JPH02162655A - Fuel cell and manufacture thereof - Google Patents

Fuel cell and manufacture thereof

Info

Publication number
JPH02162655A
JPH02162655A JP63315547A JP31554788A JPH02162655A JP H02162655 A JPH02162655 A JP H02162655A JP 63315547 A JP63315547 A JP 63315547A JP 31554788 A JP31554788 A JP 31554788A JP H02162655 A JPH02162655 A JP H02162655A
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte
metal plate
metal
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63315547A
Other languages
Japanese (ja)
Inventor
Yasutaka Komatsu
小松 康孝
Keizo Otsuka
大塚 馨象
Toshiki Kahara
俊樹 加原
Tsutomu Takahashi
務 高橋
Tadashi Takashima
正 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63315547A priority Critical patent/JPH02162655A/en
Publication of JPH02162655A publication Critical patent/JPH02162655A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a strong, flexible electrolyte retainer suitable for increasing the output and performance of a fuel cell by forming the electrolyte retainer with a porous metal plate. CONSTITUTION:An electrolyte retainer 1 which constitutes a molten carbonate type fuel cell together with a separator, an anode, a cathode, and an electric insulator is formed with a porous metal plate 8 including a core 9. This electrolyte retainer decreases the generation of cracks caused by the difference in thermal expansion coefficient compared with an electrolyte retainer formed by bonding ceramic and metal. The electrolyte retainer having high strength and high flexibility for increasing output and performance is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池に係り、特に電池の高性能化及び高出
力化に好適な各構成部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell, and particularly to constituent members suitable for increasing the performance and output of a battery.

〔従来の技術〕[Conventional technology]

溶融炭酸塩型燃料電池は、高温で溶融し、炭酸イオン伝
導性を示すリチウム、カリウム等のアルカリ金属炭酸塩
が電解質として用いられ、通常600〜800℃の高い
温度で運転される。この燃料電池は、利用できる燃料の
種類が広範囲であることや、エネルギー効率が高い等の
長所を有している。
Molten carbonate fuel cells use carbonates of alkali metals such as lithium and potassium, which melt at high temperatures and exhibit carbonate ion conductivity, as electrolytes, and are normally operated at high temperatures of 600 to 800°C. This fuel cell has advantages such as a wide variety of fuel types that can be used and high energy efficiency.

このような溶融炭酸塩型燃料電池は、1つの単位電池で
得られる起電力が約1vと低いため、高出力の発電プラ
ントを構成するには多数の単位電池を直列に積層する必
要がある、従ってこの種の燃料電池は第5図に示す様な
構成となっている。
In such a molten carbonate fuel cell, the electromotive force obtained by one unit cell is as low as about 1V, so it is necessary to stack a large number of unit cells in series to construct a high-output power generation plant. Therefore, this type of fuel cell has a structure as shown in FIG.

すなわち、炭酸塩電解質を保持している電解質保持体1
を挾持して対向するアノード2及びカソード3からなる
単位電池を、セパレータ4を介して複数個積層して構成
される。この燃料電池に、燃料ガスとしてH2が、セパ
レータ4のアノード2に接する燃料ガス流路5を通って
アノード2に供給され、電解質保持体1の中に保持され
ている溶融炭酸塩電解質の炭酸イオンと反応してH2+
C0,2−→H,O+CO,+2eなる反応を生じる。
That is, electrolyte holding body 1 holding carbonate electrolyte
It is constructed by stacking a plurality of unit batteries each consisting of an anode 2 and a cathode 3 sandwiching and opposing each other with a separator 4 in between. To this fuel cell, H2 as a fuel gas is supplied to the anode 2 through the fuel gas flow path 5 in contact with the anode 2 of the separator 4, and carbonate ions of the molten carbonate electrolyte held in the electrolyte holder 1 reacts with H2+
The reaction C0,2-→H, O+CO, +2e occurs.

一方、酸化剤として、0□とCo2の混合ガスが、セパ
レータ4のカソード3に接する酸化剤ガス流路6を通っ
てカソード3に供給され、 1/202+CO2+28−4 CO,”−なる反応を
生じ、結果として直流電力が得られる。
On the other hand, as an oxidizing agent, a mixed gas of 0□ and Co2 is supplied to the cathode 3 through the oxidizing gas flow path 6 in contact with the cathode 3 of the separator 4, causing a reaction of 1/202+CO2+28-4 CO,"-. , resulting in DC power.

ここで、セパレータ4は、単位電池間を電気的に直列に
接続するとともに、燃料ガスと酸化剤ガスが混合するの
を防止するとともに、強アルカリ性の電解質に対して安
定である必要性から、一般にステンレス系の材料が用い
られている。
Here, the separator 4 is generally used because it electrically connects the unit cells in series, prevents the fuel gas and oxidizer gas from mixing, and is stable against strong alkaline electrolytes. Stainless steel material is used.

