JP2013171920A - Semiconductor light-receiving element - Google Patents

Semiconductor light-receiving element Download PDF

Info

Publication number
JP2013171920A
JP2013171920A JP2012034004A JP2012034004A JP2013171920A JP 2013171920 A JP2013171920 A JP 2013171920A JP 2012034004 A JP2012034004 A JP 2012034004A JP 2012034004 A JP2012034004 A JP 2012034004A JP 2013171920 A JP2013171920 A JP 2013171920A
Authority
JP
Japan
Prior art keywords
light
light receiving
incident
semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012034004A
Other languages
Japanese (ja)
Other versions
JP6035770B2 (en
Inventor
Takeshi Takeuchi
剛 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2012034004A priority Critical patent/JP6035770B2/en
Publication of JP2013171920A publication Critical patent/JP2013171920A/en
Application granted granted Critical
Publication of JP6035770B2 publication Critical patent/JP6035770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-receiving element which can re-collect light which was not absorbed in a light-receiving region with high collection efficiency in the light-receiving region to photoelectrically convert the re-collected light.SOLUTION: A semiconductor light-receiving element 10 of a present embodiment comprises: a semiconductor substrate 20; a light-receiving part 30 which is arranged on a top face of the semiconductor substrate 20 and on which light is incident; and a reflection part 40 arranged under the semiconductor substrate 20 for reflecting light transmitted through the light-receiving part 30. In this case, the reflection part 40 is arranged at a position where a reflection light spot size φr of light reflected by the reflection part 40 and incident upon the light-receiving part 30 again is not more than an incident light spot size φi of light incident upon the light-receiving part 30.

Description

本発明は、光通信や光情報処理等において用いられる半導体受光素子に関し、特に、光吸収層が薄厚に形成された半導体受光素子に関する。   The present invention relates to a semiconductor light receiving element used in optical communication, optical information processing, and the like, and more particularly to a semiconductor light receiving element in which a light absorption layer is formed thin.

半導体受光素子は、光通信や光情報処理用の高感度受光器として実用化されている。半導体受光素子は特に、大容量長距離光通信用の波長1.3μmあるいは1.55μmの通信光に対する高感度受光器として用いられている。   Semiconductor light receiving elements have been put to practical use as high sensitivity light receivers for optical communication and optical information processing. The semiconductor light receiving element is particularly used as a high sensitivity light receiver for communication light having a wavelength of 1.3 μm or 1.55 μm for large-capacity long-distance optical communication.

しかし、高速応答特性や耐高光入力特性を意図して光吸収層を2μm以下に薄くする場合、半導体受光素子の量子効率が低下する。特に、波長1.55μmの通信光は量子効率の低下が大きく、充分な感度が得られない場合がある。   However, when the light absorption layer is thinned to 2 μm or less for the purpose of high-speed response characteristics and high light input resistance characteristics, the quantum efficiency of the semiconductor light receiving element is lowered. In particular, communication light with a wavelength of 1.55 μm has a large decrease in quantum efficiency, and sufficient sensitivity may not be obtained.

そこで、特許文献1には、半導体基板の下方に曲面状の反射層を配置した半導体受光素子が開示されている。特許文献1の半導体受光素子の断面図を図10に示す。図10に示した半導体受光素子900において、受光領域920で光電変換されなかった光は、半導体基板910の下方に配置されている曲面状の反射層930で反射され、再度、受光領域920に入射して光電変換される。   Therefore, Patent Document 1 discloses a semiconductor light receiving element in which a curved reflection layer is disposed below a semiconductor substrate. A cross-sectional view of the semiconductor light-receiving element of Patent Document 1 is shown in FIG. In the semiconductor light receiving element 900 shown in FIG. 10, light that has not been subjected to photoelectric conversion in the light receiving region 920 is reflected by a curved reflective layer 930 disposed below the semiconductor substrate 910 and is incident on the light receiving region 920 again. And photoelectrically converted.

特開2001−308366号公報JP 2001-308366 A

ここで、入射光は、受光領域に垂直方向に入射する場合と、受光領域に対して斜めに入射する場合とがある。特許文献1の半導体受光素子900は、受光領域920に垂直方向に入射した光については曲面状の反射層930で反射して再度、受光領域920に集光させることができるが、受光領域920に対して斜めに入射した光を有効に集光することができない。   Here, the incident light may be incident on the light receiving area in the vertical direction or may be incident on the light receiving area at an angle. In the semiconductor light receiving element 900 of Patent Document 1, light incident in the vertical direction on the light receiving region 920 can be reflected by the curved reflective layer 930 and condensed again on the light receiving region 920. On the other hand, the light incident obliquely cannot be collected effectively.

本発明の目的は、上記課題に鑑み、受光領域で吸収されなかった光を、高い集光率で受光領域に再集光して光電変換できる半導体受光素子を提供することにある。   In view of the above problems, an object of the present invention is to provide a semiconductor light receiving element capable of photoelectrically converting light that has not been absorbed in the light receiving region into the light receiving region with a high light collection rate.

上記目的を達成するために本発明に係る半導体受光素子は、半導体基板と、半導体基板の上面に配置され、光が入射する受光部と、半導体基板下方に配置され、受光部を透過した光を反射する反射部と、を備える。ここで、反射部は、反射部で反射されて受光部に再び入射する光の反射光スポットサイズが受光部に入射する光の入射光スポットサイズ以下となる位置に配置される。   In order to achieve the above object, a semiconductor light receiving device according to the present invention includes a semiconductor substrate, a light receiving portion that is disposed on the upper surface of the semiconductor substrate, and a light that is incident on the lower side of the semiconductor substrate and transmits light transmitted through the light receiving portion. A reflecting portion that reflects. Here, the reflection part is arranged at a position where the reflected light spot size of the light reflected by the reflection part and incident again on the light receiving part is equal to or smaller than the incident light spot size of light incident on the light receiving part.

本発明に係る半導体受光素子は、受光領域で吸収されなかった光を、高い集光率で受光領域に再集光して光電変換できる。   The semiconductor light-receiving element according to the present invention can photoelectrically convert light that has not been absorbed in the light-receiving region by re-condensing it in the light-receiving region with a high light collection rate.

