JPH02158133A - Formation of aluminum electrode wiring - Google Patents

Formation of aluminum electrode wiring

Info

Publication number
JPH02158133A
JPH02158133A JP31208788A JP31208788A JPH02158133A JP H02158133 A JPH02158133 A JP H02158133A JP 31208788 A JP31208788 A JP 31208788A JP 31208788 A JP31208788 A JP 31208788A JP H02158133 A JPH02158133 A JP H02158133A
Authority
JP
Japan
Prior art keywords
film
substrate
electrode wiring
laser beams
aluminum electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31208788A
Other languages
Japanese (ja)
Inventor
Shoji Madokoro
間所 昭次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP31208788A priority Critical patent/JPH02158133A/en
Publication of JPH02158133A publication Critical patent/JPH02158133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make aluminum electrode wiring whose absorption efficiency to laser beams is great by applying ultraviolet-ray laser to an aluminum film, which is covered with a reflection preventive film, on a substrate while heating the substrate inside a vacuum chamber. CONSTITUTION:After forming a transistor, a capacitor, etc., on an Si substrate 1, a contact hole 3 is opened at the specified position of an insulating film 2 as an taking-out port of an electrode. Next, an Al-1.5% Si film 4 is accumulated by the sputtering method, subsequently a Zn film 11 is deposited as a reflection preventive film. And in the conditions where the substrate is put in a vacuum chamber and is heated, ArF excimer laser beams 12 are applied. The reflectance of Zn to laser beams is low enough, and irradiation efficiency to the Al-1.5% Si film 4 becomes high, and since it is heated the Al film 4 flows at small energy density, therefore a flattened AL-1.5% Si film 4' can be obtained. Thereafter, an Al pattern film 4'' is formed using a resist having a die within, and thereon a passivation film 13 is deposited. Hereby, Al electrode wiring, whose absorption efficiency with respect to laser beams is large, can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はLSIにおけるアルミニウム(AI)電極配線
の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming aluminum (AI) electrode wiring in an LSI.

(従来の技術) 従来、このような分野の技術としては、以下にに示され
るものがあつた。
(Prior Art) Conventionally, there have been technologies in this field as shown below.

近年、LSIの高集積化に伴い、コンタクトサイズも微
細化されてきているため、従来のスパッタ堆積法では、
金属膜を段差被覆性(ステップカバレッジ)が良好にな
るように被覆することは困難になってきた。そのために
、段差被覆性が良い成膜技術や金属埋め込み技術の開発
が課題になってきている。
In recent years, with the increasing integration of LSIs, the contact size has also become smaller, so conventional sputter deposition methods
It has become difficult to coat metal films with good step coverage. Therefore, the development of film formation technology and metal embedding technology that provide good step coverage has become an issue.

その中の一つに、レーザ照射によりAI膜を流動させる
Aル−ザフロー技術がある。
One of them is the A-user-flow technique, in which an AI film is made to flow by laser irradiation.

第2図はこの技術を用いた従来のアルミニウムの電極配
線の形成工程断面図である。
FIG. 2 is a cross-sectional view of a conventional aluminum electrode wiring formation process using this technique.

まず、Sl基板1上にトランジスタ、キャパシタ等を形
成した後(図示なし)、電極取出口として絶縁膜2の所
定箇所にコンタクトホール3を開孔する。
First, after transistors, capacitors, etc. are formed on the Sl substrate 1 (not shown), a contact hole 3 is opened at a predetermined location in the insulating film 2 as an electrode outlet.

次に、スパッタ法で、/M!−1,5%S 1llQ4
を1.0μmの厚さに、続いて、アモルファスS1膜5
を500人の厚さに堆積させる。
Next, by sputtering, /M! -1,5%S 1llQ4
to a thickness of 1.0 μm, and then an amorphous S1 film 5
Deposit to a thickness of 500 people.

