JPH05267708A - Electrode structure for optical semiconductor device - Google Patents

Electrode structure for optical semiconductor device

Info

Publication number
JPH05267708A
JPH05267708A JP4063797A JP6379792A JPH05267708A JP H05267708 A JPH05267708 A JP H05267708A JP 4063797 A JP4063797 A JP 4063797A JP 6379792 A JP6379792 A JP 6379792A JP H05267708 A JPH05267708 A JP H05267708A
Authority
JP
Japan
Prior art keywords
layer
metal
semiconductor device
optical semiconductor
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4063797A
Other languages
Japanese (ja)
Inventor
Tsugio Kumai
次男 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4063797A priority Critical patent/JPH05267708A/en
Publication of JPH05267708A publication Critical patent/JPH05267708A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an electrode structure having a high reflectivity and low ohmic resistance against a compound semiconductor by a method wherein, after high melting point metal has been thinly deposited on the compound semiconductor in such a manner that it gives little effect on reflectivity, the metal having a high reflective factor is deposited. CONSTITUTION:An N-InP buffer layer 2, an N-InGaAs active layer 3 and an N-InP cap layer are grown respectively on an N-InP substrate using an MO-CVD method. After a pin junction has been formed by selectively diffusing (5) Zn on the above-mentioned epitaxial wafer, a hole with eaves is formed by Az resist which is treated by chlorobenzene, metal films of Ti, Ag, Zn and Ag are formed thereon by EB vapor-deposition under resistive heating. By preventing the alloy reaction between a high reflection metal and a semiconductor by providing a high melting point thin metal layer on the compound semiconductor, the decrease of reflection factor by alloying can be suppressed using the metal of high reflectivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はPIN−光ダイオード
(PD)、アバランシェ光ダイオード(APD)等の半
導体装置の電極構造に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure of a semiconductor device such as a PIN-photo diode (PD), an avalanche photo diode (APD) or the like.

【0002】[0002]

【従来の技術】裏面入射型受光素子では、電極からの反
射光は素子の量子効率を向上させることは周知の事実で
ある。しかし、素子抵抗の低減と高反射率を兼ね備えた
電極は存在しない。InP系デバイスには、低オーミッ
クンタクトが得やすい金系(AuGe,AuZn等)が
用いられている。しかし、金系はInPと反応し易く、
その反応層が正常な反射の妨害をしている。その妨害は
反応層による光の吸収及び乱反射による周波数特性の不
均一性の発生があり、前者と後者を合わせた光反射のロ
スは非常に大きく、正常な反射はAuZn/Ti/Pt
/Au電極を使用した場合、〜20%であり反射による
特性向上の効果は小さく乱反射によるパルス応答特性の
悪化、面内感度の不均一性の発生の問題があった。
2. Description of the Related Art It is a well-known fact that in a back-illuminated type light receiving element, the reflected light from an electrode improves the quantum efficiency of the element. However, there is no electrode that has both low element resistance and high reflectance. For InP-based devices, gold-based materials (AuGe, AuZn, etc.) that are easy to obtain low ohmic contact are used. However, the gold system easily reacts with InP,
The reaction layer interferes with normal reflection. The interference is caused by non-uniformity of frequency characteristics due to absorption of light by the reaction layer and irregular reflection. The loss of light reflection of the former and the latter is very large, and normal reflection is AuZn / Ti / Pt.
When the / Au electrode was used, it was -20%, and the effect of improving the characteristics due to reflection was small, and there were problems of deterioration of pulse response characteristics due to irregular reflection and occurrence of non-uniformity of in-plane sensitivity.

