CN103956404B - An optoelectronic photodetector wide preparation method and the preparation of probe - Google Patents

An optoelectronic photodetector wide preparation method and the preparation of probe Download PDF

Info

Publication number
CN103956404B
CN103956404B CN 201410131694 CN201410131694A CN103956404B CN 103956404 B CN103956404 B CN 103956404B CN 201410131694 CN201410131694 CN 201410131694 CN 201410131694 A CN201410131694 A CN 201410131694A CN 103956404 B CN103956404 B CN 103956404B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
photodetector
configuration
surface
re
photosensitive surface
Prior art date
Application number
CN 201410131694
Other languages
Chinese (zh)
Other versions
CN103956404A (en )
Inventor
郭霞
周弘毅
郭春威
李冲
Original Assignee
苏州北鹏光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

本发明公开了一种光电探测器的制备方法,包括如下步骤:在光电探测器结构的光敏面内生长一层p-GaN作为过渡层;在所述过渡层上生长一层p-GaN作为再构结构的晶籽层;在生长完晶籽层后快速升温生长一层p-GaN,形成再构光敏面。 The present invention discloses a method for producing a photodetector, comprising the steps of: growing a p-GaN layer in the photosensitive surface of the photodetector structure as a buffer layer; p-GaN layer grown on the transition layer as a re the crystal structure of the seed layer structure; after growing the crystal growth of the seed layer is a layer of rapid heating p-GaN, and then forming a photosensitive surface configuration. 本发明的有益效果在于:提供了一种广角光电探测器的制备方法,高效可靠,通过在光电探测器表面再构,打破菲涅尔反射系数入射角的限制,降低对入射波长的敏感度,不需加入额外的系统,仅通过单个光电探测器实现广角探测。 Advantageous effects of the present invention is: to provide a process for preparing wide photodetector, efficient and reliable, by the photodetector surface reconstructions, Fresnel reflection coefficient breaking limit of the angle of incidence, reducing the sensitivity to the incident wavelength, without introducing additional system, achieve a wide angle by detecting only a single photodetector.

Description

一种光电探测器制备方法及制备的广角光电探测器 An optoelectronic photodetector wide preparation method and the preparation of probe

技术领域 FIELD

[0001] 本发明涉及一种光电探测器制备方法及制备的广角光电探测器,属于半导体光电子技术领域。 [0001] The present invention relates to a method of preparing the photodetector and the photodetector prepared in the wide-angle, belonging to the technical field of semiconductor optoelectronics.

背景技术 Background technique

[0002] 光电探测器在生物医学、数据存储媒介、火焰监测、紫外线剂量测量、高能射线探测、医疗、安检、工业探伤等领域得到广泛应用。 [0002] The photodetector is widely used in biomedical, data storage medium, flame monitoring, measuring UV dose, high-energy ray detection, medical, security, industrial inspection, and other fields. 当入射光能量大于光电探测器材料禁带宽度时,就会使得电子从价带跃迀至导带,产生电子空穴对,产生的电子空穴对被电极收集, 就形成了光电流输出。 When the incident energy is greater than the bandgap of the photodetector material, so that electrons will jump from the valence band to the conduction band Gan, electron-hole pairs, the electron hole pairs are collected by the electrodes, to form a photocurrent output. 量子效率是衡量光电探测器的一个最重要的性能指标之一,主要由光子入射效率、内量子效率和载流子收集效率决定。 Quantum efficiency is one of the most important performance measure of the photodetector, mainly, the internal quantum efficiency and the collection efficiency of carriers determined by photon incidence efficiency. 由于半导体和空气的折射率差大,相当的光被界面反射,无法进入到器件中被收集,导致器件效率降低。 Since the refractive index of the semiconductor and air is large, corresponding to the light reflected by the interface, it can not be collected into the device, resulting in reduced efficiency of the device. 通常根据入射光和反射光的干涉相消原理,设计并制备增透膜,使得单一波长的垂直入射光入射效率达到95%以上。 The normally incident light and the reflected light interference cancellation principle, design and preparation of antireflection coating, such that a single wavelength of normally incident light incidence efficiency of over 95%. 然而这种设计带来的一个问题是,当入射波长偏移设计波长,或者入射角偏离垂直方向,探测效率急剧下降。 However, a problem of this design is that, when the incident wavelength shift the design wavelength or angle of incidence from the vertical direction, a sharp decline in detection efficiency.