そして、この半導体ウェハにXeC1のエキシマレーザ
ビーム6を照射する(第2図(a)参照〕。
Then, this semiconductor wafer is irradiated with an excimer laser beam 6 of XeC1 (see FIG. 2(a)).

この場合の照射条件としては、半導体ウェハをスキャン
させなからレーザエネルギー密度2.4〜3.3J/−
で行う、このレーザ照射により局部的にAJ−1,5%
31114が加熱され、それが段差の低いコンタクトホ
ール3に流れ込んで、Al−1,5%si膜4′は平坦
な形状となる(第2図(b)参照)。
In this case, the irradiation conditions are such that the semiconductor wafer is not scanned and the laser energy density is 2.4 to 3.3 J/-.
This laser irradiation locally causes AJ-1.5%
31114 is heated and flows into the contact hole 3 with a low step, so that the Al-1,5% Si film 4' becomes flat (see FIG. 2(b)).

次いで、Alフォトリソ及びエツチング工程によりAj
−1,5冗Sl膜4′をパターニングし、Ajパターン
l!4”を得た後、反射防止膜のアモルファスS i膜
5 ’を除去する。その後、AIシンタを行い、最後に
、バンシベーシロン膜7を堆積させてデバイスを完成さ
せる〔第2図(c)参照〕。
Then, Aj is formed by Al photolithography and etching process.
- Pattern the 1,5-layer Sl film 4' to form an Aj pattern l! 4", the amorphous Si film 5' of the anti-reflection film is removed. Then, AI sintering is performed, and finally, the Vansibasilon film 7 is deposited to complete the device [see FIG. 2(c)] ].

(発明が解決しようとする1Ia) しかしながら、以上述べた方法では、反射防止膜として
のアモルファスStのレーザ光に対する吸収効果が小さ
いため、Aj!、149への照射効率も低くなり、Aj
liを流動させるのに必要なレーザエネルギー密度が高
くなってしまう、このように、照射するレーザのエネル
ギー密度が高いと、ビーム重なり領域でのAjliのダ
メージが大きくなり、亀裂が入ったり、溶融・蒸発して
穴があいたりする致命的な欠陥を生じる。更に、アモル
ファスSlがAj+と反応し、以後の工程で完全に除去
できなくなり、Al配線のマイグレーション寿命を低下
させるという問題もあった。
(1Ia to be Solved by the Invention) However, in the method described above, since the absorption effect of amorphous St as an antireflection film for laser light is small, Aj! , 149 is also lowered, and Aj
The laser energy density required to flow the li becomes high.If the energy density of the irradiated laser is high, the damage to the li in the beam overlap region will increase, causing cracks, melting, and Evaporation causes holes and other fatal defects. Furthermore, there is also the problem that the amorphous Sl reacts with Aj+ and cannot be completely removed in subsequent steps, reducing the migration life of the Al wiring.

本発明は、以上述べた反射防止膜のレーザ光に対する吸
収効果が小さいという問題点と、照射後に反射防止膜が
除去できなくなるという問題点を除去するために、レー
ザ光に対する吸収効果が大きく、かつ、除去工程が不要
な反射防止膜を用いたアルミニウム電極配線の形成方法
を提供することを目的とする。
In order to solve the above-mentioned problems that the anti-reflection film has a small absorption effect on laser light and the problem that the anti-reflection film cannot be removed after irradiation, the present invention has been developed to have a large absorption effect on laser light and An object of the present invention is to provide a method for forming an aluminum electrode wiring using an antireflection film that does not require a removal process.

(Ll!題を解決するための手段) 本発明は、上記問題点を解決するために、アルミニウム
電極配線の形成方法において、真空チャンバ内で基板を
加熱しながら、該基板上の反射防止膜で覆われたアルミ
ニウム膜に紫外光レーザを照射するようにしたものであ
る。
(Means for Solving Problem Ll!) In order to solve the above-mentioned problems, the present invention provides a method for forming aluminum electrode wiring, in which an anti-reflection film on the substrate is heated while the substrate is heated in a vacuum chamber. The covered aluminum film is irradiated with an ultraviolet laser.

