JPH02162788A - Formation of optical semiconductor device protective film - Google Patents

Formation of optical semiconductor device protective film

Info

Publication number
JPH02162788A
JPH02162788A JP31882288A JP31882288A JPH02162788A JP H02162788 A JPH02162788 A JP H02162788A JP 31882288 A JP31882288 A JP 31882288A JP 31882288 A JP31882288 A JP 31882288A JP H02162788 A JPH02162788 A JP H02162788A
Authority
JP
Japan
Prior art keywords
film
protective film
internal stress
silicon nitride
inner stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31882288A
Other languages
Japanese (ja)
Inventor
Koichi Hiranaka
弘一 平中
Nobuyoshi Kondo
信義 近藤
Yasuyuki Todokoro
泰之 外處
Hiroshi Nojiri
浩 野尻
Akira Hirano
明 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31882288A priority Critical patent/JPH02162788A/en
Publication of JPH02162788A publication Critical patent/JPH02162788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Semiconductor Lasers (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce the inner stress of a protective film by a method wherein a first and a second protective film are made to overlap a light incident- projecting surface, and the compressive inner stress of the first protective film and the tensile inner stress of the second protective film are balanced. CONSTITUTION:The light incident face of a photodiode is covered with two layers of reflection preventive film, where a silicon nitride film possessed of a compressive inner stress is used as a first reflection preventive film 6 and another silicon nitride film possessed of a tensile inner stress is used as a second reflection preventive film 7. An inner stress SIGMA of a multilayer reflection preventive film is represented by a formula 1. In a two-layered reflection preventive film, a formula, sigma1.d1+sigma2.d2=0, must be satisfied to to make an inner stress equal to zero. Provided that the inner stress sigma1 of the first reflection preventive film formed of silicon nitride film is 2X10<10>dyn/cm<2> and the inner stress sigma2 of the second reflection preventive film formed of silicon nitride film is -0.8X10<10>dyn/cm<2>, both formulas, 2X10<10>Xd1-0.8X10<10>Xd2=0 and d1+d2=1600Angstrom , must be satisfied, so that d1 and d2 are determined to be 460Angstrom and 1140Angstrom , respectively.

Description

【発明の詳細な説明】 〔概 要〕 半導体レーザや受光素子等光半導体装置の光入出射面に
形成される保護膜に関し、 光半導体装置の信軽性向上を可能にする低内部応力保護
膜の形成方法の提供を目的とし、光入出射面に少なくと
も第1の保護膜と第2の保護膜とを重ねて形成し、第1
の保護膜の圧縮内部応力と第2の保護膜の引張内部応力
とを均衡せ〔産業上の利用分野〕 本発明は半導体レーザや受光素子等光半導体装置の光入
出射面に形成される保護膜、特に内部応力の低減を可能
にする保護膜の形成方法に関する。
[Detailed Description of the Invention] [Summary] A low internal stress protective film that makes it possible to improve the reliability of an optical semiconductor device, regarding a protective film formed on the light input/output surface of an optical semiconductor device such as a semiconductor laser or a light receiving element. The purpose of the present invention is to provide a method for forming a first protective film, in which at least a first protective film and a second protective film are overlapped and formed on a light input/output surface;
Balancing the compressive internal stress of the first protective film and the tensile internal stress of the second protective film [Industrial Application Field] The present invention relates to a method for forming a film, particularly a protective film that enables reduction of internal stress.

光半導体装置は反射防止膜や酸化防止膜等の保護膜が活
性面、即ち光入出射面に形成されるが、この保護膜が引
張内部応力や圧縮内部応力を有すると、光半導体装置の
活性層に影響を及ぼして界面単位や点欠陥を形成し信転
性の低下を招く。そこで内部応力の低減を可能にする保
護膜の形成方法の実現が望まれている。
In optical semiconductor devices, a protective film such as an anti-reflection film or an anti-oxidation film is formed on the active surface, that is, the light input/output surface.If this protective film has tensile internal stress or compressive internal stress, the activation of the optical semiconductor device will be reduced. This affects the layer, forming interface units and point defects, leading to a decrease in reliability. Therefore, it is desired to realize a method for forming a protective film that makes it possible to reduce internal stress.