本発明の第1の実施形態に係る半導体受光素子10の断面図である。1 is a cross-sectional view of a semiconductor light receiving element 10 according to a first embodiment of the present invention. 本発明の第2の実施形態に係る半導体受光素子100の断面図である。It is sectional drawing of the semiconductor light receiving element 100 which concerns on the 2nd Embodiment of this invention. 入射光スポットサイズφiと反射光スポットサイズφrとの関係を示す図である。It is a figure which shows the relationship between incident light spot size (phi) i and reflected light spot size (phi) r. 本発明の第2の実施形態に係る半導体受光素子100の製造工程図である。It is a manufacturing-process figure of the semiconductor light receiving element 100 which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る別の半導体受光素子100Bの断面図である。It is sectional drawing of another semiconductor light receiving element 100B which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る半導体受光素子100Cの断面図である。It is sectional drawing of 100 C of semiconductor light receiving elements which concern on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る別の半導体受光素子100Dの断面図である。It is sectional drawing of another semiconductor light receiving element 100D which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る半導体受光素子100Eの断面図である。It is sectional drawing of the semiconductor light receiving element 100E which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る半導体受光素子100Eの製造工程図である。It is a manufacturing-process figure of the semiconductor light receiving element 100E which concerns on the 4th Embodiment of this invention. 特許文献1の半導体受光素子900の断面図である。FIG. 10 is a cross-sectional view of a semiconductor light receiving element 900 of Patent Document 1.

(第1の実施形態)
第1の実施形態に係る半導体受光素子について説明する。本実施形態に係る半導体受光素子の断面図を図1に示す。図1において、本実施形態に係る半導体受光素子10は、半導体基板20、受光部30および反射部40を備える。
(First embodiment)
The semiconductor light receiving element according to the first embodiment will be described. A cross-sectional view of the semiconductor light receiving element according to this embodiment is shown in FIG. In FIG. 1, a semiconductor light receiving element 10 according to this embodiment includes a semiconductor substrate 20, a light receiving unit 30, and a reflecting unit 40.

半導体基板20は、第1導電型の半導体層の上面に複数の層を積層することによって形成される。受光部30は、半導体基板20の上面に配置される。また、受光部30は、第2導電型の不純物領域を備え、入射光を吸収して電気信号に変換する。反射部40は、半導体基板20の下方に配置され、受光部30において吸収されなかった光を反射する。   The semiconductor substrate 20 is formed by laminating a plurality of layers on the upper surface of the first conductivity type semiconductor layer. The light receiving unit 30 is disposed on the upper surface of the semiconductor substrate 20. The light receiving unit 30 includes a second conductivity type impurity region and absorbs incident light to convert it into an electrical signal. The reflection unit 40 is disposed below the semiconductor substrate 20 and reflects light that has not been absorbed by the light receiving unit 30.

本実施形態に係る半導体受光素子10において、反射部40は、反射部40で反射されて受光部30に再び入射する光の反射光スポットサイズφrが、受光部30に入射する光の入射光スポットサイズφi以下となる位置に配置される。具体的には、反射部40は、入射光スポットサイズφiの境界に入射した光が集光する焦点位置F上または焦点位置Fより受光部30側に配置される。   In the semiconductor light receiving element 10 according to the present embodiment, the reflection unit 40 has a reflected light spot size φr of light that is reflected by the reflection unit 40 and reenters the light reception unit 30, and an incident light spot of light that enters the light reception unit 30. It arrange | positions in the position used as size φi or less. Specifically, the reflecting unit 40 is disposed on the focal position F where the light incident on the boundary of the incident light spot size φi is collected or on the light receiving unit 30 side from the focal position F.

反射光スポットサイズφrが入射光スポットサイズφi以下となる位置に反射部40を配置することにより、高い集光率で反射光を受光部30に集光して光電変換することができる。従って、本実施形態に係る半導体受光素子10は、受光部30で吸収されなかった光を、高い集光率で受光部30に再集光して光電変換できる。   By disposing the reflection portion 40 at a position where the reflected light spot size φr is equal to or smaller than the incident light spot size φi, the reflected light can be condensed and photoelectrically converted to the light receiving portion 30 with a high condensing rate. Therefore, the semiconductor light receiving element 10 according to the present embodiment can photoelectrically convert light that has not been absorbed by the light receiving unit 30 by refocusing on the light receiving unit 30 with a high light collection rate.

ここで、反射光スポットサイズφrは、半導体受光素子10に光を入射させるための光学系の設計パラメータや、半導体基板20の厚さ、半導体基板20の屈折率などで変化する。従って、反射部40の位置は、半導体受光素子を含む光受信器全体の設計の最適化と合わせて決定することが望ましい。   Here, the reflected light spot size φr varies depending on the design parameters of the optical system for making light incident on the semiconductor light receiving element 10, the thickness of the semiconductor substrate 20, the refractive index of the semiconductor substrate 20, and the like. Therefore, it is desirable to determine the position of the reflection unit 40 in conjunction with optimization of the design of the entire optical receiver including the semiconductor light receiving element.

(第2の実施形態)
第2の実施形態について説明する。本実施形態に係る半導体受光素子の断面図を図2に示す。図2において、本実施形態に係る半導体受光素子100は、半導体基板200、受光部300および反射膜400を備える。
(Second Embodiment)
A second embodiment will be described. FIG. 2 shows a cross-sectional view of the semiconductor light receiving element according to this embodiment. In FIG. 2, the semiconductor light receiving element 100 according to the present embodiment includes a semiconductor substrate 200, a light receiving unit 300, and a reflective film 400.

半導体基板200は、第1導電型の半導体層の上面に複数の層を積層することによって形成される。半導体基板200は、例えば、第1導電型の半導体層としてのn型InP基板の上面に、n型InP緩衝層、InGaAsP光吸収層、n型InP電界緩和層およびn型InP窓層等を順次積層することによって形成される。また、半導体基板200の上面内の受光領域には受光部300が配置され、半導体基板200の下面の、受光部300と対向する位置には穴部210が形成されている。穴部210については後述する。   The semiconductor substrate 200 is formed by laminating a plurality of layers on the upper surface of the first conductivity type semiconductor layer. In the semiconductor substrate 200, for example, an n-type InP buffer layer, an InGaAsP light absorption layer, an n-type InP electric field relaxation layer, an n-type InP window layer, and the like are sequentially formed on the upper surface of an n-type InP substrate as a first conductivity type semiconductor layer. It is formed by stacking. In addition, a light receiving unit 300 is disposed in a light receiving region in the upper surface of the semiconductor substrate 200, and a hole 210 is formed at a position facing the light receiving unit 300 on the lower surface of the semiconductor substrate 200. The hole 210 will be described later.

