JPH02162659A - Manufacture of solid secondary battery - Google Patents

Manufacture of solid secondary battery

Info

Publication number
JPH02162659A
JPH02162659A JP63317487A JP31748788A JPH02162659A JP H02162659 A JPH02162659 A JP H02162659A JP 63317487 A JP63317487 A JP 63317487A JP 31748788 A JP31748788 A JP 31748788A JP H02162659 A JPH02162659 A JP H02162659A
Authority
JP
Japan
Prior art keywords
electrolyte
binder
secondary battery
solid
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63317487A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63317487A priority Critical patent/JPH02162659A/en
Publication of JPH02162659A publication Critical patent/JPH02162659A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To strongly bond electrode layers to an electrolyte layer and to retard expansion in charge-discharge by unitedly arranging electrode layers on both sides of an electrolyte, and by impregnating a binder solution, then drying. CONSTITUTION:For example, Cu2Mo6S6 is used as positive and negative layers and an electrolyte layer made of RbCu4I1.5Cl3.2 is placed between both electrodes, then they are united with a hot press. A binder prepared by dissolving polycyanoacrylate resin in toluene so as to have a specified wt.% is impregnated into the cell element. By drying the cell element, the electrodes are strongly bonded to the electrolyte layer, and expansion in charge-discharge is retarded. A solid secondary battery having high performance is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は構成材料がすべて固体のいわゆる固体二次電池
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a so-called solid state secondary battery whose constituent materials are all solid.

従来の技術 各種の電源として使われる電池のうち構成材料がすべて
固体であるいわゆる固体電池は、液漏れがなく、したが
って高信頼性が期待でき、小形軽量化も可能などの理由
で一次、二次電池ともに注目されてきた。現在のところ
各種機器のメモリーバックアップ用を中心に考えられて
いる。
Conventional technology Among the batteries used as various power supplies, so-called solid-state batteries, whose constituent materials are all solid, are used as primary and secondary batteries because they do not leak, are expected to be highly reliable, and can be made smaller and lighter. Both batteries have received attention. Currently, it is mainly being considered for memory backup of various devices.

この固体電池では、電池内でイオンを動かすための固体
電解質がとくに重要であり、Lll、Li3NなどのL
i+イオン導電性固体電解質、RbA g 415、A
g l−Ag2O、A g I  M o O3などの
Ag+イオン導電性固体電解質、H+イオン導電性固体
電解質それにRb Cu411.5c l 3.5、C
u [−Cu20−M o 03などのCu+イオン導
電性固体電解質などが取り上げられている。
In this solid-state battery, a solid electrolyte for moving ions within the battery is particularly important, and Lll, Li3N, etc.
i+ ion conductive solid electrolyte, RbA g 415, A
Ag+ ion conductive solid electrolyte such as g l-Ag2O, Ag I Mo O3, H+ ion conductive solid electrolyte and Rb Cu411.5cl 3.5, C
Cu+ ion conductive solid electrolytes such as u [-Cu20-M o 03 and the like have been taken up.

また、正極用材料としてはCuOoIT I S2、A
go、1T I S2、CuO,IN b S2、Ag
o、1N b S2、WO−3それにCu yM o 
6 S e−z、FeyMQ6Se−zなどのシェル相
化合物があげられている。−方、負極にはCu s A
 g −、L l s −5WO3それに正極用と同様
のシェル相化合物が試みられている。
In addition, CuOoIT I S2, A
go, 1T I S2, CuO, IN b S2, Ag
o, 1N b S2, WO-3 and Cu yMo
Shell phase compounds such as 6S e-z and FeyMQ6Se-z are listed. − side, Cu s A on the negative electrode
g-, Lls-5WO3, and shell phase compounds similar to those for positive electrodes have been tried.

る。Ru.