アノード2は、燃料ガスと液体の電解質が共存する反応
場を形成するとともに、反応によって生じる電子をセパ
レータ4に伝導させる必要があることから、還元雰囲気
で電解質に対して安定な導電性物質として、一般にニッ
ケルの多孔質板が用いられている。
The anode 2 forms a reaction field where fuel gas and liquid electrolyte coexist, and it is necessary to conduct electrons generated by the reaction to the separator 4. Therefore, the anode 2 is a conductive material that is stable with respect to the electrolyte in a reducing atmosphere. Generally, a porous plate of nickel is used.

カソード3も同様な意味から、酸化雰囲気で電解質に対
して安定な導電性物質として、リチウム化した酸化ニッ
ケルの多孔質板が用いられている。
For the same reason, the cathode 3 also uses a porous plate of lithiated nickel oxide as a conductive material that is stable with respect to the electrolyte in an oxidizing atmosphere.

一方、電解質保持体1は、溶融塩電解質を保持するとと
もに、燃料ガスと酸化剤ガスが混合するのを防止するガ
スシール性が必要であり、さらにアノード2とカソード
3が電気的に短絡するのを防止する電気絶縁性が必要で
あることから、リチウムアルミネート等のセラミックス
からなる微細孔を有する多孔質板が一般に用いられてい
る。電池の高出力化を図るためには、電池の電圧が単位
電池の積層数に比例し、電流が電池の面積に比例するこ
とから、高積層化と広面積化が必要であるが前記電解質
保持体がセラミックス製で割れやすいため、高出力化を
困難なものにしている。
On the other hand, the electrolyte holder 1 needs to have gas sealing properties to hold the molten salt electrolyte and prevent fuel gas and oxidant gas from mixing, and also to prevent electrical short-circuiting between the anode 2 and cathode 3. Since electrical insulation is required to prevent this, porous plates made of ceramics such as lithium aluminate and having micropores are generally used. In order to increase the output of a battery, the voltage of the battery is proportional to the number of stacked unit cells, and the current is proportional to the area of the battery, so it is necessary to increase the number of stacks and increase the area. The body is made of ceramic and breaks easily, making it difficult to achieve high output.

すなわち、広面積化に伴い、組立時のハンドリング性が
悪くなるだけでなく電解質保持体内部の温度不均一性が
拡大され、熱応力が大きくなるとともに、製作精度の低
下により、偏荷重がかかりやすくなる等の理由で、より
割れやすくなり、広面積化が困難となっている。
In other words, as the area becomes larger, handling during assembly not only deteriorates, but also temperature non-uniformity inside the electrolyte holder increases, thermal stress increases, and manufacturing accuracy decreases, making it easier to apply unbalanced loads. This makes it more likely to break, making it difficult to expand the area.

また、この電解質保持体1はバインダー等を含んでおり
生テープ(グリーンシート)の状態では柔軟性があるが
、電解質融点以上の温度に加熱して電解質を含浸した後
ではバインダー等がなくなり、その結果柔軟性も失われ
、電池の組み立てが困難となるため、電池昇温過程にお
いて電池内部で電解質を含浸させるいわゆる電池内部含
浸法を採用する必要がある。この方法では電解質含浸時
に電池の高さが大きく収縮し、その収縮量は積層数に比
例することから、ガス配管、電流取出線。
In addition, this electrolyte holder 1 contains a binder, etc., and is flexible in the state of a raw tape (green sheet), but after being heated to a temperature higher than the melting point of the electrolyte and impregnated with the electrolyte, the binder, etc. disappears, and the As a result, flexibility is lost and assembly of the battery becomes difficult, so it is necessary to employ a so-called internal battery impregnation method in which electrolyte is impregnated inside the battery during the process of raising the temperature of the battery. With this method, the height of the battery shrinks significantly during electrolyte impregnation, and the amount of shrinkage is proportional to the number of laminated layers.

電池締付構造等の追従性の面で、高積層化を困難にして
いる。さらに、電池性能の面では電解質保持体は薄い方
が好ましいが、強度が低いため薄くできず、高性能化を
困難にしている。
This makes it difficult to increase the number of layers in terms of followability of the battery tightening structure, etc. Furthermore, in terms of battery performance, it is preferable for the electrolyte holder to be thin, but it cannot be made thin because of its low strength, making it difficult to improve performance.