(作用) 本発明によれば、基板上に形成されるAJMを反射防止
膜として亜鉛(Zn)膜で覆い、チャンバ内にセットす
る。゛そこで、レーザフローv装置として、従来のもの
より短波長のArFエキシマレーザ光源(波長λ: 1
930人)を用い、チャンバを10−’Torr以下に
真空排気しておき、基板の加熱を300〜350℃に保
持しながらアルミニウム電極配線の形成を行う。
(Function) According to the present invention, the AJM formed on the substrate is covered with a zinc (Zn) film as an antireflection film and set in a chamber.゛Therefore, as a laser flow v device, we used an ArF excimer laser light source with a shorter wavelength than the conventional one (wavelength λ: 1
930 people), the chamber was evacuated to 10-' Torr or less, and aluminum electrode wiring was formed while heating the substrate at 300 to 350°C.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例を示すアルミニウム電極配線の
形成工程断面図である。
FIG. 1 is a cross-sectional view of an aluminum electrode wiring forming process showing an embodiment of the present invention.

まず、Sl基板1上にトランジスタ、キャパシタなどを
形成した後(図示なし) 、ttfl取出口として絶縁
膜2の所定箇所にコンタクトホール3を開孔する。
First, after transistors, capacitors, etc. are formed on the Sl substrate 1 (not shown), a contact hole 3 is opened at a predetermined location in the insulating film 2 as a ttfl extraction port.

次に、スパッタ法で、717−1.5%si膜4を1.
0μmの厚さに堆積し、続いて、スパッタ法で反射防止
膜としてZn膜11を700人の厚さに堆積する。
Next, a 717-1.5% Si film 4 was deposited using a sputtering method.
The Zn film 11 is deposited to a thickness of 0 μm, and then a Zn film 11 is deposited to a thickness of 700 μm as an antireflection film by sputtering.

そして、基板を5 X 10−”Torrの真空チtン
バに入れ、それを300℃に加熱した状態で、ArFエ
キシマレーザビーム12を2J/cdのエネルギー密度
で照射する〔第1図(a)参照〕。
Then, the substrate was placed in a vacuum chamber of 5 x 10-'' Torr, heated to 300°C, and irradiated with an ArF excimer laser beam 12 at an energy density of 2 J/cd [Figure 1 (a)] reference〕.

ここで、znのレーザ光に対する反射率は、波長257
3人の光に対して20%と十分低い、一方、従来のアモ
ルファスStの反射率は、波長2066人の光に対して
68%と高い。
Here, the reflectance of zn for laser light is at wavelength 257
The reflectance of conventional amorphous St is sufficiently low at 20% for the light of 3 people, while the reflectance of conventional amorphous St is as high as 68% for the light of 2066 people at a wavelength.

従って、Zn1llの場合、波長1930人のArFエ
キシマレーザビーム12のAl−1,5%S1膜4への
照射効率がアモルファスS 1li5に比ベテハるかに
高くなる。
Therefore, in the case of Zn1ll, the irradiation efficiency of the ArF excimer laser beam 12 with a wavelength of 1930 on the Al-1,5% S1 film 4 is much higher than that of amorphous S1li5.

よって、従来のアモルファスSlより小さいエネルギー
密度でもってjl膜4がフローし、平坦化されたAJ−
1,5%St膜4′を得ることができる〔第1図(b)
参照〕。
Therefore, the JL film 4 flows with a lower energy density than the conventional amorphous Sl, and the flattened AJ-
A 1.5% St film 4' can be obtained [Fig. 1(b)]
reference〕.

また、°この場合、基板1の加熱を行っているので、レ
ーザビーム12ニよ!、1−1.5M5la4のフロー
への低エネルギー化を図ることができる。
Also, in this case, since the substrate 1 is being heated, the laser beam 12! , 1-1.5M5la4 can be reduced in energy.