[0003] 根据电磁场理论,以对于电场垂直于入射面的TE波为例,根据界面处的连续性可以推导出TE波的菲涅尔反射系数为: [0003] The electromagnetic field theory, for the TE wave electric field perpendicular to the incident plane, for example, according to the continuity at the interface can be deduced TE wave Fresnel reflection coefficient:

[0004] [0004]

Figure CN103956404BD00031

[0005] 其中,θ〇为入射角,G1为出射角,0(^0!满足: [0005] wherein θ〇 angle of incidence, the angle of Gl, 0 (0 ^ satisfied!:

[0006] -KiSin = ?iQsm [0006] -KiSin =? IQsm

[0007] 其中no为入射介质的折射率,m为出射介质的折射率。 [0007] where no is the refractive index of the incident medium, m is the refractive index of the emission medium. 以650nm的入射光(TE波)从空气入射至硅材料表面为例,如图1所示,可以得出TE波反射率随入射角的增加而增加,说明光子入射效率与角度有关,垂直正入射方向的光子入射效率最高。 At 650nm incident light (TE wave) is incident from the air to the surface of the silicon material, for example, shown in Figure 1, the reflectance can be obtained with increasing TE wave incident angle increases, the efficiency of photon incidence angle described related vertical n incident photon incident direction of maximum efficiency. 通常人们采用的增透膜,根据增透膜厚度为λ/4时对波长为λ的光透射率最高,在硅材料表面生长一层IOOnm的二氧化硅用于增透600nm的入射光,将IOOnm的二氧化硅和硅材料等效成一个界面,其导纳为Y,定义其特征矩阵为: People usually employed antireflection film, antireflection film according to a thickness of λ / 4 when a wavelength of [lambda] is the maximum light transmittance, a layer of silicon grown on the surface of silica used AR IOOnm 600nm incident light, the IOOnm silica and silicon material equivalent to an interface which admittance is Y, which is defined as a matrix wherein:

[0008] [0008]

Figure CN103956404BD00032

[0009] 其中,ndPn2分别为二氧化硅和硅的折射率, [0009] wherein, ndPn2 are the refractive indices of silicon and silicon dioxide,

[0010] [0010]

Figure CN103956404BD00033

[0011] 为二氧化硅的相位厚度,Cl1为二氧化硅的实际厚度,Y=C/B,因此加入增透膜后的反射系数为: [0011] The thickness of the phase silica, Cl1 of the actual thickness of the silica, Y = C / B, the reflection coefficient of the antireflection film is added:

[0012] [0012]

Figure CN103956404BD00034

[0013]其中,n〇为空气的折射率。 [0013] wherein the refractive index of air n〇.

[0014] 计算结果如图2所示,可以看出,随着入射角从0°增加到60°,对600nm波长,透射率从91%降低到75%,透射率峰值波长也随着角度的增加偏离设计的中心波长,从600nm降低至470nm,透射率不断下降。 [0014] The results shown in Figure 2, it can be seen, as the incident angle increases from 0 ° 60 °, wavelength of 600nm, a decrease in transmittance from 91% to 75%, along with the peak wavelength transmittance angle increase from the design center wavelength of from 600nm to 470nm decreased, the transmittance declining.

[0015] 目前,在空间光通信、弱光探测、激光回波探测等方面均对广角光电探测有着强烈的需求,例如空间光通信中的漫反射探测、激光回波探测中由于激光发散角导致的回波散射等,其特征在于入射光的入射角范围大,强度微弱,因此这些应用均要求光电探测器在能接收较宽角度范围的入射光的同时,具有高的灵敏度及量子效率。 [0015] At present, in optical communication, low light detection, laser echo detection and the like are a strong demand for wide-angle photodetector such as diffusely reflected probe spatial optical communication, laser echo detection due to the laser divergence angle results echo scattering, characterized in that the large incidence angle range, the strength weak, so these applications require a photodetector to receive incident light at the same time a wide angular range, high sensitivity and quantum efficiency.

