JPH0411787A - Semiconductor light receiving device - Google Patents

Semiconductor light receiving device

Info

Publication number
JPH0411787A
JPH0411787A JP2112320A JP11232090A JPH0411787A JP H0411787 A JPH0411787 A JP H0411787A JP 2112320 A JP2112320 A JP 2112320A JP 11232090 A JP11232090 A JP 11232090A JP H0411787 A JPH0411787 A JP H0411787A
Authority
JP
Japan
Prior art keywords
light
layer
semiconductor
substrate
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2112320A
Other languages
Japanese (ja)
Inventor
Koichi Inoue
幸一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2112320A priority Critical patent/JPH0411787A/en
Publication of JPH0411787A publication Critical patent/JPH0411787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enhance a yield and to prevent a decrease in a quantum efficiency by forming an insulator and a multilayer film reflector of semiconductor on a semiconductor substrate, and reflecting a light in a direction of a light absorption layer. CONSTITUTION:A semiconductor substrate 2 has a pair of main surfaces 3, 4, a light receiving surface 5 formed on one surface 3, and a light absorption layer 1 formed therein. When a light hpsi incident on the surface 5 is not absorbed to the layer 1, but arrived at the other surface 4, a multilayer film reflector 6 reflects the light toward the layer 1. The reflector 6 is formed by alternately laminating an insulator layer 7 and a semiconductor layer 8 on the surface 4 of the substrate 2. Thus, the layer 1 improves to absorb the light, its yield is improved, and a decrease in a quantity efficiency can be prevented.

Description

【発明の詳細な説明】 [概要う 半導体受光装置に関し、 素子歩留か高く、反射率低下による量子効率の低下のな
い高速応答特性の半導体受光装置を堤供することを目的
とし、 1対の主表面を有し、内部に光吸収層を有する半導体基
板と、前記半導体基板の1方の主表面に形成された受光
面と、前記受光面に入射した光が前記光吸収層で吸収さ
れずに他方の主表面に達した時、その光を前記光吸収層
の方向に反射するように、前記半導体基板の他方の主表
面上に形成され、絶縁体層と半導体層とを交互に積み重
ねた多層膜反射器とを有するように構成する。
[Detailed Description of the Invention] [Regarding the general semiconductor light receiving device, the object of the present invention is to provide a semiconductor light receiving device with a high device yield and high-speed response characteristics without a decrease in quantum efficiency due to a decrease in reflectance. a semiconductor substrate having a surface and a light absorption layer therein; a light-receiving surface formed on one main surface of the semiconductor substrate; and a light-receiving surface formed on one main surface of the semiconductor substrate; A multilayer formed on the other main surface of the semiconductor substrate, in which insulator layers and semiconductor layers are stacked alternately, so that when the light reaches the other main surface, the light is reflected in the direction of the light absorption layer. and a membrane reflector.

[産業上の利用分野] 本発明は、半導体受光装置に関する。[Industrial application field] The present invention relates to a semiconductor light receiving device.

光ファイバを用いた光通信においては、高速動作する半
導体変調装置および半導体受光装置が用いられる6通信
波長が1μm帯(1,3μm帯、1.5μm帯等)の場
合、半導体受光装置の多くは、]nPを基板とし、化合
物半導体のへテロ構造を用いて形成される。
In optical communication using optical fibers, semiconductor modulators and semiconductor photodetectors that operate at high speed are used.6If the communication wavelength is in the 1 μm band (1.3 μm band, 1.5 μm band, etc.), most of the semiconductor photodetectors are ,] is formed using a compound semiconductor heterostructure using nP as a substrate.

[従来の技#f〕 光通信は、開発の進展と共に主として1〜16μmの波
長の光を用いるようになってきた。これに伴い、1〜1
.6μmの波長で高速特性の優れた半導体受光装置か要
求されている。
[Conventional Technique #f] With the progress of development, optical communication has come to mainly use light with a wavelength of 1 to 16 μm. Along with this, 1 to 1
.. There is a demand for a semiconductor photodetector with excellent high-speed characteristics at a wavelength of 6 μm.

光の波長が長くなると、一般的に半導体の光の吸収係数
が小さくなる。このため、従来の半導体受光装置におい
ては、一定の量子効果を得るために光吸収層を厚くする
必要かあった。ところが、光吸収層を厚くすると、キャ
リアの走行時間による遅れにより高速応答が実現できな
かった。
Generally, as the wavelength of light becomes longer, the absorption coefficient of light of a semiconductor becomes smaller. For this reason, in conventional semiconductor light receiving devices, it has been necessary to increase the thickness of the light absorption layer in order to obtain a certain quantum effect. However, when the light absorption layer was made thicker, high-speed response could not be achieved due to the delay caused by carrier transit time.