これら電池の構造としては、他の電池と同様に正、負極
として電極活物質と結着剤を主とする層を両面に、中央
に電解質と結着剤を主とする層を配するのが一般的であ
る。集電の方法にはいろいろあるがその外側に結着剤を
含む導電性の層を設けることも一つの有効な手段である
The structure of these batteries is similar to that of other batteries, with layers containing mainly electrode active materials and binders as positive and negative electrodes on both sides, and a layer containing mainly electrolyte and binder in the center. Common. There are various methods for current collection, but one effective method is to provide a conductive layer containing a binder on the outside.

発明が解決しようとする課題 このような構成の固体二次電池を製造し充放電を行なっ
たところ、その条件にもよるが比較的少ないサイクル数
で容量の低下が認められた。すなわち、充放電を繰返す
と内部抵抗が増加して性能の劣化が認められた。原因に
ついて調べた結果、この電池の場合も他の、電解質に溶
液を用いる電池と同様にとくに電極が充放電の過程で若
干でも膨張することが認められた。
Problems to be Solved by the Invention When a solid secondary battery having such a configuration was manufactured and charged and discharged, a decrease in capacity was observed after a relatively small number of cycles, although it depended on the conditions. That is, when charging and discharging were repeated, internal resistance increased and performance deteriorated. As a result of investigating the cause, it was found that in this battery as well as in other batteries that use a solution as an electrolyte, the electrodes in particular expand even slightly during the charging and discharging process.

従来の電解質に溶液を用いる電池の場合には溶液が電極
中に入り、これが膨張の大きな原因になり外観からも明
らかに観察できるほど顕著な場合が多いのに対して、固
体二次電池では、溶液は存在しないので、観察できるよ
うな膨張はない。しかし、ごくわずかな膨張でもあると
、今度は逆に溶液がないので内部抵抗が増加して諸性能
が劣化するという問題がある。
In the case of conventional batteries that use a solution as the electrolyte, the solution enters the electrode, and this is a major cause of expansion, which is often so noticeable that it can be clearly observed from the outside.In contrast, in solid secondary batteries, Since there is no solution present, there is no observable expansion. However, if there is even a slight expansion, there is a problem in that internal resistance increases and various performances deteriorate because there is no solution.

課題を解決するための手段 本発明は上記課題を解決するため、電極材料を主とする
層を両面に、中央に電解質を主とする層を配し、両者を
一体化し、一体化後に結着剤溶液を含浸し、乾燥するこ
とを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention arranges layers mainly composed of electrode materials on both sides and a layer mainly composed of electrolyte in the center, integrates the two, and binds them together after integration. It is characterized by impregnating with a chemical solution and drying.

さらに好ましい発明として、電極材料と結着剤を主とす
る層を両面に、中央に電解質と結着剤を主とする層を配
し、加熱により一体化し、一体化後に結着剤溶液を含浸
、乾燥する製造がある。結着剤としては、ポリエチレン
、ポリ塩化ビニル、ポリアクリル系、ポリスチレン系樹
脂などを、それぞれ溶媒に溶解して用いる。
As a further preferred invention, layers mainly containing electrode material and a binder are arranged on both sides, and a layer mainly containing an electrolyte and a binder is arranged in the center, and the layers are integrated by heating, and after the integration, impregnated with a binder solution. There is manufacturing, drying. As the binder, polyethylene, polyvinyl chloride, polyacrylic resin, polystyrene resin, etc. are used by dissolving each in a solvent.