受光部300は、第2導電型の不純物領域を備える。受光部300は、半導体基板200の上面内に配置され、入射光を吸収して電気信号に変換する。受光部300は、p型不純物、例えば、Znを半導体基板200の受光領域に注入等することにより形成される。   The light receiving unit 300 includes a second conductivity type impurity region. The light receiving unit 300 is disposed in the upper surface of the semiconductor substrate 200 and absorbs incident light to convert it into an electrical signal. The light receiving unit 300 is formed by injecting a p-type impurity such as Zn into the light receiving region of the semiconductor substrate 200.

反射膜400は、半導体基板200の下面と、穴部210の側面および底面と、に配置され、受光部300に入射し、受光部300において吸収されなかった光を反射する。反射膜400としては、例えば、金属製の薄膜を適用することができる。   The reflective film 400 is disposed on the lower surface of the semiconductor substrate 200 and the side surfaces and the bottom surface of the hole 210, and is incident on the light receiving unit 300 and reflects light that has not been absorbed by the light receiving unit 300. As the reflective film 400, for example, a metal thin film can be applied.

穴部210について説明する。穴部210は、半導体基板200の下面の受光部300と対応する位置を凹状に除去することによって形成される。本実施形態において、穴部210の深さdは、受光部300の入射光スポットサイズφiの境界に入射した光の焦点位置Fに穴部210の底面、すなわち、反射膜400が位置するように設計される。この場合、受光部300に光が入射するときのスポットサイズである入射光スポットサイズφiと、反射膜400で反射された光が受光部300に再び入射するときのスポットサイズである反射光スポットサイズφrと、が一致する。反射膜400を入射光の焦点位置Fに配置することにより、反射膜400で反射された光は、高い集光率で受光部300の領域内に集光される。   The hole 210 will be described. The hole portion 210 is formed by removing a position corresponding to the light receiving portion 300 on the lower surface of the semiconductor substrate 200 in a concave shape. In the present embodiment, the depth d of the hole 210 is set so that the bottom surface of the hole 210, that is, the reflective film 400 is positioned at the focal position F of the light incident on the boundary of the incident light spot size φi of the light receiving unit 300. Designed. In this case, an incident light spot size φi that is a spot size when light is incident on the light receiving unit 300, and a reflected light spot size that is a spot size when light reflected by the reflective film 400 is incident on the light receiving unit 300 again. φr matches. By disposing the reflective film 400 at the focal position F of incident light, the light reflected by the reflective film 400 is condensed in the region of the light receiving unit 300 with a high condensing rate.

ここで、入射光スポットサイズφiとは、入射光が受光部300に入射する領域の範囲を指す。一方、反射光スポットサイズφrとは、入射光スポットサイズφiの境界に入射した光が、反射膜400で反射されて受光部300に再入射した時の位置で規定される範囲を指す。図3(a)〜(e)に、入射光スポットサイズφiと反射光スポットサイズφrとの関係を示す。   Here, the incident light spot size φi indicates a range of a region where incident light enters the light receiving unit 300. On the other hand, the reflected light spot size φr refers to a range defined by the position when the light incident on the boundary of the incident light spot size φi is reflected by the reflective film 400 and reenters the light receiving unit 300. 3A to 3E show the relationship between the incident light spot size φi and the reflected light spot size φr.

図3(a)に示すように、反射光スポットサイズφrが入射光スポットサイズφiよりも大きい場合、受光部に斜め方向から入射して反射膜で反射された光の一部は受光部に再集光されず、光電変換効率が低下する。一方、図3(b)〜(e)に示す半導体受光素子100の場合、反射光スポットサイズφrが入射光スポットサイズφiと同等か、それよりも小さいため、反射膜で反射された光は高い集光率で受光部に再集光される。従って、光電変換効率が向上する。   As shown in FIG. 3A, when the reflected light spot size φr is larger than the incident light spot size φi, a part of the light incident on the light receiving portion from an oblique direction and reflected by the reflecting film is retransmitted to the light receiving portion. The light is not condensed and the photoelectric conversion efficiency is lowered. On the other hand, in the case of the semiconductor light receiving element 100 shown in FIGS. 3B to 3E, the reflected light spot size φr is equal to or smaller than the incident light spot size φi, so that the light reflected by the reflective film is high. The light is condensed again on the light receiving portion with the light collection rate. Accordingly, the photoelectric conversion efficiency is improved.

次に、本実施形態に係る半導体受光素子100の製造方法について説明する。本実施形態に係る半導体受光素子100の製造工程を図4に示す。   Next, a method for manufacturing the semiconductor light receiving element 100 according to this embodiment will be described. A manufacturing process of the semiconductor light receiving element 100 according to this embodiment is shown in FIG.

図4(a)に示すように、先ず、n型InP基板の上に、n型InP緩衝層、InGaAsP光吸収層、n型InP電界緩和層およびn型InP窓層等を順次積層し、半導体基板200を形成する。そして、半導体基板200のInP窓層の受光領域にp型不純物、例えば、Znを拡散あるいはイオン注入することにより第2導電型の不純物領域を形成する。さらに、第2導電型の不純物領域の周りに、例えば、Beを拡散またはイオン注入することによって図示しないガードリングを形成し、受光部300を形成する。   As shown in FIG. 4A, first, an n-type InP buffer layer, an InGaAsP light absorption layer, an n-type InP electric field relaxation layer, an n-type InP window layer, and the like are sequentially stacked on an n-type InP substrate to form a semiconductor. A substrate 200 is formed. Then, a second conductivity type impurity region is formed by diffusing or ion-implanting a p-type impurity, for example, Zn in the light receiving region of the InP window layer of the semiconductor substrate 200. Further, a guard ring (not shown) is formed around the second conductivity type impurity region by, for example, diffusing or ion-implanting Be to form the light receiving unit 300.

次に、図4(b)に示すように、半導体基板200の受光部300の下方領域をフォトリソグラフィー工法や半導体のエッチング工法等を用いて除去し、穴部210を形成する。ここで、穴部210は、穴部210の底面が受光部300から入射した入射光の焦点位置Fに位置する深さdに形成される。穴部210の底面が焦点位置Fに位置する時、入射光スポットサイズφiと反射光スポットサイズφrとが一致する。   Next, as shown in FIG. 4B, the lower region of the light receiving portion 300 of the semiconductor substrate 200 is removed by using a photolithography method, a semiconductor etching method, or the like to form a hole 210. Here, the hole 210 is formed at a depth d at which the bottom surface of the hole 210 is located at the focal position F of incident light incident from the light receiving unit 300. When the bottom surface of the hole 210 is located at the focal position F, the incident light spot size φi and the reflected light spot size φr coincide with each other.