以上の問題点を解決するためには、電解質保持体1の強
度を高める必要があり、従来は特開昭60−17217
4号公報及び特開昭60−93760号公報に開示され
ているように、電解質保持体1の内部または表面に金属
のメツシュやエキスパンドメタル等を設け、金属によっ
て補強する方法がとられていた。
In order to solve the above problems, it is necessary to increase the strength of the electrolyte holder 1.
As disclosed in Japanese Patent No. 4 and Japanese Patent Application Laid-Open No. 60-93760, a method has been adopted in which a metal mesh, expanded metal, etc. is provided inside or on the surface of the electrolyte holder 1, and the electrolyte holder 1 is reinforced with metal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、セラミックスと金属を接合したもので
あり、両者の線膨脹係数のちがいは考慮されていなかっ
た。すなおち、線膨脹係数の小さなセラミックスと、線
膨脹係数の大きな金属を接合した場合、電池の昇温及び
降温時に、線膨脹係数の差による熱応力が発生し、その
結果、セラミックス製の電解質保持体にクラックを生じ
、燃料ガスと酸化剤ガスが混合するいわゆるガスクロス
リークによって運転できなくなるという問題があった・ さらに、セラミックス製の電解質保持体自身には柔軟性
が無いため、電解質を電池外部で含浸した場合、電池組
立時に各部材の自重が作用すると、クラックが発生する
という問題もあった。
The above-mentioned conventional technology involves joining ceramics and metals, and does not take into account the difference in coefficient of linear expansion between the two. In other words, when a ceramic with a small coefficient of linear expansion and a metal with a large coefficient of linear expansion are bonded, thermal stress is generated due to the difference in the coefficient of linear expansion when the temperature of the battery rises and falls, and as a result, the ceramic electrolyte retention There was a problem that cracks occurred in the battery, making it impossible to operate due to so-called gas cross leak, which is a mixture of fuel gas and oxidizing gas.Furthermore, since the ceramic electrolyte holder itself is not flexible, it is difficult to store the electrolyte outside the battery. In the case of impregnation, there is also the problem that cracks occur when the weight of each member is applied during battery assembly.

本発明の目的は、燃料電池の高出力化及び高性能化に好
適な、高強度で柔軟性のある電解質保持体及びその製造
方法を提供することにある。
An object of the present invention is to provide a high-strength and flexible electrolyte holder suitable for increasing the output and performance of fuel cells, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、炭酸塩電解質を保持し多孔質金属板からな
る電解質保持体と、少なくとも一方の該電解質保持体面
と接触する電気絶縁性を有する電気絶縁体と、該電気絶
縁体又は前記電解質保持体を挾持し電池反応によって発
生する起電力を取り出す一対の電極と、該電極へ供給す
るガスの流路を有すると共に該流路と平行な端部で前記
電解質保持体又は前記電気絶縁体と当接し前記電解質保
持体と前記電気#4AS体と前記電極とからなる単位電
池を直列に接続するセパレータとを有し、前記多孔質金
属板に炭酸塩電解質を含浸させた後電極及びセパレータ
で挾持する燃料電池の製造方法を提供することにより達
成される。
The above object is to provide an electrolyte holder that holds a carbonate electrolyte and is made of a porous metal plate, an electrical insulator having electrical insulation properties that is in contact with at least one surface of the electrolyte holder, and the electrical insulator or the electrolyte holder. It has a pair of electrodes that sandwich the battery and take out the electromotive force generated by the battery reaction, and a flow path for gas to be supplied to the electrodes, and is in contact with the electrolyte holder or the electrical insulator at an end parallel to the flow path. A fuel comprising the electrolyte holder, a separator that connects in series a unit cell consisting of the electric #4AS body and the electrode, and the porous metal plate is impregnated with a carbonate electrolyte and then sandwiched between the electrodes and the separator. This is achieved by providing a method for manufacturing a battery.

〔作用〕[Effect]

電解質保持体に多孔質金属板を用いると機械的強度が高
く、柔軟性があるので、炭酸塩電解質を電解質保持体に
含浸させ電池に組み込んだ際各部材の自重が作用した場
合も、さらに電池の昇温・降温時に熱応力が作用した場
合もクラックが発生することがない。その結果燃料ガス
と酸化ガスが混合の上燃焼して電池を損傷することがな
い。
When a porous metal plate is used as an electrolyte holder, it has high mechanical strength and flexibility, so even if the weight of each member is applied when the electrolyte holder is impregnated with carbonate electrolyte and assembled into a battery, the battery will Cracks do not occur even when thermal stress is applied when the temperature rises or falls. As a result, the fuel gas and oxidizing gas do not mix and burn and damage the battery.

更に電解質保持体は金属のため、電気伝導性を示すので
多孔質の電気絶縁層を周りに別途設ける必要があるが、
ガスのシール性は必要ないので電気絶縁層にクラックが
発生しても電池を損傷することがない。
Furthermore, since the electrolyte holder is a metal, it exhibits electrical conductivity, so it is necessary to separately provide a porous electrically insulating layer around it.
Gas sealing is not required, so even if cracks occur in the electrical insulation layer, the battery will not be damaged.

〔実施例〕〔Example〕

以下、本発明の実施例を図面等を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings and the like.

実施例1 本発明の電解質保持体を用いた燃料電池の構成を第1図
に示す。
Example 1 The structure of a fuel cell using the electrolyte holder of the present invention is shown in FIG.

金属多孔質板からなる電解質保持体1を中央に挾んで2
枚の電気絶縁板7及びアノード2及びカソード3によっ
て単位電池が構成され、その単位電池が、ガス流路を有
するセパレータ4を介して積層される。
An electrolyte holder 1 made of a porous metal plate is sandwiched in the center.
A unit battery is constituted by the electrically insulating plates 7, the anode 2, and the cathode 3, and the unit batteries are stacked with a separator 4 interposed therebetween having a gas flow path.

ここで電解質保持体1は平均粒径0.1〜10μmのN
i粉末に、水及びカルボキシメチルセルロースを加えて
混練し、真空脱泡して得たスラリーを、ドクターブレー
ド法で成板し、還元雰囲気で600〜1300”Cの温
度で焼成して得た厚さが約1mm (従来の約半分)平
均細孔径が、0.1〜1.0μm、気孔率が30〜70
%のニッケル多孔質板である。尚、成板化する方法とし
ては、Ni粉末をホットプレス法で加圧、焼結させる方
法を用いても良い。
Here, the electrolyte holder 1 is N with an average particle size of 0.1 to 10 μm.
Thickness obtained by adding water and carboxymethylcellulose to i powder, kneading it, vacuum defoaming, forming the obtained slurry into a plate using the doctor blade method, and firing it at a temperature of 600 to 1300"C in a reducing atmosphere. is about 1 mm (about half of conventional), average pore diameter is 0.1 to 1.0 μm, and porosity is 30 to 70.
% nickel porous plate. Note that, as a method for forming the plate, a method may be used in which Ni powder is pressed and sintered using a hot press method.

この金属粉末原料は、溶融炭酸塩に対して耐食性の良好
な材料であれば良くニッケルの他に、ステンレス鋼、ス
テンレス鋼にアルミニウムやイツトリウムを添加したも
の、銅、ニッケルクロム鋼等が使用できる。また、これ
らの粉末だけではなく、金R*維を混合するとさらに強
度が高くなり良好な電解質保持体を得ることができる。
The metal powder raw material may be any material that has good corrosion resistance against molten carbonate, and in addition to nickel, stainless steel, stainless steel with aluminum or yttrium added, copper, nickel-chromium steel, etc. can be used. Furthermore, if gold R* fibers are mixed in addition to these powders, the strength will further increase and a good electrolyte holder can be obtained.

さらに、金属の焼結体だけでは、電池の締付面圧による
クリープ変形が大きいため、それを防止する目的で、L
iARO2,MgO,La20.。
Furthermore, since the metal sintered body alone is subject to large creep deformation due to the clamping surface pressure of the battery, in order to prevent this, L
iARO2, MgO, La20. .

ZrO2,Cr、O,等の金属酸化物を1〜20 at
om%添加する方が好ましい。
1 to 20 at of metal oxides such as ZrO2, Cr, O, etc.
It is preferable to add om%.

電気絶縁板7は、平均粒径1〜2μmのりチウムアルミ
ネートの粉末とアルミナ繊維の混合物にトリクロロエチ
レン、・テトラクロロエチレン、ブチルアルコールの3
つを混合した溶剤と、ポリビニルブチラール及びブチル
フタリルグリコール酸ブチルを混合したものを、ボール
ミルで混棟後真空脱治して得たスラリーを、ドクターブ
レード法で成板化して作成した。この電気IIA縁板7
は生テープ(グリーンシート)のまま電池に組み込み、
電池の昇温過程でグリーンシート中のバインダー等が飛
散し最終的にセラミックスの多孔質板となる。
The electrical insulating board 7 is made of a mixture of lithium aluminate powder with an average particle size of 1 to 2 μm and alumina fibers, trichlorethylene, tetrachloroethylene, and butyl alcohol.
A slurry obtained by mixing a mixture of a solvent, polyvinyl butyral, and butyl phthalyl glycolate in a ball mill and vacuum decuring was formed into a plate using a doctor blade method. This electric IIA edge plate 7
Incorporate the raw tape (green sheet) into the battery.
As the temperature of the battery rises, the binder and other substances in the green sheet scatter, eventually forming a porous ceramic plate.

この電気絶縁板7の細孔を通して、電極(アノード2及
びカソード3)と電解質保持体1の間が電解質で連通し
、電池反応を行うことになる。本実施例の電気絶縁板7
は厚さが約0.2mm細孔径・が約1μmであった。こ
の電気絶縁板7は、セラミック製で割れやすいものであ
るが、たとえクラックが発生しても、電解質保持体1は
クラックが発生する心配がないので、クロスリークの心
配がない、またこの電気絶縁板7に使用できる材質は、
電解質に対して安定で電気抵抗の高い各種金属の酸化物
、窒化物等が使用できる。
Through the pores of the electrically insulating plate 7, the electrodes (anode 2 and cathode 3) and the electrolyte holder 1 are communicated with the electrolyte, and a battery reaction occurs. Electrical insulation board 7 of this embodiment
The thickness was about 0.2 mm and the pore diameter was about 1 μm. This electric insulating plate 7 is made of ceramic and is easily broken, but even if cracks occur, the electrolyte holder 1 does not have to worry about cracks, so there is no risk of cross leakage. The materials that can be used for plate 7 are:
Various metal oxides, nitrides, etc. that are stable to the electrolyte and have high electrical resistance can be used.