そこで、光吸収装置の厚さを一定値以下に制限しつつ、
半導体受光装置の高速応答性を改善する試みかなされて
いる。
Therefore, while limiting the thickness of the light absorption device to a certain value or less,
Attempts have been made to improve the high-speed response of semiconductor photodetectors.

第5図は従来の技術による半導体受光装置の例を示す、
n中型xnp基板52の上に、1nGaAS層と、In
P層との繰り返しからなる多層膜反射器ヲ6が形成され
、その上にn型InGaAs光吸収層51が形成され、
さらにその上にn型1nPウィンド層63か形成されて
いる6表面からn型領域中にZnを拡散したP生型拡散
領域59か光吸収層51に達するように形成されている
。したかって、このp”型Zn拡散領域59の周囲には
ρn接合か形成されている。受光面には厚さを制御しf
s S i N反射防止膜55が形成され、その外側に
は、SiNバンシベーション膜64が形成されている。
FIG. 5 shows an example of a semiconductor photodetector according to the prior art.
On the n medium-sized xnp substrate 52, a 1n GaAS layer and an In
A multilayer reflector 6 is formed by repeating the P layer, and an n-type InGaAs light absorption layer 51 is formed thereon.
Further, an n-type 1nP window layer 63 is formed on the 6 surface, and a P-type diffusion region 59 in which Zn is diffused into the n-type region is formed so as to reach the light absorption layer 51. Therefore, a ρn junction is formed around this p'' type Zn diffusion region 59.The light receiving surface has a ρn junction with a controlled thickness.
An s S i N antireflection film 55 is formed, and an SiN bancivation film 64 is formed on the outside thereof.

p′型Zn拡散領域55の周囲の部分は露出され、その
上にTi層−pt層−Au層の積層からなるpflll
I電極62か形成されている。基板52裏面上には、A
u−Ge−Niの合金からなるn f!I 電極61か
形成されている。この構造においては、受光面から光が
入射すると、InPウィンド層6層中3中Zn拡散領域
55を通って]nGaAs光吸収層51に入射し、吸収
される。吸収されなかった光は、InGaA3nGaA
3光吸収面51成された多層膜反射器56で反射され、
上方に向かう、すなわち5InGaAs光吸収層51を
再び通る。 InGaAsnGaAs光吸収層成1され
ると、電子・正孔対が形成され、ダイオードに電流が流
れる。
The surrounding part of the p'-type Zn diffusion region 55 is exposed, and a pfllll layer consisting of a Ti layer, a PT layer, and an Au layer is formed on top of the exposed part.
An I electrode 62 is also formed. On the back surface of the board 52, there is a
n f! made of an alloy of u-Ge-Ni! An I electrode 61 is formed. In this structure, when light enters from the light receiving surface, it passes through the Zn diffusion regions 55 in three of the six InP window layers, enters the nGaAs light absorption layer 51, and is absorbed. The unabsorbed light is InGaA3nGaA
It is reflected by a multilayer film reflector 56 formed with three light absorption surfaces 51,
It goes upward, that is, it passes through the 5InGaAs light absorption layer 51 again. When the InGaAsnGaAs light absorption layer 1 is formed, electron-hole pairs are formed and current flows through the diode.

第5図に示した横道においては、光吸収層直下に多層膜
反射器が設けられているため、吸収されなかった光が反
射され、再び光吸収層に入射するので光の利用効率が高
くなる。
In the side path shown in Figure 5, a multilayer film reflector is provided directly below the light absorption layer, so the unabsorbed light is reflected and enters the light absorption layer again, increasing the efficiency of light utilization. .

第6図は従来の技術による他の半導体受光装置の例を示
す、n生型1nP基板52の上に、n型1nGaAS光
吸収層51、n型1nPウィンド層63が形成され、表
面からn型領域中にZnを拡散したp”型Zn拡散領域
59か形成される。Zn拡散領域59の表面上にはSi
N反射防止膜55が形成され、その周囲にTi層、pt
層、Au層の積層からなるp 1!!1 t [i 6
2が形成されている。また、受光面の周囲にはS iN
バンシベーション膜64か形成されている。
FIG. 6 shows an example of another semiconductor light receiving device according to the prior art. An n-type 1nGaAS light absorption layer 51 and an n-type 1nP window layer 63 are formed on an n-type 1nP substrate 52, and an n-type 1nP window layer 63 is formed from the surface. A p'' type Zn diffusion region 59 is formed by diffusing Zn into the region.Si is formed on the surface of the Zn diffusion region 59.
A N antireflection film 55 is formed, and around it a Ti layer and a PT
layer, p1 consisting of a stack of Au layers! ! 1 t [i 6
2 is formed. In addition, SiN is placed around the light receiving surface.
A bancivation film 64 is also formed.