さらに、図4(c)に示すように、穴部210の側面および底面を含む基板200の下面全体に、例えば、TiPtAuを蒸着等することによって反射膜400を形成し、本実施形態に係る半導体受光素子100が形成される。   Further, as shown in FIG. 4C, the reflective film 400 is formed on the entire lower surface of the substrate 200 including the side surface and the bottom surface of the hole 210 by, for example, vapor deposition of TiPtAu, and the semiconductor according to the present embodiment. The light receiving element 100 is formed.

上記のように形成された半導体受光素子100は、入射した光を受光部300において電気信号に変換する。一方、電気信号に変換されなかった入射光は、反射膜400まで到達する。そして、反射膜400に到達した入射光は、反射膜400が入射光スポットサイズφiと反射光スポットサイズφrとが一致する位置に配置されていることから、高い集光率で受光部300に再集光され、光電変換される。従って、光電変換効率が向上する。   The semiconductor light receiving element 100 formed as described above converts incident light into an electrical signal in the light receiving unit 300. On the other hand, incident light that has not been converted into an electrical signal reaches the reflective film 400. The incident light that has reached the reflective film 400 is retransmitted to the light receiving unit 300 with a high light collection rate because the reflective film 400 is disposed at a position where the incident light spot size φi and the reflected light spot size φr coincide with each other. It is condensed and photoelectrically converted. Accordingly, the photoelectric conversion efficiency is improved.

また、上記のように形成された半導体受光素子100は、半導体基板200に穴部210を形成し、この穴部210に反射膜400を配置する。この場合、穴部210の深さdを半導体基板200の厚さとは別個に設計することができる。たとえば、光受信器全体の設計の都合上、入射光の焦点位置が受光部300近傍に来てしまう場合でも、穴部210の深さdを焦点位置Fに合わせて設計すればよく、半導体基板200の厚さは厚く保つことできる。従って、半導体受光素子100の機械的強度を保つことが出来る。   In the semiconductor light receiving element 100 formed as described above, the hole 210 is formed in the semiconductor substrate 200, and the reflective film 400 is disposed in the hole 210. In this case, the depth d of the hole 210 can be designed separately from the thickness of the semiconductor substrate 200. For example, for the convenience of designing the entire optical receiver, even when the focal position of the incident light comes near the light receiving unit 300, the depth d of the hole 210 may be designed in accordance with the focal position F. The thickness of 200 can be kept thick. Therefore, the mechanical strength of the semiconductor light receiving element 100 can be maintained.

ここで、一般的に、狭い領域に入射光を集中させると、その領域の光電流密度が高まる。光電流密度が高い場合は生成されたキャリアを引き抜くことが難しくなり、周波数応答が劣化する。従って、できるだけ受光部300B全体に入射光を分散させて光電流密度を低くすることが望ましい。トータルの入射光パワーが決まっている場合は、入射光スポットサイズφiを大きくし、受光部300B全体に入射光を分散させることによって、光電流密度上昇による周波数応答の劣化を低減することができる。入射光スポットサイズφiを大きくした場合の半導体受光素子の断面図を図5に示す。   Here, generally, when incident light is concentrated in a narrow area, the photocurrent density in that area increases. When the photocurrent density is high, it is difficult to extract the generated carriers, and the frequency response is deteriorated. Therefore, it is desirable to reduce the photocurrent density by dispersing incident light as much as possible throughout the light receiving unit 300B. When the total incident light power is determined, the incident light spot size φi is increased and the incident light is dispersed throughout the light receiving unit 300B, thereby reducing the deterioration of the frequency response due to the increase in photocurrent density. FIG. 5 shows a cross-sectional view of the semiconductor light receiving element when the incident light spot size φi is increased.

図5に示した半導体受光素子100Bの入射光スポットサイズφiは、図2に示した半導体受光素子100の入射光スポットサイズφiよりも大きい。従って、トータルの入射光パワーが決まっている場合、入射光が受光部300B全体に分散され、光電流密度上昇による周波数応答の劣化を低減することができる。   The incident light spot size φi of the semiconductor light receiving element 100B shown in FIG. 5 is larger than the incident light spot size φi of the semiconductor light receiving element 100 shown in FIG. Therefore, when the total incident light power is determined, the incident light is dispersed throughout the light receiving unit 300B, and deterioration of frequency response due to an increase in photocurrent density can be reduced.

しかし、入射光スポットサイズφiを大きくする場合、入射光の仮想的な焦点位置Fが受光部300Bから離れてしまい、散乱等によって集光率が低下する。そこで、図5に示した半導体受光素子100Bにおいては、半導体基板200Bに形成する穴部210Bの深さd’を、受光部300から入射した光の焦点位置Fに反射膜400が位置するように設計した時の深さdよりも大きく設計した。この場合、散乱等によって集光率が低下することを低減できる。   However, when the incident light spot size φi is increased, the virtual focal position F of the incident light is separated from the light receiving unit 300B, and the light collection rate is reduced due to scattering or the like. Therefore, in the semiconductor light receiving element 100B shown in FIG. 5, the reflection film 400 is positioned so that the depth d ′ of the hole 210B formed in the semiconductor substrate 200B is at the focal position F of the light incident from the light receiving unit 300. The depth d was designed to be larger than the designed depth d. In this case, it can reduce that a condensing rate falls by scattering etc.

なお、穴部210Bの底面が焦点位置Fよりも受光部300B側に位置する場合、反射光スポットサイズφrが入射光スポットサイズφiよりも小さくなる。一般的に、反射膜で反射して再び受光部に入射する光のパワーは、入射光学系から直接受光部に入射される光のパワーに比べて低いことから、反射光スポットサイズφrが小さい場合でも反射光の集中による光電流密度の高まりは無視することができる。   When the bottom surface of the hole 210B is positioned closer to the light receiving unit 300B than the focal position F, the reflected light spot size φr is smaller than the incident light spot size φi. Generally, when the reflected light spot size φr is small, the power of the light reflected by the reflective film and incident on the light receiving unit again is lower than the power of the light directly incident on the light receiving unit from the incident optical system. However, the increase in photocurrent density due to the concentration of reflected light can be ignored.

