thermal oxide film 2 is removed using the resist pattern layer 3 as a mask, and then the N injection layer is formed.
A semiconductor substrate is anodized (plated) with a mixed solution consisting of methylacetamide, KNO3, and UR ionized water to form a silicon dioxide film, and after this, a semiconductor with twin well regions is formed by the same process as in Example 1. The description of the device is omitted to avoid overemphasizing it.

このような工程により形成されたP/Nツインウェル領
域には、高濃度層を第4図のように設置してFETに必
要なソースとドレインを形成する。
In the P/N twin well region formed by such a process, a high concentration layer is placed as shown in FIG. 4 to form a source and a drain necessary for the FET.

[発明の効果] 第2図は縦軸にN+−Nウェル耐圧歩留χを、横軸には
N+−Nウェル間隔(マスク上の寸法)を取って従来例
を実線、本発明は点線で示したが、従来例では1.45
μm以上のN+−Nウェル間隔で100%の歩留りが得
られるのに対して、本発明では1.15μm以上で10
0%の歩留りが得られている。
[Effects of the Invention] In Figure 2, the vertical axis shows the N+-N well breakdown voltage yield χ, and the horizontal axis shows the N+-N well spacing (dimensions on the mask), with the conventional example shown as a solid line and the present invention shown as a dotted line. However, in the conventional example, it is 1.45
While a 100% yield can be obtained with an N+-N well spacing of 1.15 μm or more, the present invention
A yield of 0% has been obtained.

更に256にFull c/mosでは第4図にあるa
+bにして0.6μm分のセル寸法が縮小でき、つまり
0.6μm721μm=3%のチップ寸法が小さくなる
Furthermore, in 256 and Full c/mos, a shown in Figure 4
+b, the cell size can be reduced by 0.6 μm, that is, the chip size can be reduced by 0.6 μm721 μm=3%.

それに加えて、将来のセル寸法微細化には本発明に係わ
るセルファラインツインウェル構造の効果はより大きく
なる。
In addition, the effect of the cell line twin well structure according to the present invention will be even greater in future miniaturization of cell dimensions.

更に又、ウェル工程を2回から1回に減らせたので、生
産性及びコスト面でも有利になることは明白である。
Furthermore, since the number of well steps can be reduced from two to one, it is clear that there are advantages in terms of productivity and cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜Cは本発明の一実施例の工程を示す断面図、
第2図はこの工程により製造した半導体メモリ装置の特
性を示す曲線図、第3図a−dは従来の製造工程の断面
図、第4図は従来のツインウェル構造断面図である。 1:半導体基板  2;絶縁物層 7.8:ウェル領域 代理人 弁理士 大 胡 典 夫 〜−N7−レ面1屋歩斎 tX) つ−
FIGS. 1A to 1C are cross-sectional views showing the steps of an embodiment of the present invention;
FIG. 2 is a curve diagram showing the characteristics of a semiconductor memory device manufactured by this process, FIGS. 3a to 3d are sectional views of a conventional manufacturing process, and FIG. 4 is a sectional view of a conventional twin well structure. 1: Semiconductor substrate 2; Insulator layer 7. 8: Well area agent Patent attorney Norio Ogo - N7 - Le Men Ichiya Fusai tX) -

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に互いに隣接して形成する導電型の異なる不
純物領域と、この一方導電型の不純物領域に対向する位
置に選択的に形成する絶縁物層と、この絶縁物層と露出
した前記半導体基板表面部分間の段差をもとに形成する
他方導電型の他の不純物領域を具備することを特徴とす
る半導体装置
impurity regions of different conductivity types formed adjacent to each other on a semiconductor substrate; an insulating layer selectively formed at a position opposite to the impurity region of one conductivity type; and the insulating layer and the exposed surface of the semiconductor substrate. A semiconductor device comprising another impurity region of the other conductivity type formed based on a step difference between parts.
JP63321267A 1988-12-20 1988-12-20 Method for manufacturing semiconductor device Expired - Fee Related JPH088307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63321267A JPH088307B2 (en) 1988-12-20 1988-12-20 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321267A JPH088307B2 (en) 1988-12-20 1988-12-20 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02165668A true JPH02165668A (en) 1990-06-26
JPH088307B2 JPH088307B2 (en) 1996-01-29

Family

ID=18130663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321267A Expired - Fee Related JPH088307B2 (en) 1988-12-20 1988-12-20 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH088307B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158265A (en) * 1984-06-15 1986-03-25 ハリス コーポレーシヨン Method of producing integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158265A (en) * 1984-06-15 1986-03-25 ハリス コーポレーシヨン Method of producing integrated circuit

Also Published As

Publication number Publication date
JPH088307B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
EP0337823A2 (en) MOS field effect transistor having high breakdown voltage
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6360549B2 (en)
KR0170436B1 (en) Method of manufacturing mosfet
JPH02165668A (en) Semiconductor device
JP3063276B2 (en) Method for manufacturing semiconductor device
KR19990026904A (en) Manufacturing Method of Semiconductor Device
JP2790167B2 (en) Semiconductor device and manufacturing method thereof
JPH03297147A (en) Manufacture of semiconductor device
JPH05291573A (en) Semiconductor device and manufacture thereof
JPH0212960A (en) Manufacture of semiconductor device
JPH06163576A (en) Manufacture of semiconductor device
JP3309529B2 (en) Method for manufacturing semiconductor device
JPH05175443A (en) Semiconductor device and manufacture thereof
JP3208952B2 (en) Manufacturing method of high voltage transistor
JP2001168208A (en) Method of manufacturing field effect transistor
JPS60134465A (en) Manufacture of semiconductor device
JPH02189965A (en) Manufacture of semiconductor device
JPH025434A (en) Manufacture of field-effect transistor
JPS60235437A (en) Manufacture of semiconductor device
JPS61156772A (en) Manufacture of field-effect transistor
JPH04354328A (en) Production of semiconductor device
JPS61135135A (en) Semiconductor device
JPH08204023A (en) Manufacture of semiconductor device
JPH03108727A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees