JPH02164075A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH02164075A
JPH02164075A JP63321297A JP32129788A JPH02164075A JP H02164075 A JPH02164075 A JP H02164075A JP 63321297 A JP63321297 A JP 63321297A JP 32129788 A JP32129788 A JP 32129788A JP H02164075 A JPH02164075 A JP H02164075A
Authority
JP
Japan
Prior art keywords
gate
metal
film
insulating film
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63321297A
Other languages
Japanese (ja)
Inventor
Tadayuki Kimura
忠之 木村
Tomotaka Matsumoto
友孝 松本
Yasuyoshi Mishima
康由 三島
Kenichi Oki
沖 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63321297A priority Critical patent/JPH02164075A/en
Publication of JPH02164075A publication Critical patent/JPH02164075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To shift threshold value in the positive direction without deteriorating a rising the characteristic by having structure, where a first metal film is opposing to a second metal film connected to a gate insulating film through an interlayer insulating film. CONSTITUTION:A gate electrode G is made of a MIM(metal-insulator-metal) construction, where an interlayer insulating film 5 is interposed between a first metal layer 3 and a second metal layer 4. Then, the gate electrode G is led out outside as an electrode to impress gate voltage on the first metal film 3, while the second metal 4 is made to oppose to an operating semiconductor layer 7 through a a gate insulating film 6. In this constitution, when gate voltage Vc is impressed on the first metal film 3 from outside, the second metal film 4 works as a true gate electrode and this potential becomes true gate voltage VGO. Thereby, threshold value can be shifted in the positive direction without deteriorating a rising characteristic.

Description

【発明の詳細な説明】 〔(既  要〕 液晶駆動用の薄膜トランジスタに関し、薄膜トランジス
タの立ちhがり特性を悪化させることなく、閾値を正方
向にシフトさせることを目的とし、 ゲート絶縁膜を介して動作半導体層と対向するゲート電
極が、ゲート電圧を印加するための電極として外部に導
出された第1の金属膜と前記ゲート絶縁膜と接する第2
の金属膜とが眉間絶縁膜を介して対向する積層構造をな
すよう構成する。
[Detailed Description of the Invention] [(Already required)] With respect to a thin film transistor for driving a liquid crystal, the purpose is to shift the threshold value in the positive direction without deteriorating the rise characteristics of the thin film transistor, and to operate the thin film transistor through a gate insulating film. A gate electrode facing the semiconductor layer is in contact with a first metal film led out to the outside as an electrode for applying a gate voltage and a second metal film in contact with the gate insulating film.
The metal film is configured to form a laminated structure in which the metal films face each other with the glabella insulating film interposed therebetween.

〔産業上の利用分野〕[Industrial application field]

本発明は、液晶駆動用の薄膜トランジスタに関する。 The present invention relates to a thin film transistor for driving a liquid crystal.

表示セルを薄膜トランジスタで駆動するアクティブマト
リクス型表示装置は、単純マトリクス型表示装置と共に
、薄形の情報端末用表示装置として使用されており9表
示媒体としては液晶が多く用いられている。この薄膜ト
ランジスタマトリクス駆動液晶表示装置は、大容量で見
易い階調表示や動画表示が行えることから、ポケットT
Vや各種OAR器の表示装置として盛んに開発が進めら
れている。
Active matrix display devices in which display cells are driven by thin film transistors are used, along with simple matrix display devices, as thin display devices for information terminals, and liquid crystal is often used as the display medium. This thin-film transistor matrix-driven liquid crystal display device has a large capacity and can display easy-to-see gradations and moving images, so it is suitable for Pocket T.
It is being actively developed as a display device for V and various OAR devices.

上記2つの型を比較すると、ライン数の増加に伴い表示
容量が増大した場合、単純マトリクス型では駆動のデユ
ーティ比が低下し、コントラストが低下や視野角の減少
をきたすが、アクティブマトリクス型では多数の画素を
それぞれ独立に駆動することができるので、このような
問題は生じないという利点がある。
Comparing the above two types, when the display capacity increases with the increase in the number of lines, the simple matrix type decreases the driving duty ratio, resulting in a decrease in contrast and viewing angle, but the active matrix type has a large number of lines. Since each pixel can be driven independently, there is an advantage that such a problem does not occur.

一方、アクティブマトリクス型の構造の複雑さから生じ
る製造歩留りの低下やコストが高くなるといった問題に
対しては、スキャンパスラインとデータバスラインを、
液晶を挟んで対向配置する別個の基板に分離して形成し
、両パスラインの交叉を無くした対向マトリクス方式が
開発されている。
On the other hand, in order to solve problems such as decreased manufacturing yield and increased costs caused by the complexity of the active matrix type structure, scan path lines and data bus lines have been developed.
A facing matrix method has been developed in which the liquid crystal is separated and formed on separate substrates that are placed facing each other with the liquid crystal interposed therebetween, thereby eliminating the intersection of both pass lines.

更に、各液晶セルを駆動する薄膜トランジスタの制御電
極(ゲート)と被制御電極の一方(ドレイン)とを、そ
の液晶セルの行に対応するスキャンパスラインと、走査
順位が次位の隣接スキャンパスラインに接続して、コモ
ンパスラインを不要化し、基板Hにおけるパスラインの
交叉を完全に無くしたゲート接続対向マトリクス方式の
液晶表示装置が特願昭61−212696号にて提案さ
れている。
Furthermore, the control electrode (gate) and one of the controlled electrodes (drain) of the thin film transistor that drives each liquid crystal cell are connected to the scan path line corresponding to the row of the liquid crystal cell and the adjacent scan path line with the next highest scanning order. Japanese Patent Application No. 61-212696 proposes a gate-connected facing matrix type liquid crystal display device which eliminates the need for a common pass line and completely eliminates crossing of pass lines on the substrate H.

〔従来の技術〕[Conventional technology]

第5図は上記ゲート接続対向マトリクス方式のアクティ
ブマトリクス型液晶表示パネルの分解斜視図である。
FIG. 5 is an exploded perspective view of the gate-connected facing matrix type active matrix liquid crystal display panel.

同図に見られる如(、上記方式の液晶表示パネルは、ガ
ラス基板1上に、表示電極Eとこれに対応付けられた薄
膜トランジスタ(TPT)2がマトリクス状に配列され
、その各行に対応してスキャンパスラインSBが配設さ
れてTPT基板Pを構成し、これに対向して配置された
今一つのガラス基板1°の上記TFT基板Pに対向する
面に、h記表示電極已に対向する対向電極を兼ねたデー
タバスラインDBが、マトリクスの各列に対応して配列
されて対向基板P°を構成する。そして、このTPT基
板lと対向基板1”との間に液晶を挟持して、液晶表示
パネルを構成する。
As can be seen in the figure, in the liquid crystal display panel of the above method, display electrodes E and thin film transistors (TPT) 2 corresponding to the display electrodes E are arranged in a matrix on a glass substrate 1, and the display electrodes E and the thin film transistors (TPT) 2 corresponding to the electrodes are arranged in a matrix. A scan path line SB is arranged to constitute a TPT substrate P, and another glass substrate disposed opposite thereto is placed on the surface facing the TFT substrate P at an angle of 1°. Data bus lines DB, which also serve as electrodes, are arranged corresponding to each column of the matrix to constitute a counter substrate P°.A liquid crystal is sandwiched between the TPT substrate l and the counter substrate 1''. Constitutes a liquid crystal display panel.

更に、TPT基板P側では、各液晶セルを駆動するTP
T2の制御電極であるゲート電極Gは、その液晶セルが
属する行のスキャンパスラインSBに接続し、2つの被
制御電極の一方(説明の便宜トこれをドレイン電極と呼
ぶ)Dを走査順位が次位の隣接スキャンパスラインSB
’に接続し、他方(これをソース電極と呼ぶ)Sは表示
電極Eに接続する。
Furthermore, on the TPT substrate P side, a TP that drives each liquid crystal cell
The gate electrode G, which is the control electrode of T2, is connected to the scan path line SB of the row to which the liquid crystal cell belongs, and one of the two controlled electrodes (for convenience of explanation, this will be called the drain electrode) D is connected to the scan path line SB of the row to which the liquid crystal cell belongs. Next adjacent scan path line SB
', and the other S (which is called the source electrode) is connected to the display electrode E.

このようにスキャンパスラインSBとデータバスライン
DBとは直交配置となるように形成されるが、これらは
対向配置した一対のガラス基板の一方と他方に別々に形
成されるので、両パスラインの交叉がなく、更に、ドレ
イン電極りを隣接スヤンバスラインSB’に接続してい
るので、コモンパスラインが不要となり、TPT基板P
上で一切ラインの交叉部をなくすことが出来た。
In this way, the scan path line SB and the data bus line DB are formed so as to be orthogonal to each other, but since they are formed separately on one side and the other side of a pair of glass substrates arranged opposite to each other, both path lines There is no crossover, and since the drain electrode is connected to the adjacent solar bus line SB', there is no need for a common path line, and the TPT substrate P
I was able to eliminate any line intersections at the top.

従ってこの方式では断線不良の大きな原因となるライン
の交叉が存在しないので、製造が容易で製造歩留りが向
上するという利点を有する。
Therefore, this method has the advantage of being easy to manufacture and improving the manufacturing yield because there is no crossing of lines which is a major cause of disconnection defects.

−力持性的には、TPTがエンハンスメント型であるこ
とから、ゲートバイアスが0〔■〕の時のオフ電流が充
分に小さい(IQ−II〜IQ−1mA以下)ことが必
要であり、そのためには、闇値電圧を正の方向にシフト
させることを要する。
- For power retention, since the TPT is an enhancement type, it is necessary that the off-state current when the gate bias is 0 [■] is sufficiently small (below IQ-II to IQ-1 mA); requires shifting the dark value voltage in the positive direction.

〔発明が解決しようとする課題] このようにアクティブマトリクス型の表示装置において
は、表示セルを駆動する薄膜トランジスタの閾値電圧を
所望の値に制御する必要がある。
[Problems to be Solved by the Invention] In the active matrix display device as described above, it is necessary to control the threshold voltage of the thin film transistor that drives the display cell to a desired value.

、上記閾値電圧は、本来はゲート絶縁膜の材質によって
変化するものである。しかし、絶縁膜の種類や膜質を変
えるだけでは、闇値をシフトさせることはできても、立
ち一ヒかり特性を悪化させる場合が多く、所期の目的を
充分達成することは困難である。
The above threshold voltage originally changes depending on the material of the gate insulating film. However, by simply changing the type or quality of the insulating film, although it is possible to shift the dark value, it often deteriorates the start-up characteristics, making it difficult to fully achieve the intended purpose.

本発明は、薄膜トランジスタの立ち上がり特性を悪化さ
せることなく、闇値を正方向にシフトさせることを目的
とする。
An object of the present invention is to shift the dark value in the positive direction without deteriorating the rise characteristics of a thin film transistor.

〔課題を解決するための手段] 本発明では第1図(a)に示す如く、ゲート電極Gを第
1の金属膜3と第2の金属膜4の間に層間絶縁膜5を介
在させたMIM(金属−絶縁物−金属)構造とし、この
ゲート電極Gを、第1の金属膜3をゲート電圧を印加す
るための電極として外部に導出し、第2の金属膜4をゲ
ート絶縁膜6を介して動作半導体層7と対向させる。そ
の他は通常の薄膜トランジスタと同様にしてよい。即ち
、8はn″a−3t層のようなコンタクト層、9はTi
膜のような導電膜、SおよびDはソース・ドレイン電極
、10はチャネル保護膜である。
[Means for Solving the Problems] In the present invention, as shown in FIG. 1(a), the gate electrode G is formed by interposing an interlayer insulating film 5 between the first metal film 3 and the second metal film 4. The gate electrode G has a MIM (metal-insulator-metal) structure, and the first metal film 3 is led out to the outside as an electrode for applying gate voltage, and the second metal film 4 is connected to the gate insulating film 6. The active semiconductor layer 7 is opposed to the active semiconductor layer 7 via the active semiconductor layer 7. The rest may be the same as a normal thin film transistor. That is, 8 is a contact layer such as n''a-3t layer, 9 is Ti
A conductive film such as a film, S and D are source/drain electrodes, and 10 is a channel protective film.

このように構成して、第1の金属膜に外部からゲート電
圧■6を印加するが、第2の金属膜が真のゲー)・電極
として働き、これの電位が真のゲート電圧■。。となる
With this structure, a gate voltage (6) is externally applied to the first metal film, but the second metal film acts as a true gate electrode, and its potential is the true gate voltage (2). . becomes.

〔作 用〕[For production]

ゲート電極を上記MIM構造とした場合には、外部から
印加したゲート電圧■。の大きさによって、真のゲート
電圧■6゜と上記ゲート電圧V、との関係が異なる。
When the gate electrode has the above-mentioned MIM structure, the externally applied gate voltage ■. The relationship between the true gate voltage 6° and the gate voltage V varies depending on the magnitude of .

即ち、L記MIM構造は、外部から印加したゲート電圧
■6が比較的小さい間は、平行平板コンデンサを構成し
ている。従って第1図(b)に示すように、これの容F
ik CMと、第2の金属膜4とゲート絶縁膜6を介し
て対向する動作半導体層7とで構成されるコンデンサの
容1c+ 、および動作半導体層中に空乏層が広がるこ
とにより形成される容1 c tとが直列接続されてい
るので、TPTの各電極に電圧を印加した場合、その電
圧は上記3つの容量で分割される。そのため真のゲート
電圧は■。。は■。に比べてかなり小さくなる。
That is, the L MIM structure constitutes a parallel plate capacitor while the externally applied gate voltage 6 is relatively small. Therefore, as shown in Figure 1(b), the size F
ik CM, a capacitance 1c+ of a capacitor constituted by a second metal film 4 and an active semiconductor layer 7 facing each other with a gate insulating film 6 in between, and a capacitance formed by the expansion of a depletion layer in the active semiconductor layer. 1 ct are connected in series, so when a voltage is applied to each electrode of the TPT, the voltage is divided by the three capacitors. Therefore, the true gate voltage is ■. . ■. It is considerably smaller than .

しかし■6がある値を越えて太き(なると、トンネル効
果が生じてMIM構造の容1tcイは零になり、■。。
However, ■When 6 becomes thicker than a certain value, a tunnel effect occurs and the capacity of the MIM structure becomes zero, and ■.

はvfiに近づいて行く。第2図に上記vGに対する■
。。の関係を示す。
approaches the vfi. Figure 2 shows ■ for the above vG.
. . shows the relationship between

このように本発明の構成では、真のゲート電圧V、は、
外部からゲート電極に印加する電圧ve。
In this way, in the configuration of the present invention, the true gate voltage V is
Voltage ve applied to the gate electrode from the outside.

が低い間は真のゲート電圧は著しく小さくなるので、オ
フ電流を増大させることがなく、VS2がある値をこし
て増大すると、■。と■。。との差は相対的に減少して
いくので、TPTに流れる電流は急速に増大する。従っ
て、TPTの電圧−電流特性の飽和電流を悪化すること
なく、閾値のみを正方向にシフトさせたことになる。
Since the true gate voltage becomes extremely small while VS2 is low, the off-state current does not increase, and when VS2 increases beyond a certain value, ■. and ■. . Since the difference between TPT and TPT decreases relatively, the current flowing through TPT increases rapidly. Therefore, only the threshold value is shifted in the positive direction without deteriorating the saturation current of the voltage-current characteristic of the TPT.

なお、ここでMIM構造の容量は電圧によって変化しな
ければならないことから、絶縁膜の厚さはおよそ50〜
200人となる。
Note that since the capacitance of the MIM structure must change depending on the voltage, the thickness of the insulating film should be approximately 50 to 50 mm.
There will be 200 people.

〔実 施 例〕〔Example〕

以下本発明の一実施例をその製造工程とともに第3面(
a)〜(C)により説明する。
An embodiment of the present invention will be described below along with its manufacturing process on the third page (
This will be explained using a) to (C).

まず(a)に示すように、ガラス基板1上にTi膜をス
パッタリング法を用いて約500人の厚さに成膜し、こ
れをパターニングして第1の金属膜3を形成する。次い
でそのヒに、眉間絶縁膜として約100人の厚さのSi
O□嗅5を高周波波プラズマ化学気相成長(P−CVD
)法を用いて形成し、更にその上にTi膜をスパッタリ
ング法により成膜し、これをパターニングして第2の金
属膜4を形成する。
First, as shown in (a), a Ti film is formed on a glass substrate 1 to a thickness of approximately 500 mm using a sputtering method, and this is patterned to form a first metal film 3. Next, a Si film with a thickness of approximately 100 mm was applied as an insulating film between the eyebrows.
O □Sniff 5 was subjected to high-frequency wave plasma chemical vapor deposition (P-CVD).
) method, a Ti film is further formed thereon by a sputtering method, and this is patterned to form the second metal film 4.

次いで(b)に示すように、ゲート絶縁膜としてSiN
、v、5、動作半導体層としてa−3iJ17、チャネ
ル保護膜としてSiO□膜10を、p−cvD法により
それぞれ凡そ3000人、1000人。
Next, as shown in (b), SiN is used as the gate insulating film.
, v, 5, a-3iJ17 was used as the operating semiconductor layer, and SiO□ film 10 was used as the channel protective film, using the p-cvD method for approximately 3000 and 1000 people, respectively.

1000人の厚さに形成する。Formed to a thickness of 1000 people.

次いで(C)に示すように、チャネル部上層部以外の5
iOz膜10をエツチング除去し、コンタクト層として
のn”a−Si層8をP−CVD法により成膜し、Ti
/Afを積層した導電膜9を電子ビーム蒸着法により形
成し、これらを所定のパターンに従ってパターニングし
て、ソース・ドレイン電極S、Dを形成する。
Next, as shown in (C), 5 parts other than the upper part of the channel part are
The iOz film 10 is removed by etching, and an n''a-Si layer 8 as a contact layer is formed by P-CVD.
A conductive film 9 laminated with /Af is formed by electron beam evaporation and patterned according to a predetermined pattern to form source/drain electrodes S and D.

以上のようにして得られた本実施例に係る薄膜トランジ
スタの、外部から印加するゲート電圧vGに対するドレ
イン電流I0特性を第4図に示す。
FIG. 4 shows drain current I0 characteristics with respect to externally applied gate voltage vG of the thin film transistor according to this example obtained as described above.

同図のAは本実施例の薄膜トランジスタの特性曲線、B
は比較のために掲げた従来の薄膜トランジスタの特性曲
線である。
In the figure, A is the characteristic curve of the thin film transistor of this example, and B is the characteristic curve of the thin film transistor of this example.
is a characteristic curve of a conventional thin film transistor shown for comparison.

真のゲート電極である第2の金属膜4に掛かる電圧は、
印加電圧が低い間は外部から印加したゲート電圧■。の
一部のみであるため、ドレイン電流は小さく保たれ、あ
たかも闇値電圧が正方向にシフトした如き特性となる。
The voltage applied to the second metal film 4, which is the true gate electrode, is
While the applied voltage is low, the externally applied gate voltage ■. Since the drain current is kept small, the characteristic is as if the dark value voltage had shifted in the positive direction.

印加電圧vGが増大しである値を越すと、トンネル効果
が生じてMIM構造の容量が零になるので、印加電圧■
6の大部分が第2の金属膜に掛かることとなり、従来の
薄膜トランジスタと比較してオン電流の低下はごく僅か
である。
When the applied voltage vG increases and exceeds a certain value, a tunnel effect occurs and the capacitance of the MIM structure becomes zero, so the applied voltage
6 is applied to the second metal film, and the decrease in on-current is minimal compared to conventional thin film transistors.

〔発明の効果〕〔Effect of the invention〕

以、ヒ説明した如く本発明によれば、立ち上がり特性を
悪化させることなく、薄膜トランジスタの闇値電圧を正
方向にシフトさせることができる。
As described below, according to the present invention, the dark voltage of a thin film transistor can be shifted in the positive direction without deteriorating the rise characteristics.

従って、ゲート電圧=0の状態でオフ電流を充分低くす
ることができる、ゲート接続対向マトリクス方式の表示
セルの駆動用に好適な薄膜トランジスタが得られる。
Therefore, it is possible to obtain a thin film transistor suitable for driving a gate-connected facing matrix type display cell, which can have a sufficiently low off-state current when the gate voltage is 0.

イブマトリクスの説明図である。FIG. 2 is an explanatory diagram of an Eve matrix.

図において、1,1°は絶縁性基板(ガラス基板)、2
は薄膜トランジスタ(TPT)、3は第1の金属膜(T
i膜)、4は第2の金属膜(Ti膜)、5は層間絶縁膜
(Sin、膜)、6はゲート絶縁膜(SiNX膜)、7
は動作半導体Jl(a−3i層)、Gはゲート電極を示
す。
In the figure, 1,1° is an insulating substrate (glass substrate), 2
3 is a thin film transistor (TPT), 3 is a first metal film (T
i film), 4 is the second metal film (Ti film), 5 is the interlayer insulating film (Sin film), 6 is the gate insulating film (SiNX film), 7
indicates an active semiconductor Jl (a-3i layer), and G indicates a gate electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は本発明の構成説明図、第2図
は本発明の原理説明図、 第3図は本発明の一本実施例の説明図、第4図は上記一
実施例の電気的特性を示す図、第5図はゲート接続対向
マトリクス方式アクテ(C1) 第 1 図 Fk”p Er!jlD ’t& VG矛邂明〜1理貌
明の 第2図 5、o : ソース・R“レイ>1咋ちし、f発εす(
−実飽イ列心teqr、≧ゴ第3図 Qcヲノf−r二支蒼」ダ5憂j6すtJ 自つ勾ヒ4
L・ト主t2ゴ第 図 DB データバー、r7ブ〉 ワ゛ニトオ参季足す7旬7トリ7又゛力°式ヱフティフ
゛7トリ7スti:el’lrB第5図
1(a) and 1(b) are explanatory diagrams of the configuration of the present invention, FIG. 2 is an explanatory diagram of the principle of the present invention, FIG. 3 is an explanatory diagram of one embodiment of the present invention, and FIG. 4 is an explanatory diagram of the above-mentioned embodiment. A diagram showing the electrical characteristics of the embodiment, FIG. 5 is a gate-connected opposing matrix type acte (C1). : Source R "Ray > 1 tchishi, f fire ε (
-Actually satiated core teqr, ≧go 3rd figure
L・To main t2go diagram DB data bar, r7 bu> Wanito season addition 7 season 7 bird 7 also force type ftifi 7 tri 7 sti: el'lrB diagram 5

Claims (1)

【特許請求の範囲】[Claims] ゲート絶縁膜(6)を介して動作半導体層(7)と対向
するゲート電極(G)が、ゲート電圧を印加するための
電極として外部に導出された第1の金属膜(3)と前記
ゲート絶縁膜(6)と接する第2の金属膜(4)とが層
間絶縁膜(5)を介して対向する積層構造をなすことを
特徴とする薄膜トランジスタ。
A gate electrode (G) facing the active semiconductor layer (7) via a gate insulating film (6) is connected to the first metal film (3) led out to the outside as an electrode for applying a gate voltage, and the gate A thin film transistor characterized in that it has a laminated structure in which an insulating film (6) and a second metal film (4) in contact with each other face each other with an interlayer insulating film (5) interposed therebetween.
JP63321297A 1988-12-19 1988-12-19 Thin film transistor Pending JPH02164075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63321297A JPH02164075A (en) 1988-12-19 1988-12-19 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321297A JPH02164075A (en) 1988-12-19 1988-12-19 Thin film transistor

Publications (1)

Publication Number Publication Date
JPH02164075A true JPH02164075A (en) 1990-06-25

Family

ID=18131003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321297A Pending JPH02164075A (en) 1988-12-19 1988-12-19 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH02164075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023995A1 (en) * 1996-11-27 1998-06-04 Hitachi, Ltd. Active matrix liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023995A1 (en) * 1996-11-27 1998-06-04 Hitachi, Ltd. Active matrix liquid crystal display
US6184946B1 (en) * 1996-11-27 2001-02-06 Hitachi, Ltd. Active matrix liquid crystal display

Similar Documents

Publication Publication Date Title
JP2616160B2 (en) Thin film field effect transistor element array
CN100502047C (en) Thin film transistor
US6172671B1 (en) Active matrix type display device and fabrication method of the same
US6468839B2 (en) Thin film semiconductor device for display and method of producing same
JP2999271B2 (en) Display device
US5159477A (en) Active matrix display device having additional capacitors connected to switching elements and additional capacitor common line
KR20050001252A (en) In plane switching mode liquid crystal display device and method of fabricating the same
JPS62219665A (en) Superlattice thin-film transistor
JPH02260661A (en) Film transistor for active matrix liquid circuit dioplag element
KR100272537B1 (en) An in plane switching mode liquid crystal display device
JPH03280018A (en) Liquid crystal display device
KR960014824B1 (en) Active matrix liquid crystal display apparatus
JPH0244317A (en) Liquid crystal display device with auxiliary capacity
JPH06167722A (en) Active matrix substrate and its production
JPH0689905A (en) Thin film semiconductor device and its manufacture
JP3105408B2 (en) Liquid crystal display device
JP2755683B2 (en) Active matrix liquid crystal display
JPH08213626A (en) Thin film semiconductor device and its manufacture
JP2916606B2 (en) Display device
JPH02164075A (en) Thin film transistor
JPS61108171A (en) Thin film field effect transistor
Morita et al. VGA driving with low temperature processed poly Si TFTs
JPH0247633A (en) Matrix type liquid crystal display panel
JP4167796B2 (en) LIQUID CRYSTAL DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2002006341A (en) Liquid crystal device and manufacturing method therefor