第6図力II遣においては、半導体構造中には反射器は
形成されていない、このため、上面から入射した光の内
1nGaAs光吸収層51て吸収されなかった光は、I
nP基板52を透過して基板下面に到達する。第6図の
横道においては、InP基板52の下面上に、Si02
層67と、その上のA u層6つからなる反射器が形成
されている。したかって、基板下面に到達した光は反射
器で反射され上方に向かう5反射器を設けた部分は、電
極か形成できないのて゛その周囲にn側型[i61か形
成される。
In FIG. 6, a reflector is not formed in the semiconductor structure. Therefore, the light that is not absorbed by the 1nGaAs light absorption layer 51 out of the light incident from the top surface is absorbed by the I nGaAs light absorption layer 51.
The light passes through the nP substrate 52 and reaches the bottom surface of the substrate. In the side path of FIG. 6, Si02
A reflector is formed consisting of layer 67 and six Au layers above it. Therefore, the light reaching the lower surface of the substrate is reflected by the reflector and directed upward.Since no electrodes can be formed in the portion where the five reflectors are provided, an n-side type [i61] is formed around it.

第6図のIII造においても、上方から入射し、InG
a^$尤吸収層51で吸収されなかった光は、基板52
下面に達した後、再び反射され上方に向かうので光の利
用効率が高くなる。
In the case of the structure III shown in Fig. 6, the incidence is from above, and the InG
a^^ The light not absorbed by the absorption layer 51 is transferred to the substrate 52.
After reaching the bottom surface, the light is reflected again and goes upward, increasing the efficiency of light utilization.

7発明か解決しようとする課題〕 第5図に示した従来の技術によれば、基板上に材料の異
なるヘテロ半導体層をエピタキシャルに積層して多層膜
反射器を形成している。格子整合を行なう必要があるた
め、材料的に制限される。
7. Problems to be Solved by the Invention] According to the conventional technique shown in FIG. 5, hetero semiconductor layers made of different materials are epitaxially laminated on a substrate to form a multilayer film reflector. Due to the need for lattice matching, there are material limitations.

たとえばInPとInGaAsを用いる場合、屈折率は
2゜99と3.43の様な値になる6M折率比を大きく
とれないため、暦数を多くする必要があり、2種類の層
を各々25〜50層も積層する必要がある。すると、ヘ
テロ界面の数が増加するため結晶欠陥か入りやすく、素
子歩留低下の原因となる。
For example, when using InP and InGaAs, it is not possible to obtain a large 6M refractive index ratio with refractive index values such as 2°99 and 3.43, so it is necessary to increase the number of calendars, and the two types of layers are It is necessary to laminate ~50 layers. As a result, the number of heterointerfaces increases, making it easier for crystal defects to occur, which causes a decrease in device yield.

第6図に示す従来の技術においては、反射率を高めるた
めに金反射膜が用いられているか、金層を半導体基板に
直接形成すると加熱工程において、反射率が失われる可
能性かある。このため基板上にいったんシリコン酸化膜
を形成し、その上に金層か形成されているが、シリコン
酸化膜と金層の密着性が悪いため金層の剥れを起こし、
反射率低下を生じやすい、このため量子効率低下の原因
となる。
In the conventional technique shown in FIG. 6, a gold reflective film is used to increase the reflectance, or if the gold layer is directly formed on the semiconductor substrate, the reflectance may be lost during the heating process. For this reason, a silicon oxide film is first formed on the substrate, and then a gold layer is formed on top of it, but the gold layer peels off due to poor adhesion between the silicon oxide film and the gold layer.
This tends to cause a decrease in reflectance, which causes a decrease in quantum efficiency.

このように、従来の半導体受光装置によれば素子歩留が
低い、または量子効率が低いといっな課題かある。
As described above, conventional semiconductor light receiving devices have problems such as low device yield and low quantum efficiency.

本発明の目的は、素子歩留が高く、反射率低下による量
子効率の低下のない高速応答特性の半導体受光装置を堤
供することである。
An object of the present invention is to provide a semiconductor light-receiving device with high device yield and high-speed response characteristics without a decrease in quantum efficiency due to decrease in reflectance.

5課題を解決するための手段] 第1図は本発明の原理説明図である。Means to solve the 5 issues] FIG. 1 is a diagram explaining the principle of the present invention.

一対の主表面3.4を有し、内部に光吸収層1を有する
半導体基板2か半導体受光装置要部を構成する。こめ半
導体基板2の一方の主表面3に受光面ヲを形成し、他方
の主表面4上に多層膜反射器6を形成する。多層膜反射
器6は絶縁体層7と半導体層8との交互槓み重す積層で
形成される。
A semiconductor substrate 2 having a pair of main surfaces 3.4 and having a light absorption layer 1 therein constitutes a main part of a semiconductor light receiving device. A light receiving surface is formed on one main surface 3 of the semiconductor substrate 2, and a multilayer film reflector 6 is formed on the other main surface 4. The multilayer reflector 6 is formed by laminating an insulator layer 7 and a semiconductor layer 8 in an alternately stacked manner.