【0003】[0003]

【発明が解決しようとする課題】受光素子はキャリヤの
走行時間と素子容量、寄生容量、負荷抵抗から応答速度
が決定される。超高速(20GHz )以上になるとキャ
リヤの走行時間の問題から光吸収層は薄くする必要があ
り、量子効率の低下が問題となる。そのため、一度透過
した光を電極で反射させて再使用する構造を用いること
が有効であるが、現在の電極は金属と半導体のアロイ層
を作ってコンタクトを形成しているので、界面の凸凹や
アロイ層の吸収や乱反射のため、量子効率に寄与する分
が小さかったり、超高速でパルス応答特性が悪化するな
どの問題があった。
The response speed of the light receiving element is determined by the transit time of the carrier, the element capacitance, the parasitic capacitance, and the load resistance. Ultrafast (20GH z) above becomes the carrier light absorbing layer from the running time issues must be thin, lowering of the quantum efficiency becomes a problem. Therefore, it is effective to use a structure in which the light that has once transmitted is reflected by the electrodes and reused.However, since the current electrodes form an alloy layer of a metal and a semiconductor to form a contact, unevenness of the interface or Due to absorption and irregular reflection of the alloy layer, there are problems such as small contribution to quantum efficiency and deterioration of pulse response characteristics at ultra-high speed.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第1の形態において、受光素子等の電極と
しては、反射率に影響の少ない範囲で化合物半導体上に
薄く高融点メタルを付着させた後、高反射率のメタル
(化合物半導体とは合金化し易い)を付着させることで
解決する。オーミック性の問題の解決策としては、Zn
等を化合物半導体表面にドープさせる層構造とすればよ
く、反射膜として用いる場合は、化合物半導体との合金
反応速度が小さく、高反射率のメタルが必要であるが、
これには上記の不純物をドープしない構造を利用でき
る。
In order to solve the above-mentioned problems, in the first embodiment of the present invention, as an electrode of a light receiving element or the like, a thin refractory metal is thinly formed on a compound semiconductor within a range in which reflectance is little affected. The problem is solved by depositing a metal having a high reflectance (which is easily alloyed with the compound semiconductor) after depositing. As a solution to the problem of ohmic property, Zn
It suffices to have a layered structure in which the compound semiconductor surface is doped with, etc., and when used as a reflective film, the alloy reaction speed with the compound semiconductor is low, and a metal with high reflectance is required.
For this, a structure in which the above impurities are not doped can be used.

【0005】具体的には、光半導体装置の半導体層上
に、第1層として高融点金属層、第2層としてAg,A
l層、第3層としてZn,Ge層、第4層をAg又はA
l層を形成し、第2層のAg又はAlと第3層のZnと
第4層のAg又はAlとは合金化してAgZn又はAl
Znしてもよい層構成を含む電極を設けたことを特徴と
する光半導体装置、及び、光半導体装置の半導体層上
に、第1層として高融点金属層、第2層としてAgZn
又はAg/Zn/Ag又はZn層を含む電極を設けたこ
とを特徴とする光半導体装置として構成する。高融点金
属層としてはTi,Ph,Pdなどが好ましく用いら
れ、高融点金属層の厚みは100Å以下が好ましい。
Specifically, on a semiconductor layer of an optical semiconductor device, a refractory metal layer is used as a first layer and Ag, A are used as a second layer.
The first layer is a Zn, Ge layer as the third layer, and the fourth layer is Ag or A
1 layer is formed, and Ag or Al of the second layer, Zn of the third layer and Ag or Al of the fourth layer are alloyed to form AgZn or Al.
An optical semiconductor device including an electrode including a layer structure which may be Zn, and a refractory metal layer as a first layer and AgZn as a second layer on the semiconductor layer of the optical semiconductor device.
Alternatively, an optical semiconductor device is characterized in that an electrode including an Ag / Zn / Ag or Zn layer is provided. Ti, Ph, Pd, etc. are preferably used as the high melting point metal layer, and the thickness of the high melting point metal layer is preferably 100 Å or less.