[0016] 正是由于目前增透膜设计要求入射光垂直入射,在实际探测系统中,需要额外的探测器旋转控制系统,由于受到旋转控制系统速度的限制,扫描效率太低,因此进一步提出了与光电探测器配合的聚焦光学系统及通过增加探测器组成焦平面阵列,实现对各个方向信号的探测,但是额外的系统不仅提高了整个光电探测器模块的体积,更加大了实现难度。 [0016] Because of the current AR coatings incident perpendicularly incident on design requirements, the actual detection system, require additional detector rotation control system, since the system is limited by the rotation speed control, the scanning efficiency is too low, therefore further proposed focusing optical system and the photodetector cooperating with the volume of the composition by increasing the focal plane array detectors, to achieve detection of the signal in all directions, but the extra system not only increases the overall photodetector module, a greater difficulty of realization.

发明内容 SUMMARY

[0017] 本发明目的在于解决上述技术问题,提供一种广角的光电探测器结构及制备方法。 [0017] The object of the present invention is to solve the above problems, to provide a photoelectric detector structure and a method for preparing a wide angle.

[0018] 本发明采用的技术方案是: [0018] aspect of the present invention is that:

[0019 ] -种光电探测器的制备方法,包括如下步骤: [0019] - preparation methods photodetector, comprising the steps of:

[0020] 过渡层制备步骤,在光电探测器结构的光敏面内以800-1200°C生长一层200nm的p-GaN,作为过渡层; [0020] The transition layer preparation step in the photosensitive surface of the photodetector structure to 800-1200 ° C Growth 200nm layer of p-GaN, a buffer layer;

[0021 ]晶籽层制备步骤,在所述过渡层上以600-900°C生长一层50nm的p-GaN,作为再构结构的晶籽层; Preparation [0021] Step crystal seed layer, the transition layer on the growth layer at 600-900 ° C 50nm of p-GaN, a crystal structure of the seed layer was re-configuration;

[0022] 再构步骤,在生长完晶籽层后快速升温,以950-1200°C生长一层150nm的p-GaN,形成再构光敏面。 [0022] The reconstruction step, rapid temperature rise in the crystal growth After the seed layer, growing a layer of 950-1200 ° C to 150nm of p-GaN, and then forming a photosensitive surface configuration.

[0023] 优选的,所述再构步骤之后还包括钝化层制备步骤,在再构光敏面上通过电子束蒸镀/溅射形成IOOnm的ITO形成钝化层,所述钝化层完全包覆住所述再构光敏面。 [0023] Preferably, after the re-configuration step further comprises the step of preparing a passivation layer, the passivation layer is formed on the photosensitive surface of the ITO reconstructions by electron beam evaporation / sputtering IOOnm of the passivation layer is completely wrapped the re-configuration overlying live photosensitive surface.

[0024] 优选的,所述再构光敏面的上表面为不平整表面,用以使斜入射光接触所述再构光敏面后产生的反射光的部分再次作为斜入射光进入至所述光电探测结构内。 [0024] Preferably, the re-configuration of the upper surface of the photosensitive surface is not a flat surface portion for making contact with the oblique incidence of the reflected light and then re-enters the surface of the photosensitive structure to obliquely incident light as the photoelectric in the detection structure.

[0025] 优选的,所述再构光敏面的不平整表面为规则的连续截面。 [0025] Preferably, the re-configuration of the uneven surface of the photosensitive surface is a continuous cross-section of the rule.

[0026] 优选的,所述再构光敏面的连续截面为锥形、梯形、矩形、球形、球形凹陷形,其图形占空比50%到100%。 [0026] Preferably, the re-configuration of the continuous photosensitive surface tapered cross-section, trapezoidal, rectangular, spherical, spherical-shaped recess, which graphic duty ratio of 50% to 100%.

[0027]优选的,所述再构光敏面的厚度为0· Ιμπι到50μηι之间。 [0027] Preferably, the re-configuration of the photosensitive surface to a thickness of between 0 · Ιμπι 50μηι.

[0028] 本发明还揭示了一种广角光电探测器,包括用于产生光电效应的光电探测结构, 所述光电探测结构的上表面上设有再构光敏面,所述再构光敏面的上表面为不平整表面用以使斜入射光接触所述再构光敏面后产生的反射光的部分再次作为斜入射光进入至所述光电探测结构内。 [0028] The present invention also discloses a wide-angle photodetector, the photodetector comprises a structure for generating the photoelectric effect, re-configuration is provided on the upper surface of the light-sensitive surface of the photodetection structure, the re-configuration on the surface of the photosensitive the surface of the uneven surface to make contact with the oblique incident light partially reflective structure produced after re-entering into the light-sensitive surface of the photodetector as the oblique incidence configuration again.

[0029]优选的,所述再构光敏面的上表面还设有钝化层,所述钝化层完全覆盖住所述再构光敏面,所述钝化层的材料为SiO2、SiNx、MgF2、ITO。 [0029] Preferably, the re-configuration of the upper surface of the photosensitive surface further provided with a passivation layer, the passivation layer completely covers the surface of the re-configuration of the photosensitive material of the passivation layer is SiO2, SiNx, MgF2, ITO.

[0030] 优选的,所述再构光敏面可应用于由硅、多晶硅、GaAs、GaN、InP、SiC、ZnO、SOIJi| 镉汞制备的光电探测结构上。 [0030] Preferably, the re-configuration may be applied to the surface of the photosensitive silicon, polysilicon, GaAs, GaN, InP, SiC, ZnO, SOIJi | structure made on the photodetection Cadmium mercury.

[0031] 优选的,所述光电探测结构为线性模式和盖革模式的雪崩光电探测器,或为PIN光电探测器,或为MSM光电探测器。 [0031] Preferably, the photodetection structure is a linear mode and a Geiger mode avalanche photodetector, or a PIN photodetector or photodetectors of MSM.

[0032] 本发明的有益效果在于:提供了一种广角光电探测器的制备方法,高效可靠,通过在光电探测器表面再构,打破菲涅尔反射系数入射角的限制,降低对入射波长的敏感度,不需加入额外的系统,仅通过单个光电探测器实现广角探测。 [0032] Advantageous effects of the present invention is: to provide a process for preparing wide photodetector, efficient and reliable, by the photodetector surface reconstructions, breaking limit of the angle of incidence of the Fresnel reflection coefficient, reduced incident wavelength sensitivity without adding additional systems, achieve a wide angle by detecting only a single photodetector.

附图说明 BRIEF DESCRIPTION

[0033]下面结合附图及实施例对本发明作进一步描述: [0033] Example embodiments of the present invention will be further described in conjunction with the accompanying drawings and the following:

[0034]图I :TE波从空气入射至硅材料表面,反射率随入射角的变化曲线图。 [0034] FIG. I: TE wave is incident from the air to the surface of the silicon material, a graph showing changes in reflectivity with incidence angle.

[0035]图2:含IOOnm SiO2增透膜的硅材料衬底对0°、30°及60°入射角的入射光的透射曲线图。 [0035] Figure 2: a graph showing the transmittance of the substrate material, a silicon-containing antireflection coating IOOnm SiO2 to 0 °, 30 ° and 60 ° angle of incidence of the incident light.

[0036]图3:本发明的广角光电探测器的结构示意图。 [0036] Figure 3: Structure of the photodetector wide present invention. FIG.

[0037]图4:斜入射光在本发明的再构光敏面上的入射光路示意图。 [0037] Figure 4: a schematic view of another configuration of the incident light path of the photosensitive surface according to the present invention is obliquely incident light.

[0038]图5至图9:本发明的再构光敏面的剖视示意图。 [0038] Figures 5 to 9: a schematic cross-sectional view of another configuration of the present invention, the photosensitive surface.

[0039]图10:本发明的广角光电探测器的制备方法的各个步骤对应的剖面图。 [0039] FIG. 10: a sectional view of each step of the method of the present invention, a wide angle photodetector corresponding.

具体实施方式 detailed description

[0040] 本发明揭示了一种广角光电探测器,其结构如图3所示,自上而下依次包括:钝化层101、再构光敏面102和光电探测结构103。 [0040] The present invention discloses a wide photodetector, the structure shown in Figure 3, top to bottom comprising: a passivation layer 101, and then the photosensitive surface 102 and the configuration of the photodetection structure 103. 所述光电探测结构103用于产生光电效应,此为现有技术,在此不再赘述。 The photodetection structure 103 for generating the photoelectric effect, this is the prior art, it is not repeated here. 结合图4所示,所述再构光敏面102的上表面为不平整表面用以使斜入射光接触所述再构光敏面102后产生的反射光的部分再次作为斜入射光进入至所述光电探测结构103内,所述钝化层101完全包覆住所述再构光敏面102。 In conjunction with FIG. 4, the re-configuration of the upper surface 102 of the photosensitive surface is an uneven surface for contacting said portion of the swash incident reflected light generated after the re-configuration of the photosensitive surface 102 again as incident light enters obliquely to the the photodetection structure 103, the passivation layer 101 is completely covered configuration against said photosensitive surface 102 again.

[0041] 具体的,当入射光按照一定角度入射到光电探测结构103的再构光敏面102,由于入射点处实际入射角度发生变化,对于倾斜面降低了实际入射角度,因此能够提高倾斜入射光的透射率。 [0041] Specifically, when the incident light is incident to the photosensitive surface reconstructions photodetection structure 103 according to a certain angle 102, since the actual angle of incidence at the point of incidence is changed, the inclined surface for reducing the actual angle of incidence, the oblique incident light can be improved transmittance. 与此同时,反射的光在多个界面中反射,增加透射进入半导体的几率,从而增加透射率,打破菲涅尔反射系数入射角的限制,降低对入射波长的敏感度,实现广角探测。 At the same time, the reflected light reflected at a plurality of interfaces, to increase the probability of transmission into the semiconductor, thereby increasing the transmittance, the incident angle to break the limit of the Fresnel reflection coefficient, reducing the sensitivity to incident wavelength, to achieve a wide-angle detection.

[0042] 本发明中的再构光敏面102,可以由化学腐蚀、激光刻槽、反应离子刻蚀、机械刻槽、外延生长等方法形成,再构结构深〇. Ιμπι到50μπι。 [0042] In another configuration of the present invention, the photosensitive surface 102, the laser groove, reactive ion etching, mechanical groove, formed by the epitaxial growth method such as chemical etching, and then construction of deep square configuration. Ιμπι to 50μπι. 所述再构光敏面的表面形貌为规则的连续截面,可以为如图5至图9揭示的锥形、梯形、矩形、球形、球形凹陷等,其图形占空比50% 到100%。 The re-configuration of the surface topography of the photosensitive surface is a continuous cross-section rule, 5 to 9 disclosed tapered, trapezoidal, rectangular, spherical, spherical recesses may be as shown, with its pattern duty ratio of 50% to 100%.

[0043] 本发明的光电探测结构103可以通过在再构光敏面102上增加钝化层101来修复因再构引入的表面损伤,降低表面复合,降低暗电流。 [0043] The structure of the present invention, the photodetector 103 can be fixed by increasing the passivation layer 101 on the surface 102 due to the re-configuration of the photosensitive surface damage then introduced into the structure, reducing the surface recombination, reduce dark current. 并且,由于所述钝化层101具有一定的厚度,在Inm到ΙΟμπι之间,因此其可以作为一种增透膜的存在。 Further, since the passivation layer 101 has a certain thickness, between Inm to ΙΟμπι, so it can serve as an AR coating present. 该钝化层101材料可以为SiO 2、 SiNx、MgF2、IT0等。 The passivation layer 101 material may be SiO 2, SiNx, MgF2, IT0 like. 当然,如果处于成本的考虑,也可省去该钝化层101,即广角光电探测器仅仅包括光电探测结构和设于其上的再构光敏面,所述再构光敏面的至少部分表面为不平整表面,用以使斜入射光接触所述再构光敏面102后产生的反射光的部分再次作为斜入射光进入至所述光电探测结构103内。 At least part of the surface course, if the cost under consideration, may be omitted passivation layer 101, i.e., include only the wide angle photodetector photosensitive surface reconstructions on the photodetection structure and disposed thereon, said photosensitive surface is re-configuration uneven surface for contacting said portion of the swash incident reflected light generated after the re-configuration into the photosensitive surface 102 enters the photodetection structure 103 again as oblique incidence.

[0044] 本发明的再构光敏面102适用于由硅、多晶硅、GaAs、GaN、InP、SiC、ZnO、SOIJi^i| 萊等各种材料制备的光电探测器。 [0044] The reconstruction of the photosensitive surface 102 of the present invention is applicable to silicon, polycrystalline silicon, GaAs, GaN, InP, SiC, ZnO, SOIJi ^ i | photodetector prepared Levin and other materials.