さらに1本実施例では電気絶縁板7を、電解質保持体1
の上下面両方に設けているが、どちらか片方だけでも良
い。
Furthermore, in this embodiment, the electrical insulating plate 7 is
Although it is provided on both the upper and lower surfaces of the , it is also possible to use only one of them.

前記多孔質金属からなる電解質保持体1に電解質を含浸
する方法としては、一般的に溶融炭酸塩型燃料電池の電
解質として用いられている混合炭酸塩(炭酸リチウム6
2モル%、炭酸カリウム38モル%)を、電解質保持体
の細孔容積に相当する量だけ電解質保持体1の表面に塗
布し、電気炉で混合炭酸塩の融点(約490℃)以上に
加熱し溶融した炭酸塩を電解質保持体1の細孔内に含浸
するいわゆる外部含浸法を用いた。
As a method for impregnating the electrolyte holder 1 made of porous metal with an electrolyte, a mixed carbonate (lithium carbonate 6
2 mol%, potassium carbonate 38 mol%) is applied to the surface of the electrolyte holder 1 in an amount corresponding to the pore volume of the electrolyte holder, and heated to the melting point of the mixed carbonate (approximately 490°C) or higher in an electric furnace. A so-called external impregnation method was used in which the pores of the electrolyte holder 1 were impregnated with molten carbonate.

電解質保持体1に炭酸塩を含浸した後、電極及びセパレ
ータで挾持した。
After the electrolyte holder 1 was impregnated with carbonate, it was held between electrodes and separators.

本発明の電解質保持体1は、外部含浸しても組立時にク
ラックを生じることがなく良好な状態を保っているとと
もに、昇温中の電池高さの収縮もほとんど見られなくな
った。また性能的には、負荷電流密度150 m A 
/ c rriにおける単位電池電圧が約5%上昇した
The electrolyte holder 1 of the present invention maintains a good condition without cracking during assembly even when externally impregnated, and almost no shrinkage in battery height is observed during temperature rise. In terms of performance, the load current density is 150 mA.
The unit cell voltage at /c rri increased by about 5%.

実施例2 本実施例の電解質保持体の構造を第2a図、第2b図に
示す電解質保持体1は、多孔質金属板8及び芯材9より
構成される。
Example 2 An electrolyte holder 1 whose structure is shown in FIGS. 2a and 2b of this example is composed of a porous metal plate 8 and a core material 9.

この芯材9には、ニッケル製の線径0.2mm。This core material 9 is made of nickel and has a diameter of 0.2 mm.

40メツシユ金網を、ロールプレスして平坦化したもの
を使用した。この芯材9の表面に、実施例1と同様のニ
ッケル粉末に水及びカルボキシメチルセルロースを加え
て混線後真空脱泡したスラリーを添着後、焼成し製作し
た。本実施例によれば、芯材9の作用により、電解質保
持体1の機械的強度がより高くなる効果がある。
A 40-mesh wire mesh that had been flattened by roll pressing was used. A slurry obtained by adding water and carboxymethylcellulose to the same nickel powder as in Example 1 and degassing it under vacuum was applied to the surface of this core material 9, and then it was fired and produced. According to this embodiment, the effect of the action of the core material 9 is to further increase the mechanical strength of the electrolyte holder 1.

尚、芯材として金網以外にエキスパンドメタルを用いて
も良い。また、本実施例では、多孔質金属板8の内部に
芯材9を設けているが、多孔質金属板8の表面に設けて
も同様の効果がある。
Note that expanded metal may be used as the core material instead of wire mesh. Further, in this embodiment, the core material 9 is provided inside the porous metal plate 8, but the same effect can be obtained even if the core material 9 is provided on the surface of the porous metal plate 8.

この多孔質金属板8と芯材9の材質は、実施例1と同様
に、耐食性の良い各種金属が利用できるが、線膨脹係数
に差がない方が熱応力が小さくなり好ましい。
As the material for the porous metal plate 8 and the core material 9, various metals with good corrosion resistance can be used, as in the first embodiment, but it is preferable that there is no difference in linear expansion coefficient, since thermal stress will be reduced.

実施例3 本実施例の電解質保持体を用いた電池の構成を第3図に
示す。
Example 3 The structure of a battery using the electrolyte holder of this example is shown in FIG.

本実施例では、電解質保持体1は、多孔質金属板8の表
面に、電気絶縁層10を設けた構成となっている。
In this embodiment, the electrolyte holder 1 has a structure in which an electrical insulating layer 10 is provided on the surface of a porous metal plate 8.

まず、実施例1で示した製法で多孔質金属板8を作成し
た。次に、その多孔質金属板8の表面に、アルミナを溶
射して約0.1mmの厚さの電気絶縁層10を形成した
First, a porous metal plate 8 was created using the manufacturing method shown in Example 1. Next, alumina was sprayed onto the surface of the porous metal plate 8 to form an electrically insulating layer 10 with a thickness of about 0.1 mm.