上方から受光面5に入射した光は、光吸収層1で吸収さ
れる。吸収されなかった光は、他方の主表面4に達し、
そこで多層膜反射器6によって反射され再び光吸収層1
の方向に向かう。
Light incident on the light receiving surface 5 from above is absorbed by the light absorption layer 1. The unabsorbed light reaches the other main surface 4,
There, the light is reflected by the multilayer film reflector 6 and the light absorbing layer 1 is reflected again.
Head in the direction of.

他方の主表面4を凸面状に加工し、その上に多層膜反射
器を形成してもよい6 また、一方の主表面3を凸面状に加工し、そこに受光面
を形成してもよい。
The other main surface 4 may be processed into a convex shape and a multilayer film reflector may be formed thereon.6 Also, one main surface 3 may be processed into a convex shape and a light-receiving surface may be formed thereon. .

[作用] 多層膜反射器6を絶縁体層7と半導体層8で形成するこ
とにより、屈折率比を大きくとることができる。屈折率
比か大きいなめ、絶縁体層7と半導体層8の各界面での
反射率か大きくなり、これらの和である。全反射光(図
中矢印で示す)も容易に大きくなる。このため、多層膜
反射器の層数は少なくてすむ、半導体基板の表面上に多
層膜反射器を形成し、その上には半導体結晶を成長する
必要かないため、格子整合等の必要がなく、絶縁体層半
導体層の材料を多くの物質から選択することかできる。
[Function] By forming the multilayer film reflector 6 with the insulating layer 7 and the semiconductor layer 8, a large refractive index ratio can be obtained. As the refractive index ratio increases, the reflectance at each interface between the insulating layer 7 and the semiconductor layer 8 increases, which is the sum of these. Totally reflected light (indicated by an arrow in the figure) also easily increases. For this reason, the number of layers of the multilayer film reflector is small, and there is no need to form the multilayer film reflector on the surface of the semiconductor substrate and grow a semiconductor crystal on it, so there is no need for lattice matching, etc. The material of the insulator layer semiconductor layer can be selected from many substances.

他方の主表面を凸面状に加工し、その上に多層膜反射器
を形成すると、半導体内に凹面鏡が形成され、光が焦合
作用を件って反射されることになる。このため、反射光
を効率よく光吸収層に集光することができる。
When the other main surface is processed into a convex shape and a multilayer film reflector is formed thereon, a concave mirror is formed within the semiconductor, and light is reflected with a focusing effect. Therefore, reflected light can be efficiently focused on the light absorption layer.

一方の主表面3を凸面状に加工し、受光面5をその曲面
に形成すると、半導体の凸レンズか形成され、入射光を
効率よく光吸収層に集光することかて′きる。
By processing one main surface 3 into a convex shape and forming the light-receiving surface 5 into the curved surface, a semiconductor convex lens is formed, and incident light can be efficiently focused on the light absorption layer.

3実施例J 第2図(A )、(B)、(C)に本発明の実施例によ
る半導体受光装置を示す。
3 Embodiment J FIGS. 2(A), 2(B), and 2(C) show a semiconductor light receiving device according to an embodiment of the present invention.

第2図(A )は半導体受光装置の回路構成を示す、受
光ダイオードDが、直ataEから抵抗Rを介して逆バ
イアスを与えられている。抵抗Rの端子間電圧はアンプ
Aに印加される。受光タイオードDに光が入射していな
い場合、受光ダイオードEはオフ状態にあり、電流は流
れない、この時、抵抗R1’[子間電圧はゼロとなる。
FIG. 2(A) shows a circuit configuration of a semiconductor light receiving device, in which a light receiving diode D is directly reverse biased through a resistor R from ataE. The voltage across the terminals of resistor R is applied to amplifier A. When no light is incident on the photodiode D, the photodiode E is in an off state and no current flows. At this time, the voltage across the resistor R1' becomes zero.

受光ダイオードDに光が入射すると、S子・正孔対が生
成し、逆バイアスダイオードDに電流Iが流れる。この
電流Iによって、抵抗凡の両端にV=IHの電圧か発生
するにの信号電圧をアンプAで増幅する。
When light is incident on the light receiving diode D, S-son/hole pairs are generated, and a current I flows through the reverse bias diode D. This current I generates a signal voltage of V=IH across the resistor, and the amplifier A amplifies the signal voltage.