【0006】上記層構造の電極上には、必要に応じて、
第2の高融点金属層を介して、例えばPt/AuSnな
どのフリップチップ用の構造を追加採用することができ
る。本発明の第2の形態において、コンタクト抵抗を劣
化させず、反射率を上げる方法としてコンタクトメタル
を薄くして界面の凹凸や、アロイ層厚を小さくし、コン
タクトメタル上に用いる金属層に高反射金属である、A
g,Al,Au等を用い薄いコンタクトメタルを透過し
た光を反射させ、そして高反射メタルとコンタクトメタ
ル及び半導体との反応が起こらない様に中間層として高
融点メタルを入れる。
On the electrode having the above layer structure, if necessary,
A structure for flip-chip such as Pt / AuSn can be additionally adopted through the second refractory metal layer. In the second embodiment of the present invention, as a method of increasing the reflectance without deteriorating the contact resistance, the contact metal is thinned to reduce the unevenness of the interface and the alloy layer thickness so that the metal layer used on the contact metal has high reflection. A, which is a metal
A high melting point metal is added as an intermediate layer by using g, Al, Au or the like to reflect the light transmitted through the thin contact metal and prevent reaction between the highly reflective metal and the contact metal or semiconductor.

【0007】具体的には、光半導体装置の半導体層上
に、第1層としてAuZn又はAuGe層、第2層とし
て高融点金属層、第3層としてAg,Au又はAl層を
含む電極を設けたことを特徴とする光半導体装置として
構成する。第2層及び第1層は厚みが50Å以下が好ま
しい。
Specifically, an electrode including an AuZn or AuGe layer as a first layer, a refractory metal layer as a second layer, and an Ag, Au or Al layer as a third layer is provided on a semiconductor layer of an optical semiconductor device. It is configured as an optical semiconductor device characterized by the above. The thickness of the second layer and the first layer is preferably 50 Å or less.

【0008】[0008]

【実施例】実施例1 本発明の第1形態を用いてPIN−PDを作成した例を
以下に示す。図1はPIN−PD用に作成したエピウエ
ハーで、N−InP基板1上にMO−CVD法でN−I
nPバッファー層2、N−InGaAsの活性層3、N
−InPキャップ層4をそれぞれ、1μm、1μm、1
μmを成長したものである。このエピウエハーにZnの
選択拡散5により、10ミクロンm径のPIN接合を形
成した後、クロルベンゼン処理をしたAZ系レジストに
より、ひさしのある穴を開けた。その上に、Ti(30
Å),Ag(50Å),Zn(70Å),Ag(880
Å)の金属膜7を順次EB蒸着、抵抗加熱により形成す
る。
EXAMPLES Example 1 An example of making a PIN-PD using the first mode of the present invention is shown below. FIG. 1 is an epi-wafer made for PIN-PD, which is formed on the N-InP substrate 1 by MO-CVD method.
nP buffer layer 2, N-InGaAs active layer 3, N
-InP cap layer 4 is 1 μm, 1 μm, 1
It is a grown μm. After forming a 10 μm-diameter PIN junction on this epiwafer by selective diffusion 5 of Zn, a visor-based AZ-based resist was used to form a canopy hole. On top of that, Ti (30
Å), Ag (50 Å), Zn (70 Å), Ag (880
The metal film 7 of Å) is sequentially formed by EB vapor deposition and resistance heating.

【0009】このとき、Ti膜厚と光吸収率の関係を図
8に示す。Ti膜厚が100Åで反射率が20%低下し
ていることがわかる。なお、Znの量が増えると反射率
は低下する傾向にある。図9にInPの基板のZn濃度
とTi/AgZn電極のコンタクト抵抗の関係を示す。
基板濃度が1018cm-3以上でコンタクト抵抗が10-4Ω
cm以下に低下している。
At this time, the relationship between the Ti film thickness and the light absorption rate is shown in FIG. It can be seen that the reflectance decreases by 20% when the Ti film thickness is 100Å. The reflectance tends to decrease as the amount of Zn increases. FIG. 9 shows the relationship between the Zn concentration of the InP substrate and the contact resistance of the Ti / AgZn electrode.
Contact resistance is 10 -4 Ω when the substrate concentration is 10 18 cm -3 or more
It has fallen below cm.