この電気絶nre1oは、アルミナのままで使用可能で
あるが、電池内部で電解質と反応してリチウムアルミネ
ートとなり、電解質を消費することから、事前に水酸化
リチウムを用いてリチウム化処理を行った。
This electrical isolation nre1o can be used as alumina, but it reacts with the electrolyte inside the battery to become lithium aluminate and consumes the electrolyte, so it was previously lithiated using lithium hydroxide. .

本実施例の電気絶縁層10の材質は、実施例1に示した
電気絶縁板と同様に、電解質に対して安定な各種金属の
酸化物及び窒化物で構成できる。
The material of the electrical insulating layer 10 of this embodiment can be made of oxides and nitrides of various metals that are stable with respect to the electrolyte, similar to the electrical insulating plate shown in the first embodiment.

また、全屈自体を溶射してその後酸化させて形成する方
法でも可能である。
Alternatively, it is also possible to form the film by thermally spraying the entire bend itself and then oxidizing it.

また第3図では、多孔質金属板8の両面に電気#!tA
9層を設けているが、片面のみでもかまわない。
In addition, in FIG. 3, electricity #! is applied to both sides of the porous metal plate 8. tA
Although nine layers are provided, only one side may be used.

実施例3は、電気絶縁層10が、多孔質金属板8と一体
となっていることから実施例1と比べて部品点数が少な
くなり1組立てが容易となるとともに、電気絶縁層10
を10μm程度まで薄くすることができ、積!ffi池
のコンパクト化及び、電池内部抵抗の低減の効果もある
In the third embodiment, since the electrical insulating layer 10 is integrated with the porous metal plate 8, the number of parts is reduced compared to the first embodiment, making assembly easier.
can be made as thin as about 10μm, and the product! This also has the effect of making the FFI pond more compact and reducing the internal resistance of the battery.

実施例4 本実施例の電池構造を第4図に示す。Example 4 FIG. 4 shows the battery structure of this example.

セペレータ4及び電極(アノード2.カソード3)の電
解質保持体1に接する部分に電気絶縁層10を設けてい
る。
An electrical insulating layer 10 is provided at the portions of the separator 4 and the electrodes (anode 2, cathode 3) that are in contact with the electrolyte holder 1.

アノード2及びカソード3に設けた電気絶縁層10は、
電解質を連通ずる必要があることから、多孔質でなけれ
ばならない。そのため、実施例3で述べたと同様に、ア
ルミナを溶射して成形した。
The electrical insulating layer 10 provided on the anode 2 and cathode 3 is
Since it is necessary to communicate the electrolyte, it must be porous. Therefore, in the same manner as described in Example 3, alumina was sprayed and molded.

一方、セパレータ4に設けた電気絶縁層10は。On the other hand, the electrical insulating layer 10 provided on the separator 4.

多孔質でなくても良いため、セパレータ表面にアルミニ
ウムを拡散させ、その後酸化させて成形したが、アルミ
ニウムをメッキして酸化させる方法でも良い。
Since it does not need to be porous, aluminum was diffused onto the surface of the separator and then oxidized to form the separator, but a method in which aluminum is plated and then oxidized may also be used.

本実施例によれば、セパレータ4の電気1IAS層を緻
密にできるので、セパレータ4が直接電解質に接するこ
とがなく、セパレータ4の耐食性が向上するという効果
がある。
According to this embodiment, since the electric IAS layer of the separator 4 can be made dense, the separator 4 does not come into direct contact with the electrolyte, and the corrosion resistance of the separator 4 is improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電解質保持体に多孔質金属板を用いる
と機械的強度が高く、柔軟性があるので電解質保持体に
クラックが発生しなくなり電池の信頼性及び耐久性が向
上する効果がある。
According to the present invention, when a porous metal plate is used as an electrolyte holder, it has high mechanical strength and flexibility, so that cracks do not occur in the electrolyte holder, and the reliability and durability of the battery are improved. .

また、電解質の外部含浸が可能となることがら昇温過程
における電池の収縮を防止でき高層化が可能となるので
、高出力を得られる効果がある。
In addition, since it is possible to externally impregnate the electrolyte, shrinkage of the battery during the temperature rising process can be prevented, and the structure can be made high-rise, which has the effect of obtaining high output.