[0045] 本发明的再构光敏面102适用于线性模式和盖革模式的雪崩光电探测器,也适用于PIN光电探测器、MSM光电探测器等。 [0045] The reconstruction of the photosensitive surface 102 of the present invention is applied to a linear mode and a Geiger mode avalanche photodetector, also applies to the PIN photodetector, the MSM photodetectors.

[0046] 下面描述一下本发明的广角光电探测器的制备方法。 [0046] A method for wide-angle photodetector below describe the present invention.

[0047] 如附图10所示,光电探测结构203采用MOCVD生长的GaN基光电探测器,其再构光敏面202以通过外延生长的方法形成锥形结构为例,制备过程和方法如下: [0047] As shown in the drawings, the photodetection structure 203 using MOCVD grown GaN based photoelectric detector 10, and then to construct a photosensitive surface 202 is formed by epitaxial growth method of a tapered configuration, for example, preparation processes and methods as follows:

[0048] 步骤(a)、在光电探测器结构203的光敏面202内以800-1200°C生长一层200nm的P-GaN作为过渡层204; [0048] Step (a), in the photosensitive surface 203 of the photodetector structure growing a layer of 202 to 200nm 800-1200 ° C P-GaN as a buffer layer 204;

[0049] 步骤(b)、在所述过渡层204上以600-900 °C生长一层50nm的p-GaN作为再构结构的晶籽层205; [0049] Step (b), on the transition layer 204 to 600-900 ° C growing a layer of 50nm p-GaN layer as a seed crystal structure 205 further configuration;

[0050] 步骤(C)、在生长完晶籽层205后快速升温,以950-1200 °C生长一层150nm的p-GaN, 形成再构光敏面202; [0050] Step (C), rapid temperature rise in the finished crystal growth seed layer 205, at 950-1200 ° C a layer of 150nm growth of p-GaN, and then the photosensitive surface 202 configuration is formed;

[0051 ]步骤(d)、在再构光敏面202上通过电子束蒸镀/溅射形成IOOnm的ITO形成钝化层201,即得到本发明的广角光电探测器。 [0051] Step (D), then the configuration at the photosensitive surface 202 by electron beam evaporation / sputtering ITO IOOnm forming a passivation layer 201, i.e. to obtain the wide angle of the photodetector of the present invention.

[0052]其中,电子束蒸镀/溅射为现有技术,在此不再赘述。 [0052] wherein, electron beam evaporation / sputtering the prior art, it is not repeated here.

[0053]本发明尚有多种实施方式,凡采用等同变换或者等效变换而形成的所有技术方案,均落在本发明的保护范围之内。 [0053] The various embodiments of the present invention, there, where the use of all technical equivalents transform or equivalent conversion scheme formed, are within the scope of the present invention.

Claims (10)