【0010】次に、図2の如く、リフト・オフによりP
側電極bを形成し430℃でシンターした後、Si3
4 膜をAZ系レジストによりパターンニングしNH4
H+HF(5%)溶液により選択エッチング除去する。
次に、図3の如く、AZ系レジストにより、N電極とP
電極周辺部をカバーしイオン・ビーム・エッチングもし
くは、HBr +Br +H2 O混液で溝7を形成する。そ
の後、前記と同様なリフト・オフ工程によりAuGeメ
タルによりN側のパターン9を形成し380℃でアロイ
する。
Next, as shown in FIG.
After forming the side electrode b and sintering at 430 ° C., Si 3 N
4 film is patterned with AZ resist and NH 4 O
Selective etching removal is performed with H + HF (5%) solution.
Next, as shown in FIG. 3, an N electrode and a P are formed by using an AZ resist.
The peripheral portion of the electrode is covered and the groove 7 is formed by ion beam etching or HB r + B r + H 2 O mixed liquid. After that, the N-side pattern 9 is formed from AuGe metal by the same lift-off process as described above and alloyed at 380 ° C.

【0011】次に図4の如く、SiN膜10をプラズマ
CVDで付着させ、P側・N側それぞれの電極上に穴を
開ける。次に図5の如く、Ti,Pt,AuSnを順次
500Å,3000Å,4μmの厚みEB蒸着及び抵抗
加熱蒸着で形成し、AZレジストをマスクとしてイオン
・ビーム・エッチング加工により、多層電極11を形成
する。
Next, as shown in FIG. 4, a SiN film 10 is attached by plasma CVD, and holes are formed on the electrodes on the P side and the N side, respectively. Next, as shown in FIG. 5, Ti, Pt, and AuSn are sequentially formed by EB vapor deposition and resistance heating vapor deposition with a thickness of 500 Å, 3000 Å, and 4 μm, and a multilayer electrode 11 is formed by ion beam etching using the AZ resist as a mask. ..

【0012】次に図6の如く、基板を80μmの厚みに
加工した後、受光部の中心とAZレジストの頂点が会致
する様な50μm径のドームを形成する。イオン・ビー
ム・エッチング加工で受光部の中心に焦点が会うモノリ
シック・レンズ12を形成した後、Si3 4 のAR
(反射防止)コート13を行う。実施例2 本発明の第1形態を発光ダイオードに応用した例を以下
に示す。
Next, as shown in FIG. 6, after processing the substrate to a thickness of 80 μm, a dome having a diameter of 50 μm is formed so that the center of the light receiving portion and the apex of the AZ resist meet. After forming the monolithic lens 12 that focuses on the center of the light receiving part by ion beam etching, AR of Si 3 N 4 is formed.
(Antireflection) coat 13 is applied. Example 2 An example in which the first embodiment of the present invention is applied to a light emitting diode will be shown below.

【0013】図10は、InPマイクロレンズ付発光ダ
イオードに応用した場合の最終の構造図であり、P電極
部はInGaAsP上にAZ系レジストによるリフト・
オフ法により電極パターンの形成を行った。Ti(30
Å)/〔Ag(50Å)/Zn(70Å)〕/Ag(8
80Å)を蒸着しパターン化した後、450℃で3分間
の熱処理を行い、Ti/Pt金属を蒸着する。さらに、
Auのボンディイング兼ヒートシンク用膜をメッキで約
5μm形成する。
FIG. 10 is a final structural diagram when applied to a light emitting diode with an InP microlens. The P electrode portion is lifted by an AZ resist on InGaAsP.
The electrode pattern was formed by the off method. Ti (30
Å) / [Ag (50Å) / Zn (70Å)] / Ag (8
After depositing 80 Å) and patterning it, heat treatment is performed at 450 ° C. for 3 minutes to deposit Ti / Pt metal. further,
A film for Au bonding and heat sink is formed by plating to a thickness of about 5 μm.

【0014】その他の構造は図示した通りで、従来知ら
れている構造である。実施例3 本発明の第2形態を裏面入射型PIN−PDに応用し制
作した例を示す。図11はInP基板31上にN+ −I
nPバッファ層32、N- −InGaAs光吸収層3
3、N−InP層34を順次成長し、SiN膜35を付
着させた後、Zn拡散用の窓をあけ、選択拡散36を行
ったもので有る。
The other structures are as shown in the figure and are conventionally known structures. Example 3 An example in which the second embodiment of the present invention is applied to a back illuminated PIN-PD and produced. FIG. 11 shows N + -I on the InP substrate 31.
nP buffer layer 32, N -InGaAs light absorption layer 3
3. The N-InP layer 34 is sequentially grown, the SiN film 35 is attached, the Zn diffusion window is opened, and the selective diffusion 36 is performed.