第2図(A)に示す受光ダイオードDは、第2図(B)
に示すような構成を有する。n+型1nP基板12の上
に、n型1nGaAs光吸収層11が形成され、その上
にn型1nPウィンド層23か形成されている。ウィン
ド層23の表面からZnを拡散し、p型Zn拡散領域1
9か形成され、ダイオードを構成する。TnGaAsn
GaAs光吸収層上1ば厚さ約1μmとし、その上のウ
ィンド層23は、たとえは厚さ1μmとする。また、Z
n拡散領域19は、ウィンド層23から光吸収層11内
に、たとえば深さ約O12μm入り込むように形成する
。受光ダイオード構造を形成した後、基板12の裏面を
エッチし、たとえば厚さ140μm程度とする。Zn拡
散領域19の表面上に選択した厚さを有するS i N
Mを堆積し、SiN反射防止膜15を形成する。また、
Zn拡散領域周辺部の表面を露出し、その上にTi1l
、Pt1J!、Au膜からなる積層P側電極22を形成
する1表面のAu層は、たとえば厚さ2〜3μmとする
。また、受光面以外の表面には、SiNパッシベーショ
ン膜24を形成する。受光面から入射した光は、その主
要部が光吸収層11で吸収されるか、その一部は光吸収
層11を透過して基板12中を進行するにの光を再乙く
光吸収層11に反射するように多層膜反射器1りか受光
面と対向して形成される。多層膜反射器16は、たとえ
ば第2図(C)に示すようにSiO2層17とアモルフ
ァスSi層18の交互積層から形成される。SiO2は
、屈折率約1.46の絶縁体であり、アモルファスSi
は、屈折率約35の半導体である。このようにして低屈
折率nLと高屈折率nHか得られる。このように大フな
屈折率比を有する絶縁体と半導体を採用すると、多層膜
反射器は図示のように各2層の構成で反射率は約96%
となる。絶縁体と半導体とて構成される多層膜反射器は
、一般に絶縁体と半導体の屈折率比が大きいため各層の
重ね合わせ回数か少なくても高い反射率か得られる。ま
た、絶縁体として基数との密着性か良好な材料を選択す
ることら容易である。対象とする信号光の波長が1.3
μmの場合、SiO2層17の厚さはそれぞれ2230
人、アモルファスSi層18の厚さはそれぞれ約930
又に選択する。受光面下方に多層膜反射器16を形成す
ると、そこに重ねてn側電極は形成できないので、多層
膜反射器16の周辺部にn側電 ii 21をたとえば
厚さ約3000人のAu  Ge  Ni合金層で形成
する。
The light receiving diode D shown in FIG. 2(A) is as shown in FIG. 2(B).
It has the configuration shown in . An n-type 1nGaAs light absorption layer 11 is formed on an n+-type 1nP substrate 12, and an n-type 1nP window layer 23 is formed thereon. Zn is diffused from the surface of the window layer 23 to form a p-type Zn diffusion region 1.
9 are formed to constitute a diode. TnGaAsn
The thickness of the GaAs light absorption layer 1 is approximately 1 μm, and the wind layer 23 thereon is, for example, 1 μm thick. Also, Z
The n-diffusion region 19 is formed to extend from the window layer 23 into the light absorption layer 11, for example, to a depth of about 012 μm. After forming the light receiving diode structure, the back surface of the substrate 12 is etched to a thickness of, for example, about 140 μm. S i N with a selected thickness on the surface of the Zn diffusion region 19
M is deposited to form a SiN antireflection film 15. Also,
The surface around the Zn diffusion region is exposed, and Ti1l is deposited on top of it.
, Pt1J! The Au layer on one surface forming the laminated P-side electrode 22 made of an Au film has a thickness of, for example, 2 to 3 μm. Further, a SiN passivation film 24 is formed on the surface other than the light receiving surface. The main part of the light incident from the light-receiving surface is absorbed by the light-absorbing layer 11, or a part of it is transmitted through the light-absorbing layer 11 and re-absorbs the light as it travels through the substrate 12. One multilayer film reflector is formed facing the light-receiving surface so as to reflect light onto the light receiving surface. The multilayer reflector 16 is formed, for example, from alternating layers of SiO2 layers 17 and amorphous Si layers 18, as shown in FIG. 2(C). SiO2 is an insulator with a refractive index of approximately 1.46, and amorphous Si
is a semiconductor with a refractive index of about 35. In this way, a low refractive index nL and a high refractive index nH are obtained. By using insulators and semiconductors that have such a large refractive index ratio, a multilayer reflector can have a reflectance of approximately 96% with each layer consisting of two layers as shown in the figure.
becomes. A multilayer film reflector composed of an insulator and a semiconductor generally has a large refractive index ratio between the insulator and the semiconductor, so a high reflectance can be obtained even if the number of overlapping of each layer is reduced. Furthermore, it is easy to select a material that has good adhesion to the base as the insulator. The wavelength of the target signal light is 1.3
In the case of μm, the thickness of the SiO2 layer 17 is 2230 μm.
The thickness of the amorphous Si layer 18 is approximately 930 mm.
Select again. If the multilayer reflector 16 is formed below the light-receiving surface, an n-side electrode cannot be formed over it, so an n-side electrode 21 is formed around the periphery of the multilayer reflector 16 using, for example, Au Ge Ni 21 with a thickness of approximately 3000 mm. Formed with an alloy layer.