更に、Znは融点が419℃、沸点が907℃であり、
AIより低いのでレーザ照射後にはZn膜11は蒸発し
て排気され、除去のための工数を要しないという利点が
ある。
Furthermore, Zn has a melting point of 419°C and a boiling point of 907°C,
Since it is lower than AI, the Zn film 11 is evaporated and exhausted after laser irradiation, which has the advantage that no man-hours are required for removal.

その後、グイ (染料)入りレジストを用いて、従来と
同様にAIパターン84’を形成し、その上にパンシベ
ーシッンI!13を堆積させる〔第1図(c)参照)。
Thereafter, an AI pattern 84' is formed using a dye-containing resist in the same manner as before, and Pancibasin I! is applied thereon. 13 (see FIG. 1(c)).

第3図は本発明の他の実施例を示すアルミニウム電極配
線の形成工程断面図である。
FIG. 3 is a sectional view showing a process for forming aluminum electrode wiring according to another embodiment of the present invention.

まず、Sii仮1仮定上ランジスタ、キャパシタなどを
形成した後(図示なし)、電極取出口として絶縁膜2の
所定箇所にコンタクトホール3を開孔する。
First, after forming transistors, capacitors, etc. (not shown) on a Sii hypothetical basis, a contact hole 3 is opened at a predetermined location in the insulating film 2 as an electrode outlet.

次いで、スパッタ法で、オーミンクメタルとしてTi 
fl!114を500人形成し、その上に反応性スパッ
タ法で、バリアメタルとしてTI NB!15を100
(1人形成し、更にその上にAJ−1,5%31膜16
を1.0μmの厚さに堆積し、続いて、スパッタ法で反
射防止膜としてZn1i17を700人の厚さに堆積す
る。
Next, using a sputtering method, Ti was added as an ohmink metal.
Fl! 114 was formed, and TI NB! was applied as a barrier metal on top of it by reactive sputtering. 15 to 100
(One person formed, and then AJ-1,5%31 film 16
was deposited to a thickness of 1.0 μm, and then Zn1i17 was deposited to a thickness of 700 μm as an antireflection film by sputtering.

そして、基板を5 X 10− ”Torrの真空チャ
ンバに入れ、基板を300℃に加熱した状態で、ArF
エキシマレーザビーム12を2J/cdのエネルギー密
度で照射する〔第3図(a)参照】。
Then, the substrate was placed in a 5 x 10-” Torr vacuum chamber, and while the substrate was heated to 300°C, ArF
The excimer laser beam 12 is irradiated with an energy density of 2 J/cd [see FIG. 3(a)].

そこで、Al膜16がフローし、前記実施例と同様に平
坦化されたAj!−1,5%5ill16’を得ること
ができる〔第3図(b)参照〕。
Therefore, the Al film 16 flows, and Aj! is flattened as in the previous embodiment. -1.5% 5ill16' can be obtained [see Figure 3(b)].

その後、ダイ(染料)入りレジストを用いて、従来と同
様にAIパターン膜16′を形成し、その上にパンシベ
ーシコン膜18を堆積させる〔第3図(c)参照〕。
Thereafter, using a dye-containing resist, an AI pattern film 16' is formed as in the conventional method, and a pansibasicon film 18 is deposited thereon (see FIG. 3(c)).

このように、Ajtliの下にバリアメタルを敷いた配
線構造にすると、AJ膜のフロー温度が高い場合でも、
そのバリアメタルの存在により基板のダメージをより低
減できるという利点がある。
In this way, by creating a wiring structure in which a barrier metal is placed under Ajtli, even when the flow temperature of the AJ film is high,
The presence of the barrier metal has the advantage that damage to the substrate can be further reduced.

なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように、本発明によれば、反射防
止膜として、レーザ光の吸収効果の大きいZn1iを用
い、かつ基板の加熱も併用したので、低エネルギー密度
のレーザ照射でAJ膜がフローできる。従って、ビーム
重なり領域に対しても、過度のエネルギーによるAjl
膜のダメージの発生が回避できるだけでな(、レーザ出
力がそれ程大きくないレーザ光源でもビームサイズを大
きくできるので、ビームスキャン時間が短縮され、スル
ープントが向上するという利点がある。更に、反射防止
膜はレーザ照射後、特別な除去処理を施さなくても蒸発
してなくなるので、工程が簡略化され、Al電極配線の
信頼性の向上を図ることができる。
(Effects of the Invention) As described in detail above, according to the present invention, Zn1i, which has a large laser light absorption effect, is used as the antireflection film, and the substrate is also heated, so that the laser beam with low energy density can be used. Irradiation allows the AJ film to flow. Therefore, even for the beam overlap region, Ajl due to excessive energy
Not only can damage to the film be avoided (but also the beam size can be increased even with a laser light source whose laser output is not so high, the beam scanning time is shortened and throughput is improved. After laser irradiation, it evaporates and disappears without any special removal treatment, which simplifies the process and improves the reliability of the Al electrode wiring.

また、Ajlllの下にバリアメタルを敷いた配線構造
にすると、AJ膜のフロー温度が高い場合でも、そのバ
リアメタルの存在により基板のダメージをより低減させ
ることができる。
Furthermore, if a wiring structure is adopted in which a barrier metal is laid under the AJll, even if the flow temperature of the AJ film is high, damage to the substrate can be further reduced due to the presence of the barrier metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すアルミニウム電極配線の
形成工程断面図、第2図は従来のアルミニウム電極配線
の形成工程断面図、第3図は本発明の他の実施例を示す
アルミニウム電極配線の形成工程断面図である。 1・・・81基板、2・・・絶縁膜、3・・・コンタク
トホール、4.16・・・A j −1,5%S i膜
、11.17・・・亜鉛(Z n)膜、12・・・Ar
Fエキシマレーザビーム、13、18・・・バッジベー
ジリン膜、14・・・Ti151.15・・・Ti N
膜。 特許出願人 沖電気工業株式会社 代理人 弁理士  清 水  守(外1名)第 図 従来のAi2電躬電盃1項の形成工f1幻1iffi閏
第 2図
FIG. 1 is a sectional view of the process of forming an aluminum electrode wiring according to an embodiment of the present invention, FIG. 2 is a sectional view of the process of forming a conventional aluminum electrode wiring, and FIG. 3 is a sectional view of the process of forming an aluminum electrode wiring according to another embodiment of the present invention. FIG. 3 is a cross-sectional view of the wiring formation process. 1... 81 substrate, 2... insulating film, 3... contact hole, 4.16... A j -1,5% Si film, 11.17... zinc (Zn) film , 12...Ar
F excimer laser beam, 13, 18...Budgebage phosphorus film, 14...Ti151.15...TiN
film. Patent applicant Oki Electric Industry Co., Ltd. Agent Patent attorney Mamoru Shimizu (1 other person) Fig. 1 Forming process of conventional Ai2 electric cup 1 f1 phantom 1 iffi leap Fig. 2

Claims (3)