以上のように、図5に示した半導体受光素子100Bは、入射光スポットサイズφiを大きくしたことから、入射光が受光部300B全体に分散され、光電流密度上昇による周波数応答の劣化を低減することができる。また、穴部210Bの深さd’を、受光部300から入射した光の焦点位置Fに反射膜400が位置するように設計した時の深さdよりも大きく設計したことから、散乱等による集光率の低下を低減することができる。さらに、反射光スポットサイズφrが入射光スポットサイズφiよりも小さいことから、反射膜400Bによって反射された光は高い集光率で受光部300Bに集光され、光電変換される。従って、光電変換効率を向上させることができる。   As described above, in the semiconductor light receiving element 100B shown in FIG. 5, since the incident light spot size φi is increased, the incident light is dispersed throughout the light receiving unit 300B, and the deterioration of the frequency response due to the increase in photocurrent density is reduced. be able to. In addition, the depth d ′ of the hole 210B is designed to be larger than the depth d when the reflective film 400 is designed to be positioned at the focal position F of the light incident from the light receiving unit 300. A decrease in the light collection rate can be reduced. Further, since the reflected light spot size φr is smaller than the incident light spot size φi, the light reflected by the reflective film 400B is condensed on the light receiving unit 300B with a high condensing rate and is photoelectrically converted. Therefore, the photoelectric conversion efficiency can be improved.

(第3の実施形態)
第3の実施形態について説明する。本実施形態に係る半導体受光素子の断面図を図6に示す。図6において、本実施形態に係る半導体受光素子100Cは、半導体基板200C、受光部300Cおよび反射膜400Cを備える。
(Third embodiment)
A third embodiment will be described. FIG. 6 shows a cross-sectional view of the semiconductor light receiving element according to this embodiment. In FIG. 6, a semiconductor light receiving element 100C according to this embodiment includes a semiconductor substrate 200C, a light receiving unit 300C, and a reflective film 400C.

半導体基板200Cは、第1導電型の半導体層の上面に複数の層を積層することによって形成される。受光部300Cは、第2導電型の不純物領域を備え、入射した光を吸収して電気信号に変換する。反射膜400Cは、半導体基板200の下面に配置され、受光部300Cで吸収されなかった光を反射する。   The semiconductor substrate 200C is formed by stacking a plurality of layers on the upper surface of the first conductivity type semiconductor layer. The light receiving unit 300C includes a second conductivity type impurity region and absorbs incident light to convert it into an electrical signal. The reflective film 400C is disposed on the lower surface of the semiconductor substrate 200 and reflects light that has not been absorbed by the light receiving unit 300C.

本実施形態において、半導体基板200Cの厚さtは、受光部300Cから受光部300Cに入射した光の焦点距離Fまでの距離(以下、焦点距離と記載する。)と同等になるように設計されている。半導体基板200Cの厚さtは、例えば、焦点距離と同等に、100〜200μm程度に設計される。   In the present embodiment, the thickness t of the semiconductor substrate 200C is designed to be equal to the distance from the light receiving unit 300C to the focal length F of light incident on the light receiving unit 300C (hereinafter referred to as the focal length). ing. The thickness t of the semiconductor substrate 200C is designed to be about 100 to 200 μm, for example, equivalent to the focal length.

ここで、焦点距離は、入射光学系を含む光受信器全体の設計から決まる。焦点距離は、例えば、受光部300Cの上面に高屈折率層やマイクロレンズ等を配置したり、受光部300Cの面積を調整したり、半導体基板200の屈折率を調整したりすることによって調整することができる。なお、半導体受光素子100Cへ入射する光の入射条件を調整することによって焦点距離を所望の値に調整することもできる。   Here, the focal length is determined from the design of the entire optical receiver including the incident optical system. The focal length is adjusted by, for example, arranging a high refractive index layer, a micro lens, or the like on the upper surface of the light receiving unit 300C, adjusting the area of the light receiving unit 300C, or adjusting the refractive index of the semiconductor substrate 200. be able to. The focal length can be adjusted to a desired value by adjusting the incident condition of light incident on the semiconductor light receiving element 100C.

本実施形態に係る半導体受光素子100Cにおいて、半導体基板200Cの厚さtを入射光の焦点距離と同等の値に調整することにより、反射膜400Cが入射光の焦点位置Fに配置される。この場合、受光部300Cに光が入射するときのスポットサイズである入射光スポットサイズφiと、反射膜400Cで反射された光が受光部300Cに再び入射するときのスポットサイズである反射光スポットサイズφrと、が一致する。従って、反射膜400Cで反射された光は高い集光率で受光部300Cに集光される。   In the semiconductor light receiving element 100C according to the present embodiment, the reflective film 400C is disposed at the focal position F of the incident light by adjusting the thickness t of the semiconductor substrate 200C to a value equivalent to the focal length of the incident light. In this case, an incident light spot size φi that is a spot size when light is incident on the light receiving unit 300C, and a reflected light spot size that is a spot size when light reflected by the reflective film 400C is incident on the light receiving unit 300C again. φr matches. Therefore, the light reflected by the reflective film 400C is condensed on the light receiving unit 300C with a high condensing rate.

以上のように、本実施形態に係る半導体受光素子100Cは、反射光を高い集光率で受光部300Cに集光して光電変換することができ、光電変換効率を向上させることができる。さらに、本実施形態に係る半導体受光素子100Cは、半導体基板200Cに穴部等を形成する必要がないことから、製造コストを低減することができる。   As described above, the semiconductor light receiving element 100 </ b> C according to the present embodiment can condense reflected light on the light receiving unit 300 </ b> C with a high light collection rate and perform photoelectric conversion, thereby improving the photoelectric conversion efficiency. Furthermore, since the semiconductor light receiving element 100C according to the present embodiment does not need to form a hole or the like in the semiconductor substrate 200C, the manufacturing cost can be reduced.

ここで、トータルの入射光パワーが決まっている場合、光電流密度上昇による周波数応答の劣化を低減するために、入射光スポットサイズφiを大きくすることが望ましい。入射光スポットサイズφiを大きく設計した場合の半導体受光素子の断面図を図7に示す。   Here, when the total incident light power is determined, it is desirable to increase the incident light spot size φi in order to reduce the deterioration of the frequency response due to the increase in the photocurrent density. FIG. 7 shows a cross-sectional view of the semiconductor light receiving element when the incident light spot size φi is designed to be large.