作  用 電極材料を主とする層と電解質を主とする層を一体化後
に結着剤溶液を含浸し、乾燥する工程を加える製造によ
れば、例えば従来からよく用いられてきた単に電極や電
解質中に結着剤を加えておいた場合に比べて、電極と電
解質の層が°強固に付着した状態で固体二次電池が得ら
れるので、充放電の過程で生じる若干の膨張も抑制し、
したがって内部抵抗が増大することなく優れた放電性能
や自己放電性が得られ、さらに比較的少ないサイクル数
で容量が低下することがなくなる。又、電極材料を結着
剤を主とする層を両面に、中央に電解質と接着剤を主と
する層を配し、一体化後にさらに結着剤溶液を含浸・乾
燥する製造によれば、より一層結着剤による作用・効果
が向上し、性能の向上を図ることができる。
According to a manufacturing method that adds a step of impregnating a binder solution and drying after integrating a layer mainly containing a working electrode material and a layer mainly containing an electrolyte, for example, a simple electrode or an electrolyte, which has been commonly used in the past, can be used. Compared to the case where a binder is added inside, a solid secondary battery can be obtained with the electrode and electrolyte layers firmly attached, which suppresses the slight expansion that occurs during the charging and discharging process.
Therefore, excellent discharge performance and self-discharge properties can be obtained without increasing internal resistance, and furthermore, the capacity does not decrease even with a relatively small number of cycles. In addition, according to the manufacturing method, the electrode material is prepared by disposing a layer mainly containing a binder on both sides and a layer mainly containing an electrolyte and an adhesive in the center, and then further impregnating with a binder solution and drying after integration. The action and effect of the binder is further improved, and performance can be improved.

実施例 正極用材料として銅シェル(Cu2Mo65B)を用い
、これに電解質としてRbCu411.5CI3.5を
20wt%、結着剤として市販のポリエチレンが6wt
%になるように、その熱ベンゼン溶液を加え充分攪拌し
て後、半乾燥状態にしておく。
Example A copper shell (Cu2Mo65B) was used as the positive electrode material, 20 wt% of RbCu411.5CI3.5 was used as the electrolyte, and 6 wt% of commercially available polyethylene was used as the binder.
%, add the hot benzene solution, stir thoroughly, and leave in a semi-dry state.

一方、負極にも銅シェル(Cu2Mo65B)を用い正
極と同様に同じ電解質Rb Cu4r 1.5c13.
5を20wt%と結着剤(6wt%)で、半乾燥状態に
しておく。それに電解質としてRbCua 11.5C
I 3.5を用い、やはり結着剤としてポリエチレン6
wt%になるように加え、半乾燥状態にしておく。
On the other hand, the negative electrode also uses a copper shell (Cu2Mo65B) and the same electrolyte Rb Cu4r 1.5c13.
5 with 20 wt% and a binder (6 wt%), and leave it in a semi-dry state. Plus RbCua 11.5C as an electrolyte
I 3.5, also with polyethylene 6 as a binder.
Add it so that it becomes wt% and keep it in a semi-dry state.

つぎに、径20mmの型内に正極用、電解質、負極用の
順にそれぞれIg、0.6g、1g充填し、まずこれを
160℃に加熱したプレス機で500 K g / c
 m 2の条件で加圧し、型内から取り出した。ついで
、このようにして得られた電池素子をポリシアノアクリ
レート系樹脂の8wt%トルエン溶液中に浸漬しその後
70℃で乾燥した。これの両面にゴム中にカーボンブラ
ック微粉末を分散させた市販のカーボンフィルムを集電
体として当てた後、さらにその外側に厚さ0.3mm、
径26 m mのCu板を当てて120℃、500Kg
/cm2の条件で加圧−休止した。電池周辺をまず、ポ
リアクリル系樹脂で被覆し、さらに常温硬化型のエポキ
シ樹脂をその上に塗着して電池を構成した。この電池を
Aとする。
Next, a mold with a diameter of 20 mm was filled with 0.6 g and 1 g of Ig for the positive electrode, electrolyte, and negative electrode in that order, respectively, and this was first heated to 160°C using a press machine to produce 500 kg/c.
It was pressurized under conditions of m 2 and taken out from the mold. Next, the battery element thus obtained was immersed in an 8 wt % toluene solution of polycyanoacrylate resin, and then dried at 70°C. A commercially available carbon film containing fine carbon black powder dispersed in rubber was applied as a current collector to both sides of the film, and then a film with a thickness of 0.3 mm was
120℃, 500Kg by applying a Cu plate with a diameter of 26mm
The pressure was applied and paused under the condition of /cm2. The surrounding area of the battery was first coated with a polyacrylic resin, and then a cold-curing epoxy resin was applied thereon to construct the battery. This battery is called A.