【特許請求の範囲】[Claims] (1)真空チャンバ内で基板を加熱しながら、該基板上
の反射防止膜で覆われたアルミニウム膜に紫外光レーザ
を照射し、基板平面部分を平坦化することを特徴とする
アルミニウム電極配線の形成方法。
(1) While heating the substrate in a vacuum chamber, an ultraviolet laser is irradiated onto an aluminum film covered with an anti-reflection film on the substrate to flatten the flat surface of the substrate. Formation method.
(2)前記反射防止膜は亜鉛膜であることを特徴とする
請求項1記載のアルミニウム電極配線の形成方法。
(2) The method for forming an aluminum electrode wiring according to claim 1, wherein the antireflection film is a zinc film.
(3)前記アルミニウム膜の下方にバリアメタル層を形
成してなる請求項1記載のアルミニウム電極配線の形成
方法。
(3) The method for forming an aluminum electrode wiring according to claim 1, wherein a barrier metal layer is formed below the aluminum film.
JP31208788A 1988-12-12 1988-12-12 Formation of aluminum electrode wiring Pending JPH02158133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31208788A JPH02158133A (en) 1988-12-12 1988-12-12 Formation of aluminum electrode wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31208788A JPH02158133A (en) 1988-12-12 1988-12-12 Formation of aluminum electrode wiring

Publications (1)

Publication Number Publication Date
JPH02158133A true JPH02158133A (en) 1990-06-18

Family

ID=18025080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31208788A Pending JPH02158133A (en) 1988-12-12 1988-12-12 Formation of aluminum electrode wiring

Country Status (1)

Country Link
JP (1) JPH02158133A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245457A (en) * 1990-09-05 1992-09-02 Micron Technol Inc Method of improving step coverage of metallic coated layer on integrated circuit by usage of high melting-point metal as antireflection film at time of laser flattening
JP2006201745A (en) * 2005-01-20 2006-08-03 Samsung Sdi Co Ltd Plasma display apparatus and method of manufacturing the same
US7163854B2 (en) 1996-11-07 2007-01-16 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of a semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245457A (en) * 1990-09-05 1992-09-02 Micron Technol Inc Method of improving step coverage of metallic coated layer on integrated circuit by usage of high melting-point metal as antireflection film at time of laser flattening
US7163854B2 (en) 1996-11-07 2007-01-16 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of a semiconductor device
US7470580B2 (en) 1996-11-07 2008-12-30 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of a semiconductor device
JP2006201745A (en) * 2005-01-20 2006-08-03 Samsung Sdi Co Ltd Plasma display apparatus and method of manufacturing the same
US7492080B2 (en) 2005-01-20 2009-02-17 Samsung Sdi Co., Ltd. Plasma display apparatus and method of manufacturing same

Similar Documents

Publication Publication Date Title
US5277749A (en) Methods and apparatus for relieving stress and resisting stencil delamination when performing lift-off processes that utilize high stress metals and/or multiple evaporation steps
US6255036B1 (en) Resist pattern forming method using anti-reflective layer, resist pattern formed, and method of etching using resist pattern and product formed
US5139974A (en) Semiconductor manufacturing process for decreasing the optical refelctivity of a metal layer
JPH02158133A (en) Formation of aluminum electrode wiring
US5609994A (en) Method for patterning photoresist film having a stepwise thermal treatment
US5846878A (en) Method of manufacturing a wiring layer in a semiconductor device
JPS6091632A (en) Thin film forming process
JP2595099B2 (en) Wiring formation method
JPS58115835A (en) Formation of buried wirings of semiconductor device
JPH01266746A (en) Semiconductor device
JPS63307739A (en) Manufacture of semiconductor device
JPH03185823A (en) Manufacture of semiconductor device
KR100613336B1 (en) Metal line of semiconductor device and method for fabricating thereof
KR100774650B1 (en) Method for forming semiconductor device metal-wiring with low-resistance
JPS6410096B2 (en)
JPH01235287A (en) Patterning method for high-temperature superconducting thin-film
KR100807521B1 (en) A method of fabricating semiconductor device
JPS59155927A (en) Forming method of pattern
JPH07235544A (en) Formation of wiring pattern of semiconductor device
JPS59114824A (en) Flattening method of semiconductor device
JPS58142547A (en) Manufacture of semiconductor device
JPS63164319A (en) Formation of resist pattern
JP2000353748A (en) Manufacture of semiconductor device
JPS60134422A (en) Formation of pattern
JPS5994847A (en) Manufacture of semiconductor device