第3図は本発明の他の実施例による半導体受光装置の要
部を示す0本実施例においては、基板12の下面を凸面
状の曲面とし、その曲面26の上に多層膜反射器16を
形成している。その曲の構成は第2図に示す構成と同等
である。
FIG. 3 shows the main parts of a semiconductor photodetector according to another embodiment of the present invention. In this embodiment, the lower surface of the substrate 12 is a convex curved surface, and a multilayer film reflector 16 is placed on the curved surface 26. is forming. The structure of the song is equivalent to the structure shown in FIG.

基板12の下面を凸面とすると、基板内を進行する光に
とっては、凹面鏡が形成される。したかって、光吸収層
11を透過した光が凹面鏡26に達すると、多層膜反射
器で反射されると共に凹面鏡で集光される。このように
して反射光を効率よ<Zn拡散領域19近傍の光吸収層
11に集めることができる。特に斜め方向から入射した
光に対しても光の利用効率を高くすることかできる。
When the lower surface of the substrate 12 is made convex, a concave mirror is formed for light traveling inside the substrate. Therefore, when the light transmitted through the light absorption layer 11 reaches the concave mirror 26, it is reflected by the multilayer film reflector and condensed by the concave mirror. In this way, the reflected light can be efficiently collected on the light absorption layer 11 in the vicinity of the Zn diffusion region 19. In particular, the light utilization efficiency can be increased even for light incident from an oblique direction.

第4図は本発明の他の実施例による半導体受光装置を示
す。
FIG. 4 shows a semiconductor light receiving device according to another embodiment of the present invention.

本実施例においては、基板12が図中上側に配置されて
いる。基板12下面上にInGaAs光吸収層11が形
成され、その上にInPウィンド層23か形成されてい
る。また、lnPウィンド層表面からZnt散領域19
か形成され、光吸収層11内に達している。
In this embodiment, the substrate 12 is placed on the upper side in the figure. An InGaAs light absorption layer 11 is formed on the lower surface of the substrate 12, and an InP window layer 23 is formed thereon. In addition, Znt dispersed region 19 from the surface of the lnP wind layer
is formed and reaches inside the light absorption layer 11.

本実施例においては、受光面15か基板表面に形成され
る。基板表面を凸面状の曲面28とし、その上にSiN
反射防止、膜1ヲか形成されている。
In this embodiment, the light receiving surface 15 is formed on the surface of the substrate. The surface of the substrate is a convex curved surface 28, and SiN is deposited on it.
Anti-reflection film 1 is formed.

凸面力周囲にはn側;極21か形成される。図中下方に
示すZn拡散領域19の表面上に多層膜反射器16か形
成され−Znt敗領域の周辺部は露出されて、その上に
多層膜反射器16を覆ってp側型し22か形成されてい
る。ρ側電極の周辺部はSiNパッシベーション膜24
で覆われる。
A pole 21 is formed on the n side around the convex force. A multilayer film reflector 16 is formed on the surface of the Zn diffusion region 19 shown in the lower part of the figure.The peripheral part of the Znt failure region is exposed, and a p-side film 22 is formed thereon to cover the multilayer film reflector 16. It is formed. The peripheral part of the ρ side electrode is a SiN passivation film 24.
covered with

本実施例においては、曲面28を有する半導体基板12
によって凸レンズか形成されている。入射光はこの凸レ
ンズで集光されて、光吸収11111に入射する。この
ため、受光面と比べてP十型拡#!領域19の面積を小
さなものとすることができる。ダイオード構造に付随す
る容量Cおよび抵抗Rを小さくし、高速動作させるのに
適している。
In this embodiment, a semiconductor substrate 12 having a curved surface 28 is used.
A convex lens is formed by The incident light is condensed by this convex lens and enters the light absorber 11111. Therefore, compared to the light-receiving surface, the P-type is enlarged! The area of region 19 can be made small. It is suitable for reducing the capacitance C and resistance R associated with the diode structure and for high-speed operation.

なお、光吸収層11を一回通過する際には吸収されなか
った光は、下側表面に設けた多層膜反射器16によって
反射され、再び光吸収層11に進行し、そこで吸収され
る。
Note that the light that is not absorbed when passing through the light absorption layer 11 once is reflected by the multilayer film reflector 16 provided on the lower surface, travels to the light absorption layer 11 again, and is absorbed there.