〔従来の技術〕[Conventional technology]

第6図は半導体レーザにおける従来の保護膜を示す斜視
図、第7図は受光素子における従来の保護膜を示す側断
面図である。
FIG. 6 is a perspective view showing a conventional protective film in a semiconductor laser, and FIG. 7 is a side sectional view showing a conventional protective film in a light receiving element.

第6図において半導体レーザ、例えばプレーナーストラ
イプ・レーザは、GaAs基板ll上にnクララド71
12、活性層13、pクラッド層14、n型GaAs!
15が積層されており、Pクラッド層14とn型GaA
s層15の中央部にp″Zn拡散領域16が形成されて
いる。GaAs基板11の外側にn電極17が、n型G
aAs層15の外側にp電極18が形成され、側面に設
けられた光出射面は活性領域の酸化物形成を防止し、発
振利得を上昇させるため保護膜2によって覆われている
In FIG. 6, a semiconductor laser, for example a planar stripe laser, is mounted on a GaAs substrate 11 with an n Clarad 71
12, active layer 13, p cladding layer 14, n-type GaAs!
15 are stacked, P cladding layer 14 and n-type GaA
A p″Zn diffusion region 16 is formed in the center of the s-layer 15. An n-electrode 17 is formed on the outside of the GaAs substrate 11.
A p-electrode 18 is formed on the outside of the aAs layer 15, and a light emitting surface provided on the side surface is covered with a protective film 2 to prevent oxide formation in the active region and increase oscillation gain.

従来の半導体レーザでは窒化シリコン膜、シリコン酸化
膜、シリコン膜、アルミナ膜等の単独膜或いは複合膜が
保護膜2として用いられ、発振波長をλ、活性層の屈折
率をnsとすると膜厚がλ/4nsまたはλ/2nsに
なるように形成される。
In conventional semiconductor lasers, a single film or a composite film such as a silicon nitride film, a silicon oxide film, a silicon film, or an alumina film is used as the protective film 2. If the oscillation wavelength is λ and the refractive index of the active layer is ns, the film thickness is It is formed to be λ/4ns or λ/2ns.

また第7図において受光素子、例えばInGaAs−p
inホトダイオードはn−1nP基板31上に、バッフ
ァ層(n−InP)32、光電変換N(n−−1no、
s:+Gao、nJs)33、ウィンド層(n−In、
gGa、 Asy ) 34などが積層され、ウィンド
層34を貫通し光電変換層33の内部に達するP゛拡散
領域35が形成されている。
In addition, in FIG. 7, a light receiving element, for example, an InGaAs-p
The in photodiode has a buffer layer (n-InP) 32, a photoelectric conversion N (n--1no,
s: +Gao, nJs) 33, wind layer (n-In,
gGa, Asy) 34, etc. are laminated to form a P diffusion region 35 that penetrates the window layer 34 and reaches the inside of the photoelectric conversion layer 33.

ウィンド層34のp゛拡散領域35が光の入射面で表面
が反射防止膜4で覆われ、ウィンド層34のその他の領
域はSi3N、膜36で覆われている。図中n−InP
基板31の外側に設けられた電極37はn電極であり、
反射防止膜4とSi3N、膜36とを貫通する電極38
はp電極である。
The p-diffusion region 35 of the window layer 34 is a light incident surface and its surface is covered with an anti-reflection film 4, and the other regions of the window layer 34 are covered with a Si3N film 36. In the figure, n-InP
The electrode 37 provided on the outside of the substrate 31 is an n-electrode,
An electrode 38 that penetrates the antireflection film 4 and the Si3N film 36
is the p-electrode.