更に、電解質保持体を薄く出来るのでイオン伝導抵抗の
低減により発電効率が向上する高性能化の効果がある。
Furthermore, since the electrolyte holder can be made thinner, the ionic conduction resistance can be reduced, resulting in improved power generation efficiency and higher performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の電池の縦断面図、第2a図
は本発明の実施例2の電解質保持体の平面図、第2b図
は第2a図の縦断面図、第3図は本発明の実施例3の電
池の縦断面図、第4図は本発明の実施例4の電池の縦断
面図、第5図は従来の電池斜視図であ、る。 1・・・電解質保持体、 2・・・アノード、3・・・
カソード、    4・・・セパレータ、5・・・燃料
ガス流路、 6・・・酸化剤ガス流路、7・・・電気絶
縁板、  8・・・多孔質金属板。 9・・・芯材、 10・・・電気絶縁層。
FIG. 1 is a vertical cross-sectional view of a battery according to Example 1 of the present invention, FIG. 2a is a plan view of an electrolyte holder according to Example 2 of the present invention, FIG. 2b is a vertical cross-sectional view of FIG. 2a, and FIG. FIG. 4 is a vertical cross-sectional view of a battery according to Example 4 of the present invention, and FIG. 5 is a perspective view of a conventional battery. 1... Electrolyte holder, 2... Anode, 3...
Cathode, 4... Separator, 5... Fuel gas channel, 6... Oxidizing gas channel, 7... Electrical insulating plate, 8... Porous metal plate. 9... Core material, 10... Electrical insulation layer.

Claims (1)

【特許請求の範囲】 1、炭酸塩電解質を保持し多孔質金属板からなる電解質
保持体と、少なくとも一方の該電解質保持体面と接触す
る電気絶縁性を有する電気絶縁体と、該電気絶縁体又は
前記電解質保持体を挾持し電池反応によって発生する起
電力を取り出す一対の電極と、該電極へ供給するガスの
流路を有すると共に該流路と平行な端部で前記電解質保
持体又は前記電気絶縁体と当接し前記電解質保持体と前
記電気絶縁体と前記電極とからなる単位電池を直列に接
続するセパレータとを、有することを特徴とする燃料電
池。 2、前記多孔質金属板の平均細孔径が0.1〜1.0μ
m、気孔率が30〜70%である請求項1に記載の燃料
電池。 3、前記多孔質金属板がNi、Cr、Cu、Fe、Al
、Yの少なくとも1種類以上を含む請求項1に記載の燃
料電池。 4、前記多孔質金属板に金属酸化物を添加した請求項1
に記載の燃料電池。 5、前記多孔質金属板の表面若しくは内部に電気絶縁層
を設けた請求項1に記載の燃料電池。 6、前記多孔質金属板の表面若しくは内部に前記多孔質
金属板と線膨脹係数のほぼ等しい金属からなるメッシュ
又はエキスパンドメタルを設けた請求項1に記載の燃料
電池。 7、前記電気絶縁体が金属酸化物若しくは金属窒化物の
多孔質体である請求項1に記載の燃料電池 8、前記電極の電解質保持体と接する面に電気絶縁層を
設けた請求項1に記載の燃料電池。 9、前記セパレータの電解質保持体と接する面に電気絶
縁層を設けた請求項1に記載の燃料電池。 10、前記電気絶縁層が金属酸化物若しくは金属窒化物
を溶射して形成したものである請求項8又は請求項9に
記載の燃料電池。 11、前記電気絶縁層が金属を溶射、拡散、若しくはメ
ッキした後酸化して形成したものである請求項8又は請
求項9に記載の燃料電池。 12、炭酸塩電解質を保持する電解質保持体を挾持して
対向する電気絶縁体と電極からなる単位電池をガス流路
を有するセパレータを介して複数個積層して製造する燃
料電池の製造方法において、前記電解質保持体を平均粒
径0.1〜10μmの金属粉末若しくは該金属粉末と金
属繊維の混合物に、溶剤及びバインダを加えて混練して
得たスラリを成板化し、前記金属の融点以下で焼成する
ことを特徴とする燃料電池の製造方法。 13、炭酸塩電解質を保持する電解質保持体を挾持して
対向する電気絶縁体と電極からなる単位電池をガス流路
を有するセパレータを介して複数個積層して製造する燃
料電池の製造方法において、前記電解質保持体を平均粒
径0.1〜10μmの金属粉末若しくは該金属粉末と金
属繊維の混合物をホットプレスにより成板化することを
特徴とする燃料電池の製造方法。 14、炭酸塩電解質を保持する多孔質金属板からなる電
解質保持体を挾持して対向する電気絶縁体と電極からな
る単位電池をガス流路を有するセパレータを介して複数
個積層して製造する燃料電池の製造方法において、前記
多孔質金属板に炭酸塩電解質を含浸させた後電極及びセ
パレータで挾持する燃料電池の製造方法。
[Scope of Claims] 1. An electrolyte holder that holds a carbonate electrolyte and is made of a porous metal plate, an electrical insulator having electrical insulation properties that is in contact with at least one surface of the electrolyte holder, and the electrical insulator or A pair of electrodes that sandwich the electrolyte holder and take out the electromotive force generated by the battery reaction, and a flow path for gas to be supplied to the electrodes, and an end parallel to the flow path of the electrolyte holder or the electrical insulator. 1. A fuel cell comprising: a separator that contacts a body and connects in series a unit cell consisting of the electrolyte holder, the electric insulator, and the electrode. 2. The average pore diameter of the porous metal plate is 0.1 to 1.0μ
The fuel cell according to claim 1, wherein the fuel cell has a porosity of 30 to 70%. 3. The porous metal plate is made of Ni, Cr, Cu, Fe, Al.
, Y. The fuel cell according to claim 1, comprising at least one type of ,Y. 4. Claim 1, wherein a metal oxide is added to the porous metal plate.
The fuel cell described in . 5. The fuel cell according to claim 1, further comprising an electrically insulating layer provided on or inside the porous metal plate. 6. The fuel cell according to claim 1, further comprising a mesh or expanded metal made of a metal having substantially the same linear expansion coefficient as the porous metal plate on the surface or inside of the porous metal plate. 7. The fuel cell according to claim 1, wherein the electrical insulator is a porous body of metal oxide or metal nitride. The fuel cell described. 9. The fuel cell according to claim 1, wherein an electrically insulating layer is provided on the surface of the separator that comes into contact with the electrolyte holder. 10. The fuel cell according to claim 8 or 9, wherein the electrical insulating layer is formed by spraying a metal oxide or a metal nitride. 11. The fuel cell according to claim 8 or 9, wherein the electrical insulating layer is formed by spraying, diffusing, or plating a metal and then oxidizing it. 12. A fuel cell manufacturing method in which a plurality of unit cells each consisting of an electric insulator and an electrode facing each other while sandwiching an electrolyte holder holding a carbonate electrolyte are stacked via a separator having a gas flow path, A slurry obtained by adding a solvent and a binder to a metal powder having an average particle size of 0.1 to 10 μm or a mixture of the metal powder and metal fibers and kneading the electrolyte holder is formed into a plate, and the slurry is kneaded at a temperature below the melting point of the metal. A method for manufacturing a fuel cell, which comprises firing. 13. A fuel cell manufacturing method in which a plurality of unit cells each consisting of an electric insulator and an electrode facing each other while sandwiching an electrolyte holding body holding a carbonate electrolyte are stacked via a separator having a gas flow path, A method for manufacturing a fuel cell, characterized in that the electrolyte holder is formed into a plate by hot pressing a metal powder having an average particle size of 0.1 to 10 μm or a mixture of the metal powder and metal fibers. 14. A fuel produced by stacking a plurality of unit cells, each consisting of an electrical insulator and an electrode facing each other with an electrolyte holding body made of a porous metal plate holding a carbonate electrolyte interposed therebetween, with a separator having a gas flow path interposed therebetween. A method for manufacturing a fuel cell, wherein the porous metal plate is impregnated with a carbonate electrolyte and then sandwiched between electrodes and a separator.
JP63315547A 1988-12-14 1988-12-14 Fuel cell and manufacture thereof Pending JPH02162655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315547A JPH02162655A (en) 1988-12-14 1988-12-14 Fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315547A JPH02162655A (en) 1988-12-14 1988-12-14 Fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02162655A true JPH02162655A (en) 1990-06-22

Family

ID=18066657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315547A Pending JPH02162655A (en) 1988-12-14 1988-12-14 Fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02162655A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124164A (en) * 1984-07-13 1986-02-01 Mitsubishi Electric Corp Electrolyte supporter of fused carbonate type fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124164A (en) * 1984-07-13 1986-02-01 Mitsubishi Electric Corp Electrolyte supporter of fused carbonate type fuel cell

Similar Documents

Publication Publication Date Title
KR100889266B1 (en) The combination structure of solid oxide fuel cell between electrode and interconnect
JP5356624B1 (en) A joined body in which the power generation parts of a solid oxide fuel cell are electrically connected
KR20080033153A (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
WO2018096971A1 (en) Method for manufacturing fuel cell and fuel cell
WO2012086420A1 (en) Junction for electrically connecting power generation units of solid oxide fuel cell
JP2019185883A (en) Fuel cell
JP3456378B2 (en) Solid oxide fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JP2000048831A (en) Solid electrolyte fuel cell
JP2004265734A (en) Fuel battery cell
JPH10172590A (en) Solid electrolyte type fuel cell
JP6472842B2 (en) Method for joining solid electrolyte layer and electrode, and method for producing fuel cell
JP5920880B2 (en) Mounting structure of stacked solid oxide fuel cell
KR101857747B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell and cell for a metal-supported solid oxide fuel cell
KR102114627B1 (en) Fuel cell power generation unit and fuel cell stack
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JP3113347B2 (en) Solid oxide fuel cell
JPH02162655A (en) Fuel cell and manufacture thereof
JP4932965B1 (en) A joined body for electrically connecting the power generation parts of a solid oxide fuel cell
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JP4513396B2 (en) Solid oxide fuel cell
JPH0696779A (en) Solid electrolytic fuel cell
JP2019009083A (en) Electrochemical reaction single cell and electrochemical reaction cell stack
EP1735864B1 (en) Electrolyte electrode assembly and method of producing the same