なお、基板の厚さと比べてエピタキシャル結晶成長層の
厚さは十分小さいため、反射後の光があまり拡がらない
状態で再び光吸収層11に入射するので反射光の利用効
率も高くなる。
Note that since the thickness of the epitaxial crystal growth layer is sufficiently small compared to the thickness of the substrate, the reflected light enters the light absorption layer 11 again without being spread much, so that the utilization efficiency of the reflected light is also increased.

なお、第3図、第4図に示すような半導体基板表面の加
工はウェットエツチングやイオンエツチング等を利用し
て形成することができる。
Note that the surface of the semiconductor substrate as shown in FIGS. 3 and 4 can be processed using wet etching, ion etching, or the like.

以上実施例に沿って本発明を説明したか、本発明はこれ
らに制限されるものではない。たとえば、半導体材料と
してInP、1nGaAs系の代わりにGaAs、Al
GaAs系等の他の材料、絶縁体として5i02の代わ
りにSiN等の他の材料を用いることもできる。
Although the present invention has been described above in accordance with the examples, the present invention is not limited thereto. For example, instead of InP and 1nGaAs as semiconductor materials, GaAs and Al are used as semiconductor materials.
Other materials such as GaAs-based materials and other materials such as SiN may be used instead of 5i02 as an insulator.

こ発明の効果; 以上説明したように、本発明によれば、半導体基板の内
部は比較的簡単な構成とじ、表面上に絶縁体と半導体の
多層膜反射器を形成することにより、歩留か高く、量子
効率の低下を防止した高速応答のて゛きる半導体受光装
置を提供することかできる。
Effects of the Invention: As explained above, according to the present invention, the internal structure of the semiconductor substrate is relatively simple, and a multilayer reflector made of an insulator and a semiconductor is formed on the surface, thereby improving yield. Accordingly, it is possible to provide a semiconductor light-receiving device that has a high response speed and prevents a decrease in quantum efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図(A)、(B)、(C)は、本発明の実施例によ
る半導体受光装置を説明するための図てあり、第2図(
A>は半導体受光回路の回路図、第2図(B)は半導体
受光ダイオードの要部を示す断面図、第2図(C)は半
導体受光ダイオードに設けた多層膜反射器の構成を示す
断面図、第3図、第4図はそれぞれ本発明の他の実施例
による半導体受光装置を示す断面図、 第5図、第6図は従来の技術による半導体受光装置を示
す断面図である。 図において、 3.4 13.14 光吸収層 半導体基板 主表面 受光面 多層膜反射器 絶縁体層 半導体層 半導体受光ダイオード 抵  抗 直流電源 アンプ n型1nGaAs光吸収層 n中型1nP基板 主表面 SiN反射防止膜 多層膜反射器 SiO2層 アモルファスSt層 Zn拡散領域 つ9 0側S極 p側電極 曲面(凹面鏡) 曲面(凸レンズ) 特許出膨人 富士通株式会社 へ 代 理 人 弁理士 井桁貴−他2名 h)−/ 1b 26:曲面(凹面鏡) 第3図 1ζ 28二曲面(凸レンズ) 他の実施例 第4図 (A)回路 (C)多層膜反射器 ?YV 第6図
FIG. 1 is a diagram illustrating the principle of the present invention, and FIGS.
A> is a circuit diagram of a semiconductor light receiving circuit, FIG. 2 (B) is a cross-sectional view showing the main parts of a semiconductor light receiving diode, and FIG. 2 (C) is a cross section showing the configuration of a multilayer film reflector provided in a semiconductor light receiving diode. 3, 4 are sectional views showing semiconductor light receiving devices according to other embodiments of the present invention, and FIGS. 5 and 6 are sectional views showing semiconductor light receiving devices according to the prior art. In the figure, 3.4 13.14 Light absorption layer Semiconductor substrate main surface Light-receiving surface Multilayer film reflector Insulator layer Semiconductor layer Semiconductor light-receiving diode Resistor DC power amplifier n-type 1nGaAs Light absorption layer n Medium-sized 1nP substrate main surface SiN Anti-reflection Multilayer film reflector SiO2 layer Amorphous St layer Zn diffusion region 9 0 side S pole P side electrode Curved surface (concave mirror) Curved surface (convex lens) Patent developer: Fujitsu Limited Agent: Patent attorney: Takashi Igeta - 2 others ) - / 1b 26: Curved surface (concave mirror) Fig. 3 1ζ 28 Bicurved surface (convex lens) Other examples Fig. 4 (A) Circuit (C) Multilayer film reflector? YV Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)、1対の主表面(3、4)を有し、内部に光吸収
層(1)を有する半導体基板(2)と、 前記半導体基板(2)の1方の主表面(3)に形成され
た受光面(5)と、 前記受光面(5)に入射した光が前記光吸収層(1)で
吸収されずに他方の主表面(4)に達した時、その光を
前記光吸収層(1)の方向に反射するように、前記半導
体基板(2)の他方の主表面(4)上に、絶縁体層(7
)と半導体層(8)とを交互に積み重ねて形成した多層
膜反射器(6)と を有する半導体受光装置。
(1), a semiconductor substrate (2) having a pair of main surfaces (3, 4) and having a light absorption layer (1) therein; and one main surface (3) of the semiconductor substrate (2). a light-receiving surface (5) formed on the light-receiving surface (5); when light incident on the light-receiving surface (5) reaches the other main surface (4) without being absorbed by the light-absorbing layer (1), the light is transmitted to the light-receiving surface (5); An insulating layer (7) is provided on the other main surface (4) of the semiconductor substrate (2) so as to reflect the light in the direction of the light absorption layer (1).
) and a multilayer film reflector (6) formed by alternately stacking semiconductor layers (8).
(2)、前記他方の主表面(4)が凸面状に加工された
曲面を有し、前記多層膜反射器がその曲面上に形成され
ている請求項1記載の半導体受光装置。
(2) The semiconductor light receiving device according to claim 1, wherein the other main surface (4) has a curved surface processed into a convex shape, and the multilayer film reflector is formed on the curved surface.
(3)、前記一方の主表面(3)が凸面状に加工された
曲面を有し、前記受光面(5)がその曲面に形成されて
いる請求項1記載の半導体受光装置。
(3) The semiconductor light receiving device according to claim 1, wherein the one main surface (3) has a curved surface processed into a convex shape, and the light receiving surface (5) is formed on the curved surface.
JP2112320A 1990-04-28 1990-04-28 Semiconductor light receiving device Pending JPH0411787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112320A JPH0411787A (en) 1990-04-28 1990-04-28 Semiconductor light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112320A JPH0411787A (en) 1990-04-28 1990-04-28 Semiconductor light receiving device