図7に示した半導体受光素子100Dの入射光スポットサイズφiは、図6に示した半導体受光素子100Cの入射光スポットサイズφiよりも大きい。従って、トータルの入射光パワーが決まっている場合、入射光が受光部300D全体に分散され、光電流密度上昇による周波数応答の劣化を低減することができる。   The incident light spot size φi of the semiconductor light receiving element 100D shown in FIG. 7 is larger than the incident light spot size φi of the semiconductor light receiving element 100C shown in FIG. Therefore, when the total incident light power is determined, the incident light is dispersed throughout the light receiving unit 300D, and deterioration of the frequency response due to the increase in photocurrent density can be reduced.

しかし、入射光スポットサイズφiを大きくする場合、入射光の仮想的な焦点位置Fが受光部300Dから離れてしまい、散乱等によって集光率が低下する。そこで、図7に示した半導体受光素子100Dにおいては、半導体基板200Dの厚さt’を、焦点位置Fに反射膜が位置するように設計した時の厚さtよりも小さく設計した。この場合、散乱等によって集光率が低下することを低減できる。   However, when the incident light spot size φi is increased, the virtual focal position F of the incident light is separated from the light receiving unit 300D, and the light collection rate is reduced due to scattering or the like. Therefore, in the semiconductor light receiving element 100D shown in FIG. 7, the thickness t ′ of the semiconductor substrate 200D is designed to be smaller than the thickness t when the reflective film is designed to be positioned at the focal position F. In this case, it can reduce that a condensing rate falls by scattering etc.

なお、反射膜400Dが焦点位置Fよりも受光部300D側に位置する場合、反射光スポットサイズφrが入射光スポットサイズφiよりも小さくなる。この場合も、反射膜400Dによって反射された光は高い集光率で受光部300Dに集光される。従って、反射光を受光部300Dで効率よく再受光して光電変換することができ、光電変換効率を向上させることができる。さらに、本実施形態に係る半導体受光素子100Dは、半導体基板200Dに穴部等を形成する必要がないことから、製造コストを低減することができる。   When the reflective film 400D is positioned closer to the light receiving unit 300D than the focal position F, the reflected light spot size φr is smaller than the incident light spot size φi. Also in this case, the light reflected by the reflective film 400D is condensed on the light receiving unit 300D with a high condensing rate. Therefore, the reflected light can be efficiently received again by the light receiving unit 300D and subjected to photoelectric conversion, and the photoelectric conversion efficiency can be improved. Furthermore, since the semiconductor light receiving element 100D according to the present embodiment does not need to form a hole or the like in the semiconductor substrate 200D, the manufacturing cost can be reduced.

(第4の実施形態)
第4の実施形態について説明する。本実施形態に係る半導体受光素子の断面図を図8に示す。図8において、本実施形態に係る半導体受光素子100Eは、半導体基板200E、受光部300Eおよび反射膜400Eを備える。
(Fourth embodiment)
A fourth embodiment will be described. FIG. 8 shows a cross-sectional view of the semiconductor light receiving element according to this embodiment. In FIG. 8, a semiconductor light receiving element 100E according to this embodiment includes a semiconductor substrate 200E, a light receiving unit 300E, and a reflective film 400E.

半導体基板200Eは、第1導電型の半導体層の上面に複数の層を積層することによって形成される。半導体基板200Eの上面の受光領域には受光部300Eが配置され、半導体基板200Eの下面の、受光部300Eと対向する位置には穴部210Eが形成されている。穴部210Eについては後述する。   The semiconductor substrate 200E is formed by stacking a plurality of layers on the upper surface of the first conductivity type semiconductor layer. A light receiving portion 300E is disposed in the light receiving region on the upper surface of the semiconductor substrate 200E, and a hole 210E is formed at a position facing the light receiving portion 300E on the lower surface of the semiconductor substrate 200E. The hole 210E will be described later.

受光部300Eは、第2導電型の不純物領域を備え、入射した光を吸収して電気信号に変換する。反射膜400Eは、半導体基板200Eの下面と、穴部210Eの側面および底面と、に配置され、受光部300Eに入射して受光部300Eにおいて吸収されなかった光を、受光部300E側へ反射する。反射膜400Eとしては、例えば、金属製の薄膜を適用することができる。   The light receiving unit 300E includes a second conductivity type impurity region, absorbs incident light, and converts it into an electrical signal. The reflective film 400E is disposed on the lower surface of the semiconductor substrate 200E and the side surfaces and the bottom surface of the hole 210E, and reflects light incident on the light receiving unit 300E and not absorbed by the light receiving unit 300E toward the light receiving unit 300E. . As the reflective film 400E, for example, a metal thin film can be applied.

穴部210Eについて説明する。穴部210Eは、半導体基板200Eの下面の受光部300Eと対応する位置を凹状に除去することによって形成される。さらに、穴部210Eの底面は球面状に加工されている。本実施形態において、穴部210Eは、受光部300Eから入射した入射光の焦点位置Fと、穴部210Eの球面状の底面の幾何学的中心Oと、が一致するように設計されている。   The hole 210E will be described. The hole 210E is formed by removing the position corresponding to the light receiving part 300E on the lower surface of the semiconductor substrate 200E in a concave shape. Furthermore, the bottom surface of the hole 210E is processed into a spherical shape. In the present embodiment, the hole 210E is designed so that the focal position F of the incident light incident from the light receiving unit 300E matches the geometric center O of the spherical bottom surface of the hole 210E.

この場合、受光部300Eに光が入射するときのスポットサイズである入射光スポットサイズφiと、反射膜400Eで反射された光が受光部300Eに再び入射するときのスポットサイズである反射光スポットサイズφrと、が一致する。入射光の焦点位置Fと球面状の底面の幾何学的中心Oとを一致させることにより、反射膜400Eで反射された光は、再度、焦点位置F(幾何学的中心O)に集まった後、高い集光率で受光部300Eに集光される。   In this case, an incident light spot size φi that is a spot size when light is incident on the light receiving unit 300E, and a reflected light spot size that is a spot size when light reflected by the reflective film 400E is incident on the light receiving unit 300E again. φr matches. By making the focal position F of the incident light coincide with the geometric center O of the spherical bottom surface, the light reflected by the reflective film 400E is collected again at the focal position F (geometric center O). The light is condensed on the light receiving unit 300E with a high light collection rate.

次に、本実施形態に係る半導体受光素子100Eの製造方法について説明する。本実施形態に係る半導体受光素子100Eの製造工程を図9に示す。   Next, a method for manufacturing the semiconductor light receiving element 100E according to this embodiment will be described. FIG. 9 shows a manufacturing process of the semiconductor light receiving element 100E according to this embodiment.