【0015】次に、図12の如く、AZ系レジストによ
り拡散層36上にレジストの穴を開け、Au/Zn/A
u膜(50Å)37を抵抗加熱により蒸着後、レジスト
を取り除きパターンを形成する。次に図13の如く、4
30℃で熱処理した後、Si3 4 膜38を付着し前記
拡散層36上に前記のコンタクト金属の直径より小さい
レジストパターンホールを形成しSiNを選択エッチン
グする。次に図13の如くAzレジストで電極上を開口
させたパターンを形成した後、Ti/Ag/Ti/Pt
/AuSn膜38をEB蒸着と抵抗加熱で形成する。
Next, as shown in FIG. 12, a resist hole is formed on the diffusion layer 36 with an AZ-based resist, and Au / Zn / A is formed.
After depositing the u film (50Å) 37 by resistance heating, the resist is removed to form a pattern. Next, as shown in FIG.
After heat treatment at 30 ° C., a Si 3 N 4 film 38 is attached, a resist pattern hole smaller than the diameter of the contact metal is formed on the diffusion layer 36, and SiN is selectively etched. Next, as shown in FIG. 13, after forming a pattern in which the electrodes are opened with Az resist, Ti / Ag / Ti / Pt is formed.
The / AuSn film 38 is formed by EB vapor deposition and resistance heating.

【0016】次に図14の如くArイオンビームエッチ
ングによりAZレジストをマスクとして電極40を形成
する。本実施例は、N側電極については省略してP側電
極の骨子のみを記載した。図15に、こうして作製した
PIN−PDの全体図を示す。図16は、AuZnAu
/InPを430℃で3分間アロイ化した後、反射層と
してAu層(300Å厚)を形成して、反射率を求めた
ものである。Au層に代えてAg層を用いても同等であ
った。
Next, as shown in FIG. 14, an electrode 40 is formed by Ar ion beam etching using the AZ resist as a mask. In this example, the N-side electrode was omitted and only the skeleton of the P-side electrode was described. FIG. 15 shows an overall view of the PIN-PD thus produced. FIG. 16 shows AuZnAu.
After alloying / InP at 430 ° C. for 3 minutes, an Au layer (thickness of 300 Å) was formed as a reflective layer, and the reflectance was obtained. The same result was obtained by using the Ag layer instead of the Au layer.

【0017】図17は、Znドープ5×1018cm-3のI
nP基板にAuZnAuをアロイ化した場合のアロイ層
厚とコンタクト抵抗率との関係を示す。この第2の形態
において次の如き効果が得られる。受光素子の量子効率
はη=1−exp(−αw)で表され、αを1×104
cm -1とした場合、1μmの吸収層を持つ受光素子はη=
63%であるが、本発明によれば高効率の反射電極(例
えば、48%)を用いた場合、81%に向上する。その
時のコンタクト抵抗は殆ど変化せず、AuZn系の良好
な特徴を保っていて低コンタクト抵抗、高量子効率の裏
面入射型受光素子が実現できる。
FIG. 17 shows Zn-doped 5 × 10 518cm-3I
Alloy layer when AuZnAu is alloyed on nP substrate
The relationship between thickness and contact resistivity is shown. This second form
In the following, the following effects can be obtained. Quantum efficiency of photo detector
Is represented by η = 1-exp (-αw), and α is 1 × 10Four
cm -1In the case of, the light receiving element having a 1 μm absorption layer is η =
63%, but according to the present invention a highly efficient reflective electrode (eg
For example, when 48%) is used, it is improved to 81%. That
The contact resistance hardly changes at the time, and AuZn system is good.
While maintaining excellent characteristics, low contact resistance and high quantum efficiency
A surface incident type light receiving element can be realized.