従来のホトダイオードでは反射防止膜4として酸化シリ
コン膜、窒化シリコン膜、アルミナ膜等の単独膜が用い
られ、入射光の波長をλ、反射防止膜の屈折率をnrと
すると、膜厚がλ/4nrになるよう反射防止膜4が形
成される。
In conventional photodiodes, a single film such as a silicon oxide film, a silicon nitride film, or an alumina film is used as the anti-reflection film 4. If the wavelength of the incident light is λ and the refractive index of the anti-reflection film is nr, then the film thickness is λ/ The anti-reflection film 4 is formed to have a resistance of 4nr.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし従来の半導体レーザにおける保護膜や受光素子に
おける反射防止膜は、いずれも特をの内部応力、即ち圧
縮内部応力若しくは引張内部応力を有し、半導体レーザ
にあっては保護膜の内部応力が活性層に悪影響を及ぼし
、界面準位や点欠陥を形成し信頼性の劣化を招く要因に
なる。また受光素子にあっては光電変換層に悪影響を及
ぼし、界面単位や点欠陥を形成し信頼性の劣化を招くと
同時に暗電流を増大させるという問題があった。
However, the protective film in conventional semiconductor lasers and the antireflection film in light receiving elements both have special internal stress, that is, compressive internal stress or tensile internal stress, and in semiconductor lasers, the internal stress of the protective film is activated. This has an adverse effect on the layer, forming interface states and point defects, which leads to deterioration of reliability. Further, in the light receiving element, there is a problem in that it adversely affects the photoelectric conversion layer, forming interface units and point defects, leading to deterioration of reliability and increasing dark current.

本発明の目的は光半導体装置の信頼性向上を可能にする
低内部応力の保護膜形成方法を提供することにある。
An object of the present invention is to provide a method for forming a protective film with low internal stress, which makes it possible to improve the reliability of an optical semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明になる保護膜形成方法の原理を示す側断
面図である。なお企図を通し同じ対象物は同一記号で表
している。
FIG. 1 is a side sectional view showing the principle of the protective film forming method according to the present invention. The same objects are represented by the same symbols throughout the plan.

上記課題は光入出射面5に少なくとも第1の保護膜6と
第2の保11PJ7とを重ねて形成し、第1の保護膜6
の圧縮内部応力と第2の保護膜7の引張内部応力とを均
衡せしめる、本発明になる光半導体装置の保護膜形成方
法によって達成される。
The above problem is solved by forming at least the first protective film 6 and the second protective film 11PJ7 on the light input/output surface 5 so that the first protective film 6
This is achieved by the method of forming a protective film for an optical semiconductor device according to the present invention, which balances the compressive internal stress of the second protective film 7 with the tensile internal stress of the second protective film 7.

〔作 用〕[For production]

第1図において光入出射面に少な(とも第1の保護膜と
第2の保護膜とを重ねて形成し、第1の保護膜の圧縮内
部応力と第2の保護膜の引張内部応力とを均衡せしめる
ことで、光入出射面に悪影響を及ぼす保護膜の内部応力
が低減される。即ち、光半導体装置の信頼性向上を可能
にする低内部応力の保護膜形成方法を実現することがで
きる。
In FIG. 1, a first protective film and a second protective film are formed on the light input/output surface, and the compressive internal stress of the first protective film and the tensile internal stress of the second protective film are By balancing these, the internal stress of the protective film that adversely affects the light input/output surface can be reduced.In other words, it is possible to realize a method of forming a protective film with low internal stress that makes it possible to improve the reliability of optical semiconductor devices. can.