図9(a)において、第2の実施形態と同様に、第1導電型の半導体基板の上に、n型InP緩衝層、InGaAsP光吸収層、n型InP電界緩和層およびn型InP窓層等を順次積層して半導体基板200Eを形成し、半導体基板200EのInP窓層の一部分に第2導電型の不純物領域を形成して受光部300Eを形成する。さらに、半導体基板200Eの受光部300Eの下方領域をフォトリソグラフィー工法や半導体のエッチング工法等を用いて除去し、穴部210Eを形成する。   In FIG. 9A, as in the second embodiment, an n-type InP buffer layer, an InGaAsP light absorption layer, an n-type InP electric field relaxation layer, and an n-type InP window layer are formed on a first conductivity type semiconductor substrate. Etc. are sequentially stacked to form a semiconductor substrate 200E, and a second conductivity type impurity region is formed in a part of the InP window layer of the semiconductor substrate 200E to form a light receiving portion 300E. Further, the region below the light receiving portion 300E of the semiconductor substrate 200E is removed by using a photolithography method, a semiconductor etching method, or the like to form the hole portion 210E.

次に、図9(b)に示すように、半導体基板200Eの穴部210Eの底面に、フォトリソグラフィー工法や半導体のエッチング工法を用いて、メサ状の構造を形成する。さらに、フォトリソグラフィー工法を用いて、このメサ状の構造を含む凹状の部分を除き、素子裏面をレジスト膜で覆う。   Next, as shown in FIG. 9B, a mesa-like structure is formed on the bottom surface of the hole 210E of the semiconductor substrate 200E by using a photolithography method or a semiconductor etching method. Further, the back surface of the device is covered with a resist film except for the concave portion including the mesa structure by using a photolithography method.

この状態で、図9(c)に示すように、ウェットエッチングにより、メサ状の構造全体をエッチングして球面形状を形成し、レジストを除去する。なお、穴部210Eの形成工程、メサ状の構造の形成工程およびメサ状の構造のエッチング工程の中で、入射光の焦点位置Fと穴部210Eの球面状の底面の幾何学的中心Oとが一致するように調整する。   In this state, as shown in FIG. 9C, the entire mesa structure is etched by wet etching to form a spherical shape, and the resist is removed. In the hole 210E forming process, the mesa structure forming process, and the mesa structure etching process, the focal position F of incident light and the geometric center O of the spherical bottom surface of the hole 210E Adjust so that they match.

最後に、図9(d)に示すように、例えば、TiPtAuを半導体基板200Eの下面と、穴部210Eの側面および底面と、に蒸着する等により反射膜400Eを形成し、本実施形態に係る半導体受光素子100Eを得る。   Finally, as shown in FIG. 9D, the reflective film 400E is formed by, for example, vapor-depositing TiPtAu on the lower surface of the semiconductor substrate 200E and the side surfaces and the bottom surface of the hole 210E. The semiconductor light receiving element 100E is obtained.

上記のように形成された半導体受光素子100Eにおいて、穴部210Eは、受光部300Eから入射した入射光の焦点位置Fと、穴部210Eの球面状の底面の幾何学的中心Oと、が一致するように設計されている。この場合、受光部300Eで吸収されずに、焦点位置Fを通過して反射膜400Eまで到達した入射光は、反射膜400Eで反射されて、再度焦点位置Fに集まった後、高い集光率で受光部300Eへ集光される。従って、反射光を効率よく受光部300Eで再受光して光電変換することができ、光電変換効率が向上する。   In the semiconductor light receiving element 100E formed as described above, in the hole 210E, the focal position F of the incident light incident from the light receiving unit 300E matches the geometric center O of the spherical bottom surface of the hole 210E. Designed to be. In this case, incident light that has not been absorbed by the light receiving unit 300E but has passed through the focal position F and reached the reflective film 400E is reflected by the reflective film 400E and collected again at the focal position F, and then has a high light collection rate. Is condensed on the light receiving unit 300E. Therefore, the reflected light can be efficiently received again by the light receiving unit 300E and subjected to photoelectric conversion, and the photoelectric conversion efficiency is improved.

さらに、入射光の焦点位置Fに反射膜400Eを配置するのではなく、入射光の焦点位置Fを幾何学的中心Oとした球面上に反射膜400Eを配置することにより、受光部300Eと反射膜400Eとの距離を大きくすることができ、受光部300Eの下方の半導体基板200Eの厚さを大きくすることができる。従って、半導体基板200Eの機械的強度を大きくすることができる。   In addition, the reflective film 400E is not disposed at the focal position F of the incident light, but the reflective film 400E is disposed on a spherical surface with the focal position F of the incident light as the geometric center O, thereby reflecting the light receiving unit 300E and the reflection. The distance from the film 400E can be increased, and the thickness of the semiconductor substrate 200E below the light receiving portion 300E can be increased. Therefore, the mechanical strength of the semiconductor substrate 200E can be increased.

なお、本願発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。   Note that the present invention is not limited to the above-described embodiment, and any design change or the like within a range not departing from the gist of the present invention is included in the present invention.

10 半導体受光素子
20 半導体基板
30 受光部
40 反射部
100、100B、100C、100D、100E 半導体受光素子
200、200B、200C、200D、200E 半導体基板
210、210B、210E 穴部
300、300B、300C、300D、300E 受光部
400、400B、400C、400D、400E 反射膜
900 半導体受光素子
910 半導体基板
920 受光領域
930 反射層
DESCRIPTION OF SYMBOLS 10 Semiconductor light receiving element 20 Semiconductor substrate 30 Light receiving part 40 Reflecting part 100, 100B, 100C, 100D, 100E Semiconductor light receiving element 200, 200B, 200C, 200D, 200E Semiconductor substrate 210, 210B, 210E Hole part 300, 300B, 300C, 300D , 300E light receiving part 400, 400B, 400C, 400D, 400E reflective film 900 semiconductor light receiving element 910 semiconductor substrate 920 light receiving area 930 reflective layer

Claims (5)