【0018】[0018]

【発明の効果】本発明の第1の形態によれば、化合物半
導体上に高反射率金属を用いながら、その間に高融点金
属層を薄く介在させて高反射率金属と半導体との合金化
反応を防止した。これによって高反射率金属を用いなが
ら、合金化による反射率の低下を抑制することができ
た。オーミックコンタクトが必要であれば、ZnをAg
中に混合させることによる基板ドープによって高抵抗率
でかつ、高反射率な電極が実現できる。
According to the first aspect of the present invention, an alloying reaction between a high-reflectance metal and a semiconductor is performed by using a high-reflectance metal on a compound semiconductor and interposing a thin refractory metal layer therebetween. Was prevented. As a result, it was possible to suppress a decrease in reflectance due to alloying while using a high reflectance metal. If ohmic contact is required, Zn is added to Ag.
An electrode having a high resistivity and a high reflectance can be realized by doping the substrate by mixing in the electrode.

【0019】本発明の第2の形態によれば、コンタクト
抵抗を劣化させずかつ反射率を向上させるために化合物
半導体上にアロイ層を薄く形成し、その上で高反射率金
属を用いて高い反射率を実現し、かつその間に高融点金
属層を薄く介在させて高反射率金属の合金化を防止し
た。これによって、低コンタクト抵抗、高反射率を実現
する。
According to the second aspect of the present invention, an alloy layer is thinly formed on the compound semiconductor in order to improve the reflectance without deteriorating the contact resistance, and a high reflectance metal is used on the alloy layer to increase the reflectance. The reflectance was realized, and the refractory metal layer was thinly interposed between them to prevent alloying of the high reflectance metal. As a result, low contact resistance and high reflectance are realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のPIN−PD作成の工程要部断面図
である。
FIG. 1 is a sectional view of a principal part of a process of creating a PIN-PD according to a first embodiment.

【図2】実施例1のPIN−PD作成の工程要部断面図
である。
FIG. 2 is a sectional view of a principal part of a process of forming a PIN-PD according to the first embodiment.

【図3】実施例1のPIN−PD作成の工程要部断面図
である。
FIG. 3 is a sectional view of a principal part of a process of forming a PIN-PD according to the first embodiment.

【図4】実施例1のPIN−PD作成の工程要部断面図
である。
FIG. 4 is a sectional view of a principal part of a process of forming a PIN-PD according to the first embodiment.

【図5】実施例1のPIN−PD作成の工程要部断面図
である。
FIG. 5 is a sectional view of a principal part of a process of forming a PIN-PD according to the first embodiment.

【図6】実施例1のPIN−PD作成の工程要部断面図
である。
FIG. 6 is a sectional view of a principal part of a process of forming a PIN-PD according to the first embodiment.

【図7】実施例1で作成したPIN−PDの断面図であ
る。
FIG. 7 is a cross-sectional view of the PIN-PD created in Example 1.

【図8】Ti膜の膜厚と光吸収率との関係図である。FIG. 8 is a relationship diagram between the thickness of a Ti film and the light absorption rate.

【図9】InP基板におけるTi/AgZn電極のコン
タクト抵抗と基板濃度との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the contact resistance of a Ti / AgZn electrode on an InP substrate and the substrate concentration.

【図10】実施例2の発光ダイオードの断面図である。FIG. 10 is a cross-sectional view of a light emitting diode of Example 2.

【図11】実施例3のPIN−PD作成の工程要部の断
面図である。
FIG. 11 is a sectional view of a principal part of a process for producing a PIN-PD according to a third embodiment.

【図12】実施例3のPIN−PD作成の工程要部の断
面図である。
FIG. 12 is a sectional view of a principal part of a process for forming a PIN-PD according to a third embodiment.

【図13】実施例3のPIN−PD作成の工程要部の断
面図である。
FIG. 13 is a sectional view of a principal part of a process for forming a PIN-PD according to a third embodiment.

【図14】実施例3のPIN−PD作成の工程要部の断
面図である。
FIG. 14 is a sectional view of a principal part of a process for forming a PIN-PD according to a third embodiment.

【図15】実施例3のPIN−PDの断面図である。FIG. 15 is a sectional view of a PIN-PD according to a third embodiment.