〔実施例〕〔Example〕

以下添付図により本発明の実施例について説明する。第
2−図は窒化シリコン膜の内部応力を示す図、第3図は
本発明の一実施例を示す側断面図、第4図は本発明の他
の実施例を示す側断面図、第5図は受光素子の暗電流変
化を示す図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Figure 2 is a diagram showing the internal stress of a silicon nitride film, Figure 3 is a side sectional view showing one embodiment of the present invention, Figure 4 is a side sectional view showing another embodiment of the present invention, and Figure 5 is a diagram showing the internal stress of the silicon nitride film. The figure is a diagram showing changes in dark current of a light-receiving element.

第2図において縦軸はプラズマ気相成長法により形成さ
れた窒化シリコン膜の内部応力、横軸は窒化シリコン膜
形成時のプラズマ周波数である。
In FIG. 2, the vertical axis represents the internal stress of the silicon nitride film formed by plasma vapor phase epitaxy, and the horizontal axis represents the plasma frequency at the time of forming the silicon nitride film.

図示の如く窒化シリコン膜の内部応力は膜形成時のプラ
ズマ周波数に依存し、シランを含む混合ガスとアンモニ
アを用いNus/5iHa= 4、基板温度200〜2
50°C1反応圧力Q、2Torrの条件のもとに、プ
ラズマ周波数200kHz、パワー密度0.1W/cd
で形成された窒化シリコン膜は、屈折率が2.0で2×
10”dyn/c(の内部応力(圧縮)を有する。
As shown in the figure, the internal stress of the silicon nitride film depends on the plasma frequency during film formation, and using a mixed gas containing silane and ammonia, Nus/5iHa = 4, and substrate temperature 200 to 2.
Under the conditions of 50°C1 reaction pressure Q, 2 Torr, plasma frequency 200kHz, power density 0.1W/cd
The silicon nitride film formed with a refractive index of 2.0 and 2×
It has an internal stress (compression) of 10"dyn/c.

同様にシランを含む混合ガスとアンモニアを用いNHs
/SiH4=80SCCM/40SCCM 、基板温度
200〜250℃、反応圧力Q、2Torrの条件のも
とに、プラズマ周波数13.56MHハバワー密度0.
1W/cdで形成された窒化シリコン膜は、屈折率が2
.0で−o、sxi。
Similarly, using a mixed gas containing silane and ammonia, NHs
/SiH4=80SCCM/40SCCM, substrate temperature 200-250°C, reaction pressure Q, 2 Torr, plasma frequency 13.56MH, Habower density 0.
A silicon nitride film formed at 1 W/cd has a refractive index of 2.
.. 0 - o, sxi.

” dyn/aaの内部応力(引張)を有する。” It has an internal stress (tensile) of dyn/aa.

したがって周波数可変のプラズマ気相成長装置を用いて
第1図に示す如く、第1の保護膜6として圧縮内部応力
を有する窒化シリコン膜を形成し、第2の保護膜7とし
て引張内部応力を有する窒化シリコン膜を形成すること
によって、第1の保護膜6と第2の保護膜7が均衡して
保護膜の内部応力を小さくすることができる。
Therefore, as shown in FIG. 1, a silicon nitride film having compressive internal stress is formed as the first protective film 6 and a silicon nitride film having tensile internal stress is formed as the second protective film 7 using a frequency variable plasma vapor phase growth apparatus. By forming the silicon nitride film, the first protective film 6 and the second protective film 7 are balanced, and the internal stress of the protective film can be reduced.

第3図において本発明になる保護膜形成方法の一実施例
では、半導体レーザの側面に設けられた光出射面5が二
層の保護膜で覆われている。第1の保護膜6として圧縮
内部応力を有する窒化シリコン膜が用いられ、第2の保
護膜7として引張内部応力を有する窒化シリコン膜が用
いられている。
In FIG. 3, in one embodiment of the protective film forming method according to the present invention, a light emitting surface 5 provided on the side surface of a semiconductor laser is covered with a two-layer protective film. A silicon nitride film having compressive internal stress is used as the first protective film 6, and a silicon nitride film having tensile internal stress is used as the second protective film 7.