  1. 1. 一种光电探测器的制备方法,其特征在于:包括如下步骤, 过渡层制备步骤,在光电探测器结构(203)的光敏面(202)内以800-1200°C生长一层200nm的p-GaN,作为过渡层(204); 晶籽层制备步骤,在所述过渡层(204)上以600-900 °C生长一层50nm的p-GaN,作为再构结构的晶籽层(205); 再构步骤,在生长完晶籽层(205)后快速升温,以950-1200°C生长一层150nm的p-GaN, 形成再构光敏面(202)。 1. A method of preparing the photodetector, characterized by: comprising the steps of preparing step transition, within photodetector structure (203) of the photosensitive surface (202) 800-1200 ° C in a growth layer of 200nm p-GaN, a buffer layer (204); the step of preparing a seed crystal layer on the transition layer (204) grown at 600-900 ° C 50nm layer of p-GaN, a crystal structure of the seed layer was re-configuration ( 205); re-configuration steps, the rapid temperature rise after growing crystal seed layer (205), growing a layer of 950-1200 ° C at 150nm of p-GaN, and then forming photosensitive surface structure (202).
  2. 2. 根据权利要求1所述的一种光电探测器的制备方法,其特征在于:所述再构步骤之后还包括钝化层制备步骤,在再构光敏面(202)上通过电子束蒸镀/溅射形成100nm的ITO形成钝化层(201 ),所述钝化层(201)完全包覆住所述再构光敏面(202)。 The production method of claim 1. A photodetector as claimed in claim, wherein: the re-configuration after the step of preparing a passivation layer further comprises a step of re-configuration of the photosensitive surface (202) by an electron beam evaporation / sputtering ITO 100nm forming a passivation layer (201), said passivation layer (201) against said cover completely re-configuration of the photosensitive surface (202).
  3. 3. 根据权利要求1或2所述的一种光电探测器的制备方法,其特征在于:所述再构光敏面(102、202)的上表面为不平整表面,用以使斜入射光接触所述再构光敏面(102、202)后产生的反射光的部分再次作为斜入射光进入至所述光电探测结构(1〇3、203)内。 The production method of claim 12 or a photovoltaic detector according to claim, wherein: the re-configuration on the surface of the photosensitive surface (102, 202) is non-planar surface for contacting the swash incident partially reflecting light generated after the re-configuration of the photosensitive surface (102, 202) again as incident light enters obliquely to the photodetector structure (1〇3,203) inside.
  4. 4. 根据权利要求3所述的一种光电探测器的制备方法,其特征在于:所述再构光敏面(102、202)的不平整表面为规则的连续截面。 4. The method of claim 3 prepared a photovoltaic detector according to claim, wherein: the re-configuration of the uneven surface of the photosensitive surface (102, 202) is a continuous cross-section of the rule.
  5. 5. 根据权利要求4所述的一种光电探测器的制备方法,其特征在于:所述再构光敏面(102、202)的连续截面为锥形、梯形、矩形、球形、球形凹陷形,其图形占空比50%到100%。 The preparation method according to a photodetector as claimed in claim wherein: the re-configuration of the photosensitive surface (102, 202) is continuously tapered cross-section, trapezoidal, rectangular, spherical, concave spherical shape, the graphical duty ratio of 50% to 100%.
  6. 6. 根据权利要求1所述的一种光电探测器的制备方法,其特征在于:所述再构光敏面(102、202)的厚度为0 · Ιμπι到50μπι之间。 6. The method of claim 1 prepared a photovoltaic detector according to claim, wherein: the thickness of the photosensitive surface reconstructions (102, 202) is between 0 · Ιμπι 50μπι.
  7. 7. -种根据权利要求1所述的制备方法制备的广角光电探测器,其特征在于:包括用于产生光电效应的光电探测器结构(103),所述光电探测器结构(103)的上表面上设有再构光敏面(102),所述再构光敏面(102)的上表面为不平整表面,且此不平整表面为规则的连续截面,用以使斜入射光接触所述再构光敏面(102)后产生的反射光的部分再次作为斜入射光进入至所述光电探测器结构(103)内。 7 - The kinds of photodetectors prepared wide production method according to claim 1, further comprising: a photodetector structure for producing a photoelectric effect (103), said photodetector structure (103) on the reconstruction surface is provided with a photosensitive surface (102), the re-configuration of the photosensitive surface (102) on the surface of the uneven surface, and this uneven surface of the continuous regular cross section, for making contact with the obliquely incident light and then portion of the reflected light produced after configuration photosensitive surface (102) again as incident light enters obliquely to the photodetector structure (103).
  8. 8. 根据权利要求7所述的广角光电探测器,其特征在于:所述再构光敏面(102)的上表面还设有钝化层(101),所述钝化层(101)完全包覆住所述再构光敏面(102),所述钝化层(10lW9MWSSi02、SiNx、MgF2SlT0。 According to claim 7 of the wide-angle photodetector, wherein: the re-configuration on the surface of the photosensitive surface (102) is further provided with a passivation layer (101), said passivation layer (101) completely wrapped the reconstruction of the cover stay photosensitive surface (102), said passivation layer (10lW9MWSSi02, SiNx, MgF2SlT0.
  9. 9. 根据权利要求7所述的广角光电探测器,其特征在于:所述再构光敏面(102)可应用于由硅、多晶硅、6&六8、6 &111^、3丨(:、211〇、301或碲镉汞制备的光电探测器结构(103)上。 According to claim 7 of the wide-angle photodetector, wherein: the re-configuration of the photosensitive surface (102) may be applied to the silicon, polysilicon, 8,6 & 6 & six 111 ^, 3 Shu (:, 211〇 , 301 or a photodetector structure prepared on mercury cadmium telluride (103).
  10. 10. 根据权利要求7所述的广角光电探测器,其特征在于:所述光电探测器结构(103)为线性模式和盖革模式的雪崩光电探测器或为PIN光电探测器或为MSM光电探测器。 10. The wide-angle photodetector according to claim 7, wherein: said photodetector structure (103) is a linear mode and a Geiger mode avalanche or a PIN photodetector is a photodetector or photodetector MSM device.
CN 201410131694 2014-04-03 2014-04-03 An optoelectronic photodetector wide preparation method and the preparation of probe CN103956404B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410131694 CN103956404B (en) 2014-04-03 2014-04-03 An optoelectronic photodetector wide preparation method and the preparation of probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410131694 CN103956404B (en) 2014-04-03 2014-04-03 An optoelectronic photodetector wide preparation method and the preparation of probe