【図16】InP基板表面のAuZnアロイ層の層厚と
光反射率との関係を示す図である。
FIG. 16 is a diagram showing the relationship between the light reflectance and the layer thickness of the AuZn alloy layer on the surface of the InP substrate.

【図17】InP基板(5×1018cm-3)表面のAnZ
nアロイ層の層厚とコンタクト抵抗との関係を示す図で
ある。
FIG. 17: AnZ of InP substrate (5 × 10 18 cm −3 ) surface
It is a figure which shows the relationship between the layer thickness of an n alloy layer, and contact resistance.

【符号の説明】[Explanation of symbols]

1…N−InP基板 2…N−InPバッファー層 3…N−InGaAs活性層 4…InPキャップ層 5…Zn選択拡散層 1 ... N-InP substrate 2 ... N-InP buffer layer 3 ... N-InGaAs active layer 4 ... InP cap layer 5 ... Zn selective diffusion layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光半導体装置の半導体層上に、第1層と
して高融点金属層、第2層としてAg,Al層、第3層
としてZn,Ge又はSn層、第4層をAg又はAl層
を形成し、第2層のAg又はAlと第3層のZnと第4
層のAg又はAlとは合金化してAgZn又はAlZn
してもよい層構成を含む電極を設けたことを特徴とする
光半導体装置。
1. On a semiconductor layer of an optical semiconductor device, a refractory metal layer as a first layer, an Ag, Al layer as a second layer, a Zn, Ge or Sn layer as a third layer, and a fourth layer is Ag or Al. A second layer Ag or Al, a third layer Zn and a fourth layer
AgZn or AlZn by alloying with Ag or Al of the layer
An optical semiconductor device comprising an electrode having a layer structure which may be provided.
【請求項2】 前記高融点金属層の厚みが100Å以下
である請求項1記載の光半導体装置。
2. The optical semiconductor device according to claim 1, wherein the refractory metal layer has a thickness of 100 Å or less.
【請求項3】 前記第4層上にさらに第2の高融点金属
層を有する請求項1又は2記載の光半導体装置。
3. The optical semiconductor device according to claim 1, further comprising a second refractory metal layer on the fourth layer.
【請求項4】 光半導体装置の半導体層上に、第1層と
して高融点金属層、第2層としてAgZn又はAg/Z
n/Ag又はZn層、第3層として第2の高融点金属層
を含む電極を設けたことを特徴とする光半導体装置。
4. A refractory metal layer as a first layer and AgZn or Ag / Z as a second layer on a semiconductor layer of an optical semiconductor device.
An optical semiconductor device comprising an n / Ag or Zn layer and an electrode including a second refractory metal layer as a third layer.
【請求項5】 光半導体装置の半導体層上に、第1層と
してAuZn又はAuGe層、第2層として高融点金属
層、第3層としてAg,Au又はAl層を含む電極を設
けたことを特徴とする光半導体装置。
5. An electrode including an AuZn or AuGe layer as a first layer, a refractory metal layer as a second layer, and an Ag, Au or Al layer as a third layer is provided on a semiconductor layer of an optical semiconductor device. A characteristic optical semiconductor device.
【請求項6】 前記第2層の厚みが100Å以下である
請求項5記載の光半導体装置。
6. The optical semiconductor device according to claim 5, wherein the second layer has a thickness of 100 Å or less.
【請求項7】 前記第1層の厚みが50Å以下である請
求項5又は6記載の光半導体装置。
7. The optical semiconductor device according to claim 5, wherein the first layer has a thickness of 50 Å or less.
JP4063797A 1992-03-19 1992-03-19 Electrode structure for optical semiconductor device Withdrawn JPH05267708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4063797A JPH05267708A (en) 1992-03-19 1992-03-19 Electrode structure for optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4063797A JPH05267708A (en) 1992-03-19 1992-03-19 Electrode structure for optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH05267708A true JPH05267708A (en) 1993-10-15