なお図中、11はGaAs基板、12はnクラッド層、
13は活性層、14はpクラッド層、15はn型GaA
sN、16はp”z口拡散領域、17はn電極、18は
p電極である。
In the figure, 11 is a GaAs substrate, 12 is an n-cladding layer,
13 is an active layer, 14 is a p cladding layer, 15 is an n-type GaA
sN, 16 is a p''z diffusion region, 17 is an n electrode, and 18 is a p electrode.

一般に基板の反りをδとすると薄膜の内部応力σは次式
により与えられる。
Generally, if the warpage of the substrate is δ, the internal stress σ of the thin film is given by the following equation.

ここでEは基板のヤング率、νは基板のポアソン比、l
は基板の厚さ、dは薄膜の厚さである。上式から基板の
反りδは薄膜の厚さdに比例し次式により与えられる。
Here, E is Young's modulus of the substrate, ν is Poisson's ratio of the substrate, l
is the thickness of the substrate and d is the thickness of the thin film. From the above equation, the warp δ of the substrate is proportional to the thickness d of the thin film and is given by the following equation.

σ・di δ したがって保護膜の内部応力を低減するには活性層にお
ける反りδを小さくすればよい、第1の保護膜6の内部
応力をσ1、膜厚をdi とし、第2の保護膜7の内部
応力をσ2、膜厚をd2とすると多層保護膜の内部応力
Σは次式で表される。
σ・di δ Therefore, in order to reduce the internal stress of the protective film, it is sufficient to reduce the warp δ in the active layer. Let the internal stress of the first protective film 6 be σ1, the film thickness be di, and the second protective film 7 The internal stress Σ of the multilayer protective film is expressed by the following equation, where the internal stress is σ2 and the film thickness is d2.

学的位相条件から決まる0例えばD=λ/2nsとし発
振光の波長λ−0,8μl、活性層の屈折率n5=3.
5とするとD−1100人となる。
For example, D=λ/2ns, the wavelength of the oscillation light is λ−0.8 μl, and the refractive index of the active layer n5=3.
If it is 5, it will be D-1100 people.

ば二層の保護膜において、内部応力をOにするにはσ1
 ・d、十σ2 ・d2=0にしなければならない。窒
化シリコン膜からなる第1の保護膜の内部応力σ、を2
 XIO”dyn/cd、窒化シリコン膜からなる第2
の保護膜の内部応力σ2を一〇、8X1010dyn/
cIilとすると、 2 XIO■0X d l −0,8Xl016X d
 ! = Od、 +at =1100人でありdi−
310人、d2−790人にすればよい。
In order to reduce the internal stress to O in a two-layer protective film, σ1
・d, 1σ2 ・Must set d2=0. The internal stress σ of the first protective film made of silicon nitride film is 2
XIO”dyn/cd, a second layer made of silicon nitride film
The internal stress σ2 of the protective film is 10,8X1010dyn/
If cIil, 2 XIO■0X d l -0,8Xl016X d
! = Od, +at = 1100 people and di-
310 people, d2-790 people.

なお実施例は0.8μ−の半導体レーザであるが1μ−
の半導体レーザにも適用可能である。また保護膜として
窒化シリコン膜を用いているがその他に、シリコン膜、
シリコン・オキシ・ナイトライド膜も使用できる。
Note that the example is a 0.8μ- semiconductor laser, but the 1μ-
It is also applicable to other semiconductor lasers. In addition, a silicon nitride film is used as a protective film, but there are also silicon films,
Silicon oxy nitride membranes can also be used.