つぎに、比較のために、電池素子のポリシアノアクリレ
ート系樹脂溶液中への浸漬と乾燥は行わず他はAと同じ
工程によって得られた電池をBとして加えた。
Next, for comparison, a battery obtained by the same process as A was added as B, except that the battery element was not immersed in the polycyanoacrylate resin solution and dried.

以上の2つの電池についてまず通常の充放電での放電電
圧と容量を比較した。1.0mAで0゜52Vまでの充
電2.5mAで0.3Vまでの放電を行なったところ、
Aでは平均電圧は0.47V、放電容量は17.5mA
hを示したのに対して、Bではそれぞれ0.44V、1
6.4mAhであり、いずれもAが優れていた。。
First, the discharge voltage and capacity during normal charging and discharging of the above two batteries were compared. When charging to 0°52V at 1.0mA and discharging to 0.3V at 2.5mA,
At A, the average voltage is 0.47V and the discharge capacity is 17.5mA.
h, whereas B shows 0.44V and 1, respectively.
6.4 mAh, and A was superior in all cases. .

そこでつぎにこの充放電の条件で各電池の自己放電特性
を調べた。0.55Vまで充電後25℃で一月間放置し
た後容量を調べたところ維持率がAでは97%であった
のにBでは89%であった。
Therefore, we next investigated the self-discharge characteristics of each battery under these charging and discharging conditions. After charging to 0.55V and leaving at 25° C. for one month, the capacity was examined and found that the retention rate was 97% for A, but 89% for B.

最後に2つの電池の寿命特性を調べた。電池は、いずれ
も10セル用いた0周囲温度を25℃とした。その結果
、放電容量が初期の60%にまで劣化するサイクル数が
、Aでは870〜960サイクルであったのに対して、
Bでは620〜760サイクルであった。この結果から
明らかなようにAが長寿命であった。
Finally, the life characteristics of the two batteries were investigated. For each battery, 10 cells were used and the zero ambient temperature was 25°C. As a result, the number of cycles at which the discharge capacity deteriorated to 60% of the initial value was 870 to 960 cycles for A.
B was 620 to 760 cycles. As is clear from this result, A had a long life.

この種電池では充放電の過程で電極が若干は膨張する傾
向があるようで、これが充放電時でのイオンの流れを阻
害し電圧や容量の低下を招き、さらに比較的少ないサイ
クル数で容量が低下する原因になっている。ところが本
願のAでは電極と電解質の層が強固に圧着した状態で電
池が得られているので、充放電の過程で膨張する現象を
抑制し、したがって内部抵抗が増大することなく優れた
放電特性が得られ、また、比較的少ないサイクル数で容
量が低下することもない。
In this type of battery, the electrodes seem to have a tendency to expand slightly during the charging and discharging process, which obstructs the flow of ions during charging and discharging, leading to a decrease in voltage and capacity, and furthermore, the capacity decreases in a relatively small number of cycles. This is the cause of the decline. However, in A of the present application, a battery is obtained with the electrode and electrolyte layer firmly bonded, which suppresses the phenomenon of expansion during the charging and discharging process, and therefore provides excellent discharge characteristics without increasing internal resistance. Moreover, the capacity does not decrease even after a relatively small number of cycles.