Publications (2)

Publication Number Publication Date
CN103956404A true CN103956404A (en) 2014-07-30
CN103956404B true CN103956404B (en) 2016-06-15

Family

ID=51333654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410131694 CN103956404B (en) 2014-04-03 2014-04-03 An optoelectronic photodetector wide preparation method and the preparation of probe

Country Status (1)

Country Link
CN (1) CN103956404B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505111A (en) * 2016-10-14 2017-03-15 中国电子科技集团公司第十研究所 Cadmium-zinc-telluride substrate, preparation method and application of zinc-cadmium-telluride substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846378A (en) * 2003-09-05 2006-10-11 新科实业有限公司 Free space MSM photodetector assembly
CN102800717A (en) * 2012-08-30 2012-11-28 中山大学 PIN structural ultraviolet photoelectric detector for avalanche and preparation method thereof
CN103681899A (en) * 2013-12-18 2014-03-26 无锡中微晶园电子有限公司 Photosensor with photosensitive density improved and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8809867B2 (en) * 2002-04-15 2014-08-19 The Regents Of The University Of California Dislocation reduction in non-polar III-nitride thin films
US7553687B2 (en) * 2006-06-28 2009-06-30 Intel Corporation Dual seed semiconductor photodetectors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846378A (en) * 2003-09-05 2006-10-11 新科实业有限公司 Free space MSM photodetector assembly
CN102800717A (en) * 2012-08-30 2012-11-28 中山大学 PIN structural ultraviolet photoelectric detector for avalanche and preparation method thereof
CN103681899A (en) * 2013-12-18 2014-03-26 无锡中微晶园电子有限公司 Photosensor with photosensitive density improved and manufacturing method thereof

Also Published As

Publication number Publication date Type
CN103956404A (en) 2014-07-30 application

Similar Documents

Publication Publication Date Title
US20070194357A1 (en) Photodiode and method for fabricating same
US20020134985A1 (en) Interface texturing for light-emitting device
US20110315988A1 (en) Passivated upstanding nanostructures and methods of making the same
US20120313205A1 (en) Photosensitive Imagers Having Defined Textures for Light Trapping and Associated Methods
Catchpole et al. Plasmonics and nanophotonics for photovoltaics
US20090134486A1 (en) Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module
US20100308214A1 (en) Array of nanowires in a single cavity with anti-reflective coating on substrate
Zanotto et al. Light trapping regimes in thin-film silicon solar cells with a photonic pattern
US8476681B2 (en) Photosensitive imaging devices and associated methods
JP2007273832A (en) Photodiode and its manufacturing method
Chang et al. Efficiency enhancement in GaAs solar cells using self-assembled microspheres
US20130228808A1 (en) Light emitter with metal-oxide coating
US20140197509A1 (en) Photosensitive imaging devices and associated methods
US4202704A (en) Optical energy conversion
Tsai et al. Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays
Wang et al. Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer
JP2006171026A (en) Light-scattering film and optical device using the same
Peters et al. The photonic light trap—Improved light trapping in solar cells by angularly selective filters
Chen et al. Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region
Frölich et al. Titania woodpiles with complete three‐dimensional photonic bandgaps in the visible
JP2008288293A (en) Semiconductor photodetector
Song et al. Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration
US8216872B1 (en) Method of integrating light-trapping layer to thin-film solar cell
Eyderman et al. Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping
Stiebig et al. Light trapping in thin-film silicon solar cells by nano-textured interfaces

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model