また第4図において本発明になる保護膜形成方法の他の
実施例では、InGaAs−pinホトダイオードの光
の入射面5が二層の反射防止膜で覆われ、第1の反射防
止膜6として圧縮内部応力を有する窒化シリコン膜が用
いられ、第2の反射防止膜7として引張内部応力を有す
る窒化シリコン膜が用いられている。なお図中、31は
n−1nP基板、32はバッファ層、33は光電変換層
、34はウィンド層、35はp+拡散領域、36は5i
J4膜、37はn電極、38はp電極である。
Further, in another embodiment of the protective film forming method according to the present invention shown in FIG. A silicon nitride film having internal stress is used, and a silicon nitride film having tensile internal stress is used as the second antireflection film 7. In the figure, 31 is an n-1nP substrate, 32 is a buffer layer, 33 is a photoelectric conversion layer, 34 is a window layer, 35 is a p+ diffusion region, and 36 is a 5i
In the J4 film, 37 is an n-electrode and 38 is a p-electrode.

前記実施例と同様に多層反射防止膜の内部応力Σは次式
で表される。
As in the above embodiment, the internal stress Σ of the multilayer antireflection film is expressed by the following equation.

学的位相条件から決まる0例えばD=λ/4nrとし発
振光の波長λ−1,3μ醜、反射防止膜の屈折率nr=
2とするとD=1600人となる。
For example, D = λ/4nr, the wavelength of the oscillation light is λ-1, 3μ, and the refractive index of the antireflection film is nr =
2, D=1600 people.

一方、二層の反射防止膜において内部応力を0にするに
は、前記実施例と同様にσ1 ・d、+σ2 ・d2=
0にしなければならない、窒化シリコン膜からなる第1
の反射防止膜の内部応力σ1を2 XIO”dyn/c
dl、窒化シリコン膜からなる第2の反射防止膜の内部
応力σ2を一〇、 8 XIO”dyn/dとすると、 2 xlOIOx d t −0,8xlOIOx a
 z = Od +  + d z−1600人であり
a+=460人、dt−1140人にすればよい。
On the other hand, in order to make the internal stress zero in a two-layer antireflection film, σ1 ・d, +σ2 ・d2=
The first layer made of silicon nitride film must be set to zero.
The internal stress σ1 of the anti-reflection film is 2XIO”dyn/c
dl, and the internal stress σ2 of the second antireflection film made of silicon nitride film is 10.8XIO"dyn/d, then 2xlOIOx d t -0,8xlOIOx a
z = Od + + d z - 1600 people, a + = 460 people, dt - 1140 people.

かかるInGaAs−pinホトダイオードにおいて従
来の方法で反射防止膜を形成した場合、暗電流は第5図
に一点鎖線で示す如くほぼ10−’A台であったが、本
発明になる方法で多層反射防止膜を形成した場合は、同
図に実線で示す如<10−” A台まで低下して特性が
大幅に改善される。なお実施例は1μ噴帯のInGaA
sホトダイオードについて述べているが、0.8μ−帯
のSiおよびGaAs系受光素子、1μ鋼帯のGe受光
素子にも適用可能である。
When an antireflection film was formed using the conventional method in such an InGaAs-pin photodiode, the dark current was approximately 10-'A as shown by the dashed line in FIG. When a film is formed, the characteristics are significantly improved, dropping to <10-”A level as shown by the solid line in the same figure.
Although the description has been made regarding an s photodiode, it is also applicable to a 0.8μ-band Si and GaAs light receiving element, and a 1μ steel band Ge light receiving element.