発明の効果 固体二次電池の製法において、電極材料を主とする層を
両面に、中央に電解質を主とする層を配し、両者を一体
化し、一体化後に結着剤溶液を含浸し、乾燥する工程を
加えることにより、電池の充放電中での内部抵抗の増加
を抑え、したがって、優れた放電性能や自己放電特性が
得られ、さらに長寿命化が可能になる。又電極材料と結
着剤を主とするどを配し、加熱により一体化し、一体化
後にさらに結着剤溶液を含浸・乾燥する固体二次電池の
製造によれば、上記効果をより一層高めることができる
Effects of the Invention In the manufacturing method of a solid state secondary battery, a layer mainly composed of electrode material is arranged on both sides, a layer mainly composed of electrolyte is arranged in the center, the two are integrated, and after integration, impregnated with a binder solution, By adding the drying step, the increase in internal resistance during charging and discharging of the battery is suppressed, and therefore, excellent discharge performance and self-discharge characteristics are obtained, and a longer life is possible. In addition, the above effects can be further enhanced by manufacturing a solid secondary battery in which electrode materials and a binder are mainly arranged, integrated by heating, and then further impregnated with a binder solution and dried after integration. be able to.

Claims (3)

【特許請求の範囲】[Claims] (1)電極材料を主とする層を両面に、中央に電解質を
主とする層を配し、両者を一体化し、一体化後に結着剤
溶液を含浸し、乾燥することを特徴とする固体二次電池
の製造法。
(1) A solid characterized by having layers mainly composed of electrode materials on both sides and a layer mainly composed of electrolyte in the center, integrating the two, impregnating with a binder solution after integrating, and drying. Manufacturing method for secondary batteries.
(2)電極材料と結着剤を主とする層を両面に、中央に
電解質と結着剤を主とする層を配し、加熱により一体化
し、一体化後にさらに結着剤溶液を含浸、乾燥すること
を特徴とする固体二次電池の製造法。
(2) Layers mainly composed of electrode materials and binders are placed on both sides, and a layer mainly composed of electrolyte and binder is placed in the center, integrated by heating, and then further impregnated with a binder solution. A method for manufacturing a solid-state secondary battery characterized by drying.
(3)電極材料が銅シェル構造体で、電解質が銅イオン
導電体、結着剤が熱可塑性樹脂であることを特徴とする
請求項1又は2記載の固体二次電池の製造法。
(3) The method for producing a solid secondary battery according to claim 1 or 2, wherein the electrode material is a copper shell structure, the electrolyte is a copper ion conductor, and the binder is a thermoplastic resin.
JP63317487A 1988-12-15 1988-12-15 Manufacture of solid secondary battery Pending JPH02162659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317487A JPH02162659A (en) 1988-12-15 1988-12-15 Manufacture of solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317487A JPH02162659A (en) 1988-12-15 1988-12-15 Manufacture of solid secondary battery

Publications (1)

Publication Number Publication Date
JPH02162659A true JPH02162659A (en) 1990-06-22

Family

ID=18088778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317487A Pending JPH02162659A (en) 1988-12-15 1988-12-15 Manufacture of solid secondary battery

Country Status (1)

Country Link
JP (1) JPH02162659A (en)

Similar Documents

Publication Publication Date Title
JPS62160656A (en) Manufacture of positive electrode for nonaqueous electrolyte battery
JP3508514B2 (en) Organic electrolyte battery
JPH07161346A (en) Pole plate for secondary battery and high polymer solid electrolyte lithium secondary battery and its manufacture
KR20150042350A (en) Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector
JP4430778B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPH02162659A (en) Manufacture of solid secondary battery
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JPH0513099A (en) Manufacture of solid secondary battery
JP3211308B2 (en) Manufacturing method of solid state secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JPH05182657A (en) Negative electrode and manufacture thereof for lithium secondary battery
JP2780391B2 (en) Manufacturing method of solid state secondary battery
JPH02253569A (en) Manufacture of solid state secondary battery
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JPH02174077A (en) Solid secondary battery and manufacture thereof
JPH0355767A (en) Manufacture of solid secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JPH0315165A (en) Manufacture of solid state secondary battery
JPH02114457A (en) Operating method for solid secondary battery
JPH02114462A (en) Solid secondary battery
JPH0315164A (en) Manufacture of solid state secondary battery
JPH056775A (en) Manufacture of solid secondary battery
JPH02114460A (en) Manufacture of solid secondary battery
JPH0750617B2 (en) Solid secondary battery