Family

ID=13239733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4063797A Withdrawn JPH05267708A (en) 1992-03-19 1992-03-19 Electrode structure for optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH05267708A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690079B2 (en) * 2001-04-16 2004-02-10 Sumitomo Electric Industries, Ltd. Light-receiving device
WO2005055327A1 (en) * 2003-12-04 2005-06-16 Hamamatsu Photonics K.K. Semiconductor light-receiving device and method for manufacturing same
JP2007088496A (en) * 2000-12-19 2007-04-05 Eudyna Devices Inc Semiconductor photodetection device
US8519501B2 (en) 2011-09-09 2013-08-27 Mitsubishi Electric Corporation Semiconductor light detecting element with grooved substrate
WO2014045334A1 (en) * 2012-09-18 2014-03-27 富士通株式会社 Semiconductor light-receiving element, and production method therefor
JP2018152369A (en) * 2017-03-09 2018-09-27 三菱電機株式会社 Rear-light incidence type light receiving element and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088496A (en) * 2000-12-19 2007-04-05 Eudyna Devices Inc Semiconductor photodetection device
US6690079B2 (en) * 2001-04-16 2004-02-10 Sumitomo Electric Industries, Ltd. Light-receiving device
WO2005055327A1 (en) * 2003-12-04 2005-06-16 Hamamatsu Photonics K.K. Semiconductor light-receiving device and method for manufacturing same
CN100466301C (en) * 2003-12-04 2009-03-04 浜松光子学株式会社 Semiconductor light-receiving device and method for manufacturing same
US7834413B2 (en) 2003-12-04 2010-11-16 Hamamatsu Photonics K.K. Semiconductor photodetector and method of manufacturing the same
US8519501B2 (en) 2011-09-09 2013-08-27 Mitsubishi Electric Corporation Semiconductor light detecting element with grooved substrate
WO2014045334A1 (en) * 2012-09-18 2014-03-27 富士通株式会社 Semiconductor light-receiving element, and production method therefor
JPWO2014045334A1 (en) * 2012-09-18 2016-08-18 富士通株式会社 Semiconductor light receiving element and manufacturing method thereof
US9553224B2 (en) 2012-09-18 2017-01-24 Fujitsu Limited Semiconductor photodetector element and method
JP2018152369A (en) * 2017-03-09 2018-09-27 三菱電機株式会社 Rear-light incidence type light receiving element and manufacturing method thereof
US11339494B2 (en) 2017-03-09 2022-05-24 Mitsubishi Electric Corporation Rear surface incident type light receiving device comprising an uppermost part of an electrode with a larger diameter than lowermost part of the electrode

Similar Documents

Publication Publication Date Title
JP3910817B2 (en) Semiconductor photo detector
US4342944A (en) Light emitting diodes with high external quantum efficiency
US20030178636A1 (en) Back illuminated photodiodes
JPH08204224A (en) Compound semiconductor light receiving element and fabrication thereof
JP2000156520A (en) Light receiving element and manufacture thereof
US6399967B1 (en) Device for selectively detecting light by wavelengths
US5179430A (en) Planar type heterojunction avalanche photodiode
US20070057299A1 (en) Systems and methods having a metal-semiconductor-metal (msm) photodetector with buried oxide layer
JPH05267708A (en) Electrode structure for optical semiconductor device
JPH0677518A (en) Semiconductor photodetector
JP2014013844A (en) Semiconductor photodetector and manufacturing method of the same
US4510514A (en) Ohmic contacts for semiconductor devices
US20030155625A1 (en) Semiconductor light receiving device and semiconductor part
JP4048217B2 (en) Semiconductor photo detector
JP2002083993A (en) Optical semiconductor light receiving element and its manufacturing method
JP2995921B2 (en) Semiconductor light receiving element
JP2952906B2 (en) Photodiode
JPH057019A (en) Manufacture of semiconductor light emitting element
JP2675574B2 (en) Semiconductor light receiving element
JPH0562472B2 (en)
JP4058457B2 (en) Semiconductor photo detector
JPH0411787A (en) Semiconductor light receiving device
JPS5967671A (en) Light emitting and receiving element
JP2562569Y2 (en) Photo diode
JPH01175776A (en) Semiconductor photodetector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608