このように光入出射面に少な(とも第1の保護膜と第2
の保護膜とを重ねて形成し、第1の保護膜の圧縮内部応
力と第2の保護膜の引張内部応力とを均衡せしめること
で、光入出射面に悪影響を及ぼす保護膜の内部応力が低
減される。即ち、光半導体装置の信転性向上を可能にす
る低内部応力の保護膜形成方法を実現することができる
In this way, there is a small amount of light on the light input/output surface (both the first protective film and the second protective film).
By overlapping the protective film and balancing the compressive internal stress of the first protective film and the tensile internal stress of the second protective film, the internal stress of the protective film that adversely affects the light input/output surface can be reduced. reduced. That is, it is possible to realize a method for forming a protective film with low internal stress, which makes it possible to improve the reliability of an optical semiconductor device.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明によれば光半導体装置の信頼性向上を
可能にする低内部応力の保護膜形成方法を提供すること
ができる。
As described above, according to the present invention, it is possible to provide a method for forming a protective film with low internal stress, which makes it possible to improve the reliability of an optical semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる保護膜形成方法の原理を示す側断
面図、 第2図は窒化シリコン膜の内部応力を示す図、第3図は
本発明の一実施例を示す側断面図、第4図は本発明の他
の実施例を示す側断面図、第5図は受光素子の暗電流変
化を示す図、第6図は半導体レーザにおける従来の保護
膜を示す斜視図、 第7図は受光素子における従来の保護膜を示す側断面図
、 である0図において 5は光入出射面、   6は第1の保護膜、7は第2の
保護膜、  11はGaAs基板、工2はnクラッド層
、  13は活性層、14はpクラッド層、 16はp”Znt敗領域、 18はp電極、 32はバッファ層、 34はウィンド層、 36はSi3N、膜、 38はp電極、 をそれぞれ表す。 15はn型GaAs層、 17はn電極、 31はn4nP基板、 33は光電変換層、 35はp゛拡散領域、 37はn電極、 i  l  口 10DK    1M4閃  10閂 プラス゛マ周又数(Hz) γイ乙シリコン周ttnt勾邦lたりε示110第  
2 口 第 記 十亭多日月O槍二の実施・918示ブ刊算11浦テ面瓜
]第 4− ロ 電 圧(v) 費兜(手/)絹電流虞化Z示ず旧 1 5 ロ
FIG. 1 is a side sectional view showing the principle of the protective film forming method according to the present invention, FIG. 2 is a diagram showing internal stress of a silicon nitride film, and FIG. 3 is a side sectional view showing an embodiment of the present invention. FIG. 4 is a side sectional view showing another embodiment of the present invention, FIG. 5 is a diagram showing changes in dark current of a light receiving element, FIG. 6 is a perspective view showing a conventional protective film in a semiconductor laser, and FIG. is a side cross-sectional view showing a conventional protective film in a light-receiving element. N cladding layer, 13 active layer, 14 p cladding layer, 16 p''Znt failure region, 18 p electrode, 32 buffer layer, 34 window layer, 36 Si3N film, 38 p electrode, 15 is an n-type GaAs layer, 17 is an n-electrode, 31 is an n4nP substrate, 33 is a photoelectric conversion layer, 35 is a p-diffusion region, 37 is an n-electrode, il port 10DK 1M4 flash 10 bar plus diagonal number (Hz)
2 Implementation of the 10th record of the tenth day Takazuki Oyari 2 / 918 book publication number 11 Ura Te Menguri ] No. 4 - Voltage (v) Fee helmet (hand /) Silk current 虞虞 Z Showless Old 1 5 b

Claims (1)

【特許請求の範囲】[Claims] 光入出射面(5)に少なくとも第1の保護膜(6)と第
2の保護膜(7)とを重ねて形成し、第1の保護膜(6
)の圧縮内部応力と第2の保護膜(7)の引張内部応力
とを、均衡せしめることを特徴とする光半導体装置の保
護膜形成方法。
At least a first protective film (6) and a second protective film (7) are formed overlappingly on the light input/output surface (5), and the first protective film (6)
1. A method for forming a protective film for an optical semiconductor device, comprising balancing the compressive internal stress of the second protective film (7) with the tensile internal stress of the second protective film (7).
JP31882288A 1988-12-15 1988-12-15 Formation of optical semiconductor device protective film Pending JPH02162788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31882288A JPH02162788A (en) 1988-12-15 1988-12-15 Formation of optical semiconductor device protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31882288A JPH02162788A (en) 1988-12-15 1988-12-15 Formation of optical semiconductor device protective film

Publications (1)

Publication Number Publication Date
JPH02162788A true JPH02162788A (en) 1990-06-22

Family

ID=18103340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31882288A Pending JPH02162788A (en) 1988-12-15 1988-12-15 Formation of optical semiconductor device protective film

Country Status (1)

Country Link
JP (1) JPH02162788A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132554A (en) * 1991-01-29 1994-05-13 Optical Coating Lab Inc Thin-film coating and its formation method
JPH09283843A (en) * 1996-04-17 1997-10-31 Hitachi Ltd Semiconductor laser
US5943356A (en) * 1996-06-06 1999-08-24 Nec Corporation Semiconductor laser with front face covered with laminated dielectric layers which produce oppositely acting stresses
JP2002270879A (en) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp Semiconductor device
EP1347548A3 (en) * 2002-03-20 2006-02-01 Hitachi, Ltd. Semiconductor laser device
WO2013021705A1 (en) * 2011-08-11 2013-02-14 Sppテクノロジーズ株式会社 Apparatus, method and program for manufacturing nitride film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132554A (en) * 1991-01-29 1994-05-13 Optical Coating Lab Inc Thin-film coating and its formation method
JPH09283843A (en) * 1996-04-17 1997-10-31 Hitachi Ltd Semiconductor laser
US5943356A (en) * 1996-06-06 1999-08-24 Nec Corporation Semiconductor laser with front face covered with laminated dielectric layers which produce oppositely acting stresses
JP2002270879A (en) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp Semiconductor device
EP1347548A3 (en) * 2002-03-20 2006-02-01 Hitachi, Ltd. Semiconductor laser device
WO2013021705A1 (en) * 2011-08-11 2013-02-14 Sppテクノロジーズ株式会社 Apparatus, method and program for manufacturing nitride film
JP2013038354A (en) * 2011-08-11 2013-02-21 Spp Technologies Co Ltd Nitride film manufacturing device, nitride film manufacturing method, and nitride film manufacturing program
US9117660B2 (en) 2011-08-11 2015-08-25 Spp Technologies Co., Ltd. Apparatus, method and program for manufacturing nitride film
EP2743970A4 (en) * 2011-08-11 2015-10-21 Spp Technologies Co Ltd Apparatus, method and program for manufacturing nitride film

Similar Documents

Publication Publication Date Title
JP2002252366A (en) Semiconductor light-receiving device
JPH0690063A (en) Semiconductor laser
WO2019134500A1 (en) Micro light emitting diode apparatus and method of fabricating micro light emitting diode apparatus
JPH02137376A (en) Avalanche photodiode
JPH02162788A (en) Formation of optical semiconductor device protective film
US6864514B2 (en) Light emitting diode
WO2003049202A1 (en) Photodiode
JP2833438B2 (en) Single wavelength photo detector
JP2000150923A (en) Backside incidence type light receiving device and manufacture thereof
JP5900400B2 (en) Group III nitride semiconductor light emitting device manufacturing method
JPS61120480A (en) Photoelectric converter
JPH07122780A (en) Led array and manufacture thereof
JP2000332302A (en) Semiconductor light emitting element
JPH0582827A (en) Semiconductor light receiving element
JPH05267708A (en) Electrode structure for optical semiconductor device
JPH09116192A (en) Light emitting diode
JPH09181347A (en) Photoelectric converter
US20210288225A1 (en) Semiconductor wafer, semiconductor device, and gas concentration measuring device
JPS6284522A (en) Surface protective film structure of iii-v compound semiconductor
JP3863577B2 (en) Semiconductor laser
JP2002299677A (en) Semiconductor photodetector
US20240322085A1 (en) Semiconductor wafer, semiconductor device, and gas concentration measuring device
JPS63150976A (en) Infrared ray detector
JPS628957B2 (en)
JPH0380573A (en) Photo detecting element