Publications (1)

Publication Number Publication Date
JPH0411787A true JPH0411787A (en) 1992-01-16

Family

ID=14583721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112320A Pending JPH0411787A (en) 1990-04-28 1990-04-28 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JPH0411787A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091527B2 (en) 2000-12-19 2006-08-15 Fujitsu Quantum Devices Limited Semiconductor photodetection device
JP2007088496A (en) * 2000-12-19 2007-04-05 Eudyna Devices Inc Semiconductor photodetection device
JP2012129535A (en) * 2012-01-30 2012-07-05 Toshiba Corp Semiconductor device
JP2013171920A (en) * 2012-02-20 2013-09-02 Nec Corp Semiconductor light-receiving element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091527B2 (en) 2000-12-19 2006-08-15 Fujitsu Quantum Devices Limited Semiconductor photodetection device
JP2007088496A (en) * 2000-12-19 2007-04-05 Eudyna Devices Inc Semiconductor photodetection device
JP2012129535A (en) * 2012-01-30 2012-07-05 Toshiba Corp Semiconductor device
JP2013171920A (en) * 2012-02-20 2013-09-02 Nec Corp Semiconductor light-receiving element

Similar Documents

Publication Publication Date Title
US6831265B2 (en) Photodetector having improved photoresponsitivity over a broad wavelength region
US20030178636A1 (en) Back illuminated photodiodes
US6737718B2 (en) Semiconductor photodetector
US6909083B2 (en) Photodetector and unit mounted with photodetector
JPH0677518A (en) Semiconductor photodetector
JP2011124450A (en) Semiconductor light reception element
US5045908A (en) Vertically and laterally illuminated p-i-n photodiode
WO2021074967A1 (en) Light-receiving element
JPH0411787A (en) Semiconductor light receiving device
JP2001320081A (en) Semiconductor light receiving element
JP2000150923A (en) Backside incidence type light receiving device and manufacture thereof
JP2002344002A (en) Light-receiving element and mounting body thereof
JPS63269580A (en) Light detector
JP2007504659A (en) Systems and methods having metal-semiconductor-metal (MSM) photodetectors with buried oxide layers
CN114023831A (en) High-speed high-response photoelectric detector and manufacturing method thereof
JP2675574B2 (en) Semiconductor light receiving element
JPH05102513A (en) Semiconductor phtodetector
JP2001053328A (en) Semiconductor photodetector
JP2004158763A (en) Semiconductor photo detector
JP3608772B2 (en) Semiconductor photo detector
JP2001308366A (en) Photodiode
JPH01264273A (en) Semiconductor photodetector
JPH0555619A (en) Semiconductor photodetector
JPH0373576A (en) Semiconductor photodetector
JP2723069B2 (en) Semiconductor light receiving element