半導体基板と、
前記半導体基板の上面に配置され、光が入射する受光部と、
前記半導体基板下方に配置され、前記受光部を透過した光を反射する反射部と、
を備え、
前記反射部は、前記反射部で反射されて前記受光部に再び入射する光の反射光スポットサイズが前記受光部に入射する光の入射光スポットサイズ以下となる位置に配置されることを特徴とする半導体受光素子。
A semiconductor substrate;
A light receiving portion disposed on an upper surface of the semiconductor substrate and receiving light;
A reflective portion that is disposed below the semiconductor substrate and reflects light transmitted through the light receiving portion;
With
The reflection part is disposed at a position where a reflected light spot size of light reflected by the reflection part and incident again on the light receiving part is equal to or smaller than an incident light spot size of light incident on the light receiving part. Semiconductor light receiving element.
前記反射部は、前記入射光スポットサイズの境界に入射した光の焦点位置または該焦点位置よりも受光部側に配置される、請求項1記載の半導体受光素子。 2. The semiconductor light receiving element according to claim 1, wherein the reflecting portion is disposed at a focal position of light incident on a boundary of the incident light spot size or at a light receiving portion side with respect to the focal position. 前記半導体基板は、前記受光部と対向する下方に形成された穴部を備え、
前記穴部の底面は、前記焦点位置または前記焦点位置よりも前記受光部側に位置し、
前記反射部は、前記穴部の底面に配置される、
請求項2記載の半導体受光素子。
The semiconductor substrate includes a hole formed below and facing the light receiving unit,
The bottom surface of the hole is located closer to the light receiving unit than the focal position or the focal position,
The reflecting portion is disposed on the bottom surface of the hole portion,
The semiconductor light receiving element according to claim 2.
前記半導体基板の厚さは、前記受光部から前記焦点位置までの距離以下であり、
前記反射部は、前記半導体基板の下面に配置される、
請求項2記載の半導体受光素子。
The thickness of the semiconductor substrate is not more than the distance from the light receiving unit to the focal position,
The reflective portion is disposed on a lower surface of the semiconductor substrate.
The semiconductor light receiving element according to claim 2.
前記半導体基板は、前記受光部と対向する下方に形成された穴部を備え、
前記穴部の底面は、中心が前記焦点位置に一致する曲面状に形成され、
前記反射部は、前記穴部の底面に配置される、
請求項2記載の半導体受光素子。
The semiconductor substrate includes a hole formed below and facing the light receiving unit,
The bottom surface of the hole is formed in a curved shape whose center coincides with the focal position,
The reflecting portion is disposed on the bottom surface of the hole portion,
The semiconductor light receiving element according to claim 2.
JP2012034004A 2012-02-20 2012-02-20 Semiconductor photo detector Expired - Fee Related JP6035770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034004A JP6035770B2 (en) 2012-02-20 2012-02-20 Semiconductor photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034004A JP6035770B2 (en) 2012-02-20 2012-02-20 Semiconductor photo detector

Publications (2)

Publication Number Publication Date
JP2013171920A true JP2013171920A (en) 2013-09-02
JP6035770B2 JP6035770B2 (en) 2016-11-30

Family

ID=49265703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034004A Expired - Fee Related JP6035770B2 (en) 2012-02-20 2012-02-20 Semiconductor photo detector

Country Status (1)

Country Link
JP (1) JP6035770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150533A1 (en) * 2018-02-01 2019-08-08 株式会社京都セミコンダクター Semiconductor light receiving element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990964A (en) * 1982-11-16 1984-05-25 Nec Corp Photodetector
JPH0373576A (en) * 1989-08-14 1991-03-28 Nec Corp Semiconductor photodetector
JPH0411787A (en) * 1990-04-28 1992-01-16 Fujitsu Ltd Semiconductor light receiving device
JPH0497574A (en) * 1990-08-15 1992-03-30 Nec Corp Semiconductor light receiving device
JPH04342174A (en) * 1991-05-17 1992-11-27 Nec Corp Semiconductor photoelectric receiving element
JP2001308366A (en) * 2000-04-20 2001-11-02 Mitsubishi Electric Corp Photodiode
JP2009124145A (en) * 2007-11-14 2009-06-04 Jds Uniphase Corp Front-illuminated avalanche photodiode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990964A (en) * 1982-11-16 1984-05-25 Nec Corp Photodetector
JPH0373576A (en) * 1989-08-14 1991-03-28 Nec Corp Semiconductor photodetector
JPH0411787A (en) * 1990-04-28 1992-01-16 Fujitsu Ltd Semiconductor light receiving device
JPH0497574A (en) * 1990-08-15 1992-03-30 Nec Corp Semiconductor light receiving device
JPH04342174A (en) * 1991-05-17 1992-11-27 Nec Corp Semiconductor photoelectric receiving element
JP2001308366A (en) * 2000-04-20 2001-11-02 Mitsubishi Electric Corp Photodiode
JP2009124145A (en) * 2007-11-14 2009-06-04 Jds Uniphase Corp Front-illuminated avalanche photodiode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150533A1 (en) * 2018-02-01 2019-08-08 株式会社京都セミコンダクター Semiconductor light receiving element
US11145770B2 (en) 2018-02-01 2021-10-12 Kyoto Semiconductor Co., Ltd. Semiconductor light receiving element

Also Published As

Publication number Publication date
JP6035770B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP5092251B2 (en) Photodetector
JP4835837B2 (en) Photodiode and manufacturing method thereof
US9520525B1 (en) Method of making an optical detector
JPWO2009088071A1 (en) Semiconductor light receiving element and optical communication device
US20090134486A1 (en) Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module
US8987655B2 (en) Optical module having at least one light receiving element with a wiring part covers a part of a side surface of a mesa part
JPWO2009125722A1 (en) Concentrating optical member and concentrating solar power generation module
US20120181645A1 (en) Photodetector optimized by metal texturing provided on the rear surface
JP2002289904A (en) Semiconductor light-receiving element and its manufacturing method
JP6138018B2 (en) Infrared solid-state image sensor
JP2011134770A (en) Detector, light-receiving element array, and method of manufacturing the detector
JP6228791B2 (en) Receiver module
KR20130069127A (en) Avalanche photo diode and manufacturing method of the same
KR101391877B1 (en) Back-surface-incidence-type semiconductor light receiving element
JP6035770B2 (en) Semiconductor photo detector
KR20110068041A (en) Avalanche photodetector integrated micro lens
JP6707393B2 (en) Back-thinned type photo detector and optical receiver module
JP4094471B2 (en) Semiconductor photo detector
JP6660282B2 (en) Light receiving element
CN103956404B (en) A kind of Radix Rumicis photodetector of photodetector preparation method and preparation
JP3427125B2 (en) Semiconductor device with optical lens function
US20120273652A1 (en) Systems and methods for image sensing
JP6348876B2 (en) Photodiode device and photomixer module
JP7409489B2 (en) Light receiving device
JP7147669B2 (en) Semiconductor light receiving element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6035770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees