JPH0215779B2 - - Google Patents
Info
- Publication number
- JPH0215779B2 JPH0215779B2 JP58182552A JP18255283A JPH0215779B2 JP H0215779 B2 JPH0215779 B2 JP H0215779B2 JP 58182552 A JP58182552 A JP 58182552A JP 18255283 A JP18255283 A JP 18255283A JP H0215779 B2 JPH0215779 B2 JP H0215779B2
- Authority
- JP
- Japan
- Prior art keywords
- floor
- heat
- air
- heating
- ceiling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 38
- 238000001816 cooling Methods 0.000 claims description 17
- 238000005192 partition Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005338 heat storage Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 206010037660 Pyrexia Diseases 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 241000287227 Fringillidae Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/001—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/044—Systems in which all treatment is given in the central station, i.e. all-air systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
- Building Environments (AREA)
Description
【発明の詳細な説明】
家屋(住居、事務所又は工場など)の暖冷房に
ヒートポンプを使うことが近年盛んに行なわれて
いる。従来使われているヒートポンプの装置では
ヒートポンプの熱交換器(暖房の場合は冷媒の凝
縮器、冷房の場合は冷媒の蒸発器)を室内に置
き、フアンで室内の空気を熱交換器を通して循環
させる方法を取つているものが多い。これで一応
目的を達することはできるが次の欠点はまぬがれ
ない。[Detailed Description of the Invention] In recent years, heat pumps have been increasingly used for heating and cooling houses (residences, offices, factories, etc.). In conventional heat pump equipment, the heat exchanger (refrigerant condenser for heating, refrigerant evaporator for cooling) is placed indoors, and indoor air is circulated through the heat exchanger using a fan. Many people have methods. Although this may achieve the goal, the following drawback cannot be avoided.
(1) フアンの音がする。(1) I hear a fan sound.
(2) 室内空気温度が不均一になることが多い。(2) Indoor air temperature is often uneven.
(3) 室内に熱交換器があるため、部屋の有効面積
を減らし、配置場所に苦労し、又見映が良くな
いなど、とかく邪魔になる。(3) Since the heat exchanger is inside the room, it reduces the effective area of the room, makes it difficult to locate it, and is not good for appearance, which is a nuisance.
(4) 冷房の場合、冷たい空気が直接身体に当たり
健康に良くないことが間々ある。(4) When using an air conditioner, the cold air sometimes hits the body directly, which is not good for health.
本発明はヒートポンプの熱交換器を家屋の床下
に配置し、暖房の場合は温風を(冷房の場合は冷
風を)床下空間を循環させ、床下地表面から地中
に蓄熱(冷房の場合は蓄冷)し、その後天井裏に
導き、天井裏の空間を循環させて床及び天井を熱
貫流面として働かせ熱交換により温度が下がり
(冷房の場合は温度が上がり)室温に近ずいてマ
イルドになつた空気を室内に入れ、又暖冷房装置
を停止した後、床下地中の該蓄熱又は蓄冷がゆつ
くり上に出て家屋を暖冷房するようにした暖冷房
装置である。 The present invention places a heat exchanger for a heat pump under the floor of a house, circulates hot air for heating (cold air for cooling) through the underfloor space, and stores heat underground from the subfloor surface (for cooling). After that, it is led to the attic space, circulated through the attic space, and the floor and ceiling act as heat transfer surfaces, causing the temperature to drop (in the case of air conditioning, the temperature rises) and become mild as it approaches room temperature. This is a heating/cooling device in which the heated air is brought into the room, and after the heating/cooling device is stopped, the heat or cold stored in the subfloor slowly rises to the top to heat and cool the house.
これを実施例について説明すると次の通りであ
る。第1図は一実施例としての2階建て家屋の上
部構造を取り除き基礎配置を見せた斜視図であ
り、右部に空気を床下から天井裏に導くダクトが
画いてある。第2図は空気の流れを従断面的に説
明するために画いた断面図であるが説明を容易に
するために第1図の基礎に相当する縦断面図でな
く、右に廊下、階段室、左に縦ダクトを配置した
模式図として示してある。第3図は第2図にAで
示した円内の部分を拡大して示したもので建物の
床下地面の構造の一例を示している。 This will be explained with reference to an embodiment as follows. FIG. 1 is a perspective view of a two-story house as an example, with the upper structure removed to show the foundation layout, and a duct for guiding air from under the floor to the attic is shown on the right side. Figure 2 is a cross-sectional view drawn to explain the flow of air in a horizontal plane, but to make the explanation easier, it is not a longitudinal cross-sectional view corresponding to the foundation in Figure 1, but a corridor and a staircase on the right. , is shown as a schematic diagram with vertical ducts arranged on the left. FIG. 3 is an enlarged view of the area within the circle indicated by A in FIG. 2, and shows an example of the structure of the subfloor of a building.
先ず暖房運転をする場合について説明する。1
は暖房用放熱器である。これはヒートポンプの凝
縮器でフインチユーブとフアンが組合わせてあ
る。そのフアン1′により温風を床下で矢印2の
様に循環させる。3は基礎の仕切壁の孔に設けた
ダンパーで温風を床下だけに循環させる時は開
き、温風を1階、2階の天井裏にも矢印4,3
1,32,33に示す様に循環させ度い時は閉じ
る。基礎構造の周囲部分5は空気が内外流通しな
い様密閉して全面に築造し、内部の基礎6は家の
内部の柱、壁の下に夫々図に示す通り床下空間を
幾つかに仕切る様に作るが仕切りの一部に隙間又
は孔を作り温風が矢印2に示す様に床下全面を循
環する様に作る。7はヒートポンプのセツトであ
り中にコンプレツサー、膨張弁、蒸発器、フア
ン、コントロール装置などを収納している。ヒー
トポンプの構成要素である凝縮器1は図に示す様
に床下にあり、本体との間を管8が結んでいる。
ヒートポンプセツト7の中のフアンにより空気は
セツトの外から吸い込まれて蒸発器のフインコイ
ルに当たり、冷媒に熱を与えた後外に排出され
る。 First, the case of heating operation will be explained. 1
is a heating radiator. This is a heat pump condenser that combines a finch tube and a fan. The fan 1' circulates warm air under the floor as shown by arrow 2. 3 is a damper installed in the hole in the partition wall of the foundation, which is opened to circulate hot air only under the floor, and is also placed in the ceiling of the first and second floors through arrows 4 and 3.
As shown in 1, 32, and 33, it is closed when circulation is required. The surrounding area 5 of the foundation structure is completely sealed to prevent air from circulating inside and outside, and the internal foundation 6 is built under the pillars and walls inside the house to divide the underfloor space into several sections as shown in the figure. A gap or hole is created in a part of the partition so that warm air can circulate all over the underfloor area as shown by arrow 2. 7 is the heat pump set, which houses the compressor, expansion valve, evaporator, fan, control device, etc. A condenser 1, which is a component of the heat pump, is located under the floor as shown in the figure, and a pipe 8 connects it to the main body.
A fan in the heat pump set 7 draws air from outside the set, hits the fin coil of the evaporator, imparts heat to the refrigerant, and then discharges it outside.
このヒートポンプの働きで凝縮器1は暖房用放
熱器となる。 Due to the action of this heat pump, the condenser 1 becomes a radiator for heating.
第2図は家の縦断面図を模式的に示している。
温風は床下を循環するが断面図ではそれは画けな
いから矢印2を1つだけ画いてある。又この図で
は第1図に示したダンパー3を閉じて温風を1
階、2階の天井裏にも矢印4,31,32,33
に示す様に循環させた状況で画いてある。ダンパ
ー3を閉じ、1階天井裏に設置したフアン9と2
階天井裏に設置したフアン10を運転すると温風
はダクト11を通つて矢印4,31,32に示す
様に1階、2階の天井裏に上る。各部屋の天井に
は適当な処に格子を設けた孔を設け天井裏を通つ
た温風が矢印12,13に示す様に部屋の中に入
り、更に壁やドアーに設けた孔とかドアーの隙間
などを通つて矢印12′,13′に示す様に右側の
廊下14,15に出る。2階の廊下15と1階の
廊下14とは階段16で結ばれているから空気は
自由に流通する。廊下に出た空気は1階廊下の適
当な処に設けた格子床の孔を通つて床下へ矢印3
3に示す様に入り床下放熱器1に組み込まれたフ
アン1′に吸い込まれこれで温風の循環が完結す
る。第2図では1階、2階共それぞれ部屋が1つ
として画いてあるが、これは部屋を幾つかに仕切
ると空気の流れが図示し難い処ができて不都合で
あるから1部屋として図示したものである。仕切
られて部屋数が複雑になつても、各部屋が廊下に
面しておれば各部屋についてこの説明と同じ様に
なるわけである。 Figure 2 schematically shows a longitudinal section of the house.
Warm air circulates under the floor, but this cannot be depicted in the cross-sectional view, so only one arrow 2 is drawn. Also, in this figure, the damper 3 shown in Figure 1 is closed and the hot air is
Arrows 4, 31, 32, 33 are also on the ceiling of the second floor.
It is depicted in a circulating situation as shown in . With damper 3 closed, fans 9 and 2 installed in the attic on the first floor.
When the fan 10 installed in the ceiling of the first floor is operated, hot air passes through the duct 11 and rises to the ceiling of the first and second floors as shown by arrows 4, 31, and 32. In the ceiling of each room, there are holes with grids installed at appropriate places, and warm air passes through the ceiling and enters the room as shown by arrows 12 and 13. Pass through the gap and exit into the corridors 14 and 15 on the right as shown by arrows 12' and 13'. Since the hallway 15 on the second floor and the hallway 14 on the first floor are connected by a staircase 16, air can circulate freely. The air exiting the hallway passes through holes in the lattice floor installed at appropriate locations in the hallway on the first floor and goes under the floor in the direction indicated by arrow 3.
3, the hot air enters the air and is sucked into the fan 1' built into the underfloor radiator 1, thereby completing the circulation of hot air. In Figure 2, each room on the first and second floors is shown as one room, but this is because dividing the room into several parts would create areas where it would be difficult to illustrate the flow of air, so I drew them as one room. It is something. Even if the number of rooms becomes complicated due to partitioning, as long as each room faces a corridor, each room will be explained in the same way.
家屋の外壁17は最近の建築が殆んどする様に
断熱工事を充分に施工する必要がある。又2階の
天井裏に空気が水平に流れる隙間を残して2重天
井18を作り、且つ2重天井18に充分断熱工事
を施工する方が暖冷房効果が大きい。 The outer wall 17 of the house needs to be sufficiently insulated, as is done in most modern constructions. Furthermore, the heating and cooling effect is greater if the double ceiling 18 is created by leaving a gap in the attic of the second floor for air to flow horizontally, and if the double ceiling 18 is sufficiently insulated.
若し2重天井18を設けない時は屋根19裏に
充分な断熱工事を施工する必要がある。1階床2
0・天井21、2階床22・天井23は一般工法
で差支えない。 If the double ceiling 18 is not installed, it is necessary to install sufficient insulation work behind the roof 19. 1st floor floor 2
0.Ceiling 21, second floor floor 22, and ceiling 23 can be constructed using general construction methods.
床下の地表面は従来工法の様に在来地面そのま
までも良いが、そうすると湿気のコントロールが
充分でないから第3図に示す様に施工する方が良
い。 The ground surface under the floor can be left as it is, as in the conventional construction method, but in that case, moisture control will not be sufficient, so it is better to construct it as shown in Figure 3.
土の上にコンクリート層24を適当厚さに打
ち、その上に防水層25を例えばビニールシート
などで作り、更にその上に押さえモルタル層26
を置く。押さえモルタル層の表面は平らにするよ
りも、例えば図の様に凹凸を作り、表面積を大き
くして熱伝達率が大きくなる様にすることが望ま
しい。この様にすると床下空間が防水層25で地
中湿分と遮断され、しかも地中との熱交換率が大
きくなる。 A concrete layer 24 is poured on top of the soil to an appropriate thickness, a waterproof layer 25 is made of, for example, a vinyl sheet, and a mortar layer 26 is placed on top of it.
put Rather than making the surface of the holding mortar layer flat, it is preferable to make it uneven, for example as shown in the figure, to increase the surface area and increase the heat transfer coefficient. In this way, the underfloor space is isolated from underground moisture by the waterproof layer 25, and the heat exchange rate with the underground is increased.
外周基礎5には内外を熱遮断する様に充分な断
熱工事を施工する。 Sufficient insulation work is carried out on the outer peripheral foundation 5 to isolate heat from inside and outside.
以上の構造で暖房効果を説明すると次の通りで
ある。ヒートポンプを運転しその凝縮器即ち床下
放熱器1が暖められ附属するフアン1′が回ると
温風が循環し始める。1階、2階天井裏のフアン
9,10も運転し、ダンパー3を閉じると、温風
は床下から矢印2,4と回わつてダクト11を上
り、半分は矢印31,12,12′と回つて廊下
へ、又残り半分は矢印32,13,13′と回つ
て廊下へ、そして廊下、階段室で両者合流して一
階廊下の床格子を通つて矢印33に示す様に床下
に入りフアン1′に吸われて放熱器1に戻る。か
くして温風は家屋内を全面的に循環する。この場
合1階床は普通工法のものであるとすると「下地
板+クツシヨンシート+ジユータン」、又は「下
地板+畳」、その他である。床下から温められた
場合は床の熱貫流率は1.2〜1.5Kcal/m2・hr・℃
程度であり、割合に熱貫流が大きい。床下温風で
温められるわけであるから熱が矢印27に示す様
につたわり床暖房としての効果が大きい。 The heating effect based on the above structure is explained as follows. When the heat pump is operated and its condenser, that is, the underfloor radiator 1 is heated, and the attached fan 1' is rotated, hot air begins to circulate. When the fans 9 and 10 in the attic on the first and second floors are also operated and the damper 3 is closed, the hot air flows from under the floor in the directions shown by arrows 2 and 4, up the duct 11, and half of the air flows in the directions indicated by arrows 31, 12, and 12'. Turn around and go into the hallway, and the other half turn around according to arrows 32, 13, and 13' and go into the hallway, and then the two meet in the hallway and staircase, go through the floor lattice of the first floor hallway, and go under the floor as shown by arrow 33. It is sucked by the fan 1' and returns to the radiator 1. In this way, the warm air is circulated throughout the house. In this case, if the first floor is constructed using the normal construction method, it will be ``base board + cushion sheet + jersey'', ``base board + tatami mat'', etc. When heated from below the floor, the heat transmission coefficient of the floor is 1.2 to 1.5 Kcal/m 2・hr・℃
The heat flow is relatively large. Since it is heated by hot air under the floor, the heat is transmitted as shown by arrow 27, and the effect as floor heating is great.
床暖房として熱を下から加えると身体に感ずる
暖房効果が大きく、室内空気温が他の暖房法によ
るより3℃程度低くても充分温かく感ずることが
経験的に知られている。室温が低くて済むと云う
ことは暖房熱量の節約になる。即ち、省エネにつ
ながる。 It is empirically known that when heat is applied from below as floor heating, the heating effect felt on the body is large, and that even if the indoor air temperature is about 3 degrees Celsius lower than with other heating methods, the room feels warm enough. Being able to keep the room temperature low means saving on heating energy. In other words, it leads to energy saving.
温風ダクト11を通つて上がり矢印31,32
に示す様に天井裏に入る。1階天井裏では温風の
熱は矢印28に示す様に1階天井21を通つて下
に伝わり、同時に2階床22を通つて矢印29に
示す様に2階の部屋に伝わる。1階天井21の構
造は普通工法とすれば「石膏ボード+クロス貼
り」、「和風天井板一枚」その他である。その下向
きの熱貫流率は2.0Kcal/m2・hr・℃程度である。
一方、外壁は断熱工事が充分に行われておれば熱
貫流率は0.5Kcal/cm2・hr・℃前後である。ガラ
ス窓の熱貫流率は5.5Kcal/m2・hr・℃(ペアガ
ラスを使えば3Kcal/m2・hr・℃)程度である
が、ガラス窓面積が外壁面積の15〜20%程度であ
れば外壁全体の平均熱貫流率は1.2Kcal/m2・
hr・℃前後であると見ることができる。一般住居
を例に取り、1階床面積を50m2とし、1階外壁面
積を90m2とする。屋内温度20℃、屋外温度を5℃
とすれば温度差は15℃、この温度差で外壁から逃
げる熱量は
1.2Kcal/m2・hr・℃×15℃×90m2=1
.620Kcal/hr、
温風の床下全体での平均温度を31℃、1階床の
熱貫流率を1.5Kcal/m2・hr・℃とすると床を通
つて伝わる熱量は
1.5Kcal/m2・hr・℃×(31−20)℃
×50m2=830Kcal/hr
床下の温度から地表面を通つて地中に入る熱量
は、地面の下向き熱伝達率を1.5Kcal/m2・hr・
℃、地中温度を15℃とすると
1.5Kcal/m2・hr・℃×(31−15)×5
0=1.200Kcal/hr
風量を20m3/分、放熱器1を出る温風の温度を
34℃とすると、床下を循環し1階床20と地面2
6に熱を与えた後ダクト11に入る空気の温度は
34℃−(830+1.200)Kcal/hr÷(20m3/分×60分×1.
2Kg/m3×0.24Kcal/Kg・℃)=34−5.9=28.1℃
床下の平均温度は(34+28.1)÷2=31.05℃、
即ち先きに仮定した平均温度31℃はほぼ正しい。 Up arrows 31, 32 through the hot air duct 11
Enter the attic as shown. In the ceiling of the first floor, the heat of the hot air is transmitted downward through the ceiling 21 on the first floor as shown by arrow 28, and at the same time is transmitted through the floor 22 on the second floor to the rooms on the second floor as shown by arrow 29. The structure of the ceiling 21 on the first floor is usually constructed using ``gypsum board + cloth pasting'', ``one Japanese-style ceiling board'', and so on. Its downward heat transmission coefficient is about 2.0 Kcal/m 2・hr・℃.
On the other hand, if the outer walls are adequately insulated, the heat transfer coefficient will be around 0.5Kcal/ cm2・hr・℃. The heat transmission coefficient of a glass window is about 5.5Kcal/ m2・hr・℃ (3Kcal/ m2・hr・℃ if double glazing is used), but even if the glass window area is about 15 to 20% of the outer wall area. The average heat transfer coefficient of the entire outer wall is 1.2Kcal/ m2・
It can be seen that it is around hr・℃. Taking a general residence as an example, the first floor floor area is 50m 2 and the first floor exterior wall area is 90m 2 . Indoor temperature 20℃, outdoor temperature 5℃
Then, the temperature difference is 15℃, and the amount of heat that escapes from the outer wall due to this temperature difference is 1.2Kcal/m 2・hr・℃×15℃×90m 2 = 1
.620Kcal/hr, assuming that the average temperature of the entire warm air under the floor is 31℃, and the heat transfer coefficient of the first floor is 1.5Kcal/ m2・hr・℃, the amount of heat transmitted through the floor is 1.5Kcal/ m2・hr・℃×(31−20)℃
×50m 2 = 830Kcal/hr The amount of heat that enters the ground from the temperature below the floor through the ground surface is 1.5Kcal/m 2・hr・
℃, assuming the underground temperature is 15℃, 1.5Kcal/m 2・hr・℃×(31−15)×5
0=1.200Kcal/hr, the air volume is 20m3 /min, and the temperature of the hot air leaving radiator 1 is
If the temperature is 34℃, it circulates under the floor and the first floor 20 and the ground 2
The temperature of the air that enters duct 11 after applying heat to duct 6 is 34℃ - (830 + 1.200) Kcal/hr ÷ (20m 3 /min x 60 minutes x 1.
2Kg/m 3 × 0.24Kcal/Kg・℃)=34−5.9=28.1℃ The average temperature under the floor is (34+28.1)÷2=31.05℃,
In other words, the average temperature of 31°C assumed earlier is almost correct.
ダクト11を上つた28.1℃の温風の1/2が1階
天井に入り、1階天井21を貫流して矢印28に
示す様に下向きに1階部屋に熱を与え、同時に2
階床22を貫流して矢印29に示す様に上向きに
2階部屋に熱を与える。 Half of the 28.1°C warm air that went up the duct 11 enters the ceiling on the first floor, flows through the ceiling 21 on the first floor, applies heat to the rooms on the first floor downward as shown by arrow 28, and at the same time
The heat flows through the floor 22 and applies heat upward as shown by arrow 29 to the rooms on the second floor.
1階天井21を貫流する熱量は熱貫流率を
2.0Kcal/m2・hr・℃、1階天井裏空気の平均温
度を25℃と仮定すると
2.0Kcal/m2・hr・℃×(25−20)℃
×50m2=500Kcal/hr
又2階床22の構造は1階床とほぼ同じ構造と
してその熱貫流率を1.5Kcal/m2・hr・℃とし、
床面積は1階と同じく50m2、又2階部屋の温度も
1階部屋と同じく20℃とすれば、1階天井裏空気
の平均温度は25℃であるとしているから、2階床
22を通つて2階部屋に入る熱量は
1.5Kcal/m2・hr・℃×(25−20)
×50=380Kcal/hr
1階天井裏空気が熱貫流で熱を奪われ、何度に
なるか計算して見ると、
28.1℃−(500+380)Kcal/hr÷(10m3/分×60
分×1.2Kg/m3
×0.24Kcal/Kg・℃)=28.1−5.1=23.0℃
1階天井裏空気の平均温度は
(28.1+23.0)÷2=25.5℃
即ち、先きに仮定した平気温度25℃はほぼ正し
い。1階天井裏で23.0℃になつた空気が1階天井
21に設けられた格子孔を通つて矢印12に示す
様に1階部屋に入り、熱量の不足分を供給する。
1階部屋の温度を20℃としているから1階天井裏
から1階部屋に入つた空気の供給する熱量は
(23.0−20)℃×10m3/分×1.2Kg/m
3×0.24Kcal/Kg・℃=520Kcal/hr
従つてこれに1階床20を貫流して伝えられる
熱量830Kcal/hrと、1階天井21を貫流して伝
えられる熱量500Kcal/hrとを加えると1階部屋
に供給される全熱量になり、それは
520+830+500=1.850Kcal/hr
となる。先きに1階外壁や窓を通つて外に逃げる
熱量を計算して1.620Kcal/hrを得た。従つて暖
房熱量は充分間に合うことになり、なお8%程度
の余裕がある。1階部屋の温度を20℃と仮定した
が20.5℃程度になるであろう。 The amount of heat flowing through the first floor ceiling 21 is expressed as the heat transfer coefficient.
2.0Kcal/m 2・hr・℃, assuming the average temperature of the air in the attic on the first floor is 25℃ 2.0Kcal/m 2・hr・℃×(25−20)℃
×50m 2 = 500Kcal/hr The structure of the second floor 22 is almost the same as the first floor, and its heat transfer coefficient is 1.5Kcal/m 2・hr・℃.
Assuming that the floor area is 50m 2 , the same as the first floor, and the temperature of the second floor room is 20℃, the same as the first floor, the average temperature of the air in the attic on the first floor is 25℃, so the second floor floor 22 is The amount of heat that passes through the room and enters the room on the second floor is 1.5Kcal/m 2・hr・℃×(25−20)
×50=380Kcal/hr The air in the attic on the first floor loses heat through heat transfer, and we calculate the temperature at 28.1℃−(500+380)Kcal/hr÷(10m 3 /min×60
min × 1.2Kg/m 3 × 0.24Kcal/Kg・℃) = 28.1−5.1=23.0℃ The average temperature of the air in the ceiling on the first floor is (28.1 + 23.0) ÷ 2 = 25.5℃ In other words, the normal temperature assumed earlier The temperature of 25℃ is almost correct. Air that has reached 23.0°C in the attic on the first floor enters the room on the first floor as shown by arrow 12 through a grid hole provided in the ceiling 21 on the first floor, supplying the insufficient amount of heat.
Since the temperature of the room on the first floor is 20℃, the amount of heat supplied by the air entering the room on the first floor from the attic on the first floor is (23.0−20)℃×10m 3 /min×1.2Kg/m
3 ×0.24Kcal/Kg・℃=520Kcal/hr Therefore, if we add to this the amount of heat 830Kcal/hr transmitted through the first floor floor 20 and the amount of heat transmitted through the first floor ceiling 21 of 500Kcal/hr, we get The total amount of heat supplied to the rooms on the first floor is 520 + 830 + 500 = 1.850Kcal/hr. First, we calculated the amount of heat escaping through the outside walls and windows on the first floor and found 1.620Kcal/hr. Therefore, the amount of heating heat will be sufficient in time, and there is still a margin of about 8%. We assumed that the temperature of the room on the first floor was 20℃, but it would be around 20.5℃.
次に2階を計算して見る。2階も1階と同じく
床面積50m2、外壁面積90m2とする。2階床22を
貫流して2階部屋に入る熱量は先きに380Kcal/
hrと計算した。ダクト17を通つて矢印32に示
す様に2階天井裏に入る風量は10m3/分であり、
その温度は28.1℃である。2階天井23を貫流し
て矢印30に示す様に下向きに2階部屋に入る熱
量を計算すると次の通りである。2階天井構造は
1階と同じくその下向熱貫流率を2.0Kcal/m2・
hr・℃、2階部屋も20℃に保つとすると
2.0Kcal/m2・hr・℃×(26−20)
×50=600Kcal/hr
次に2階2重天井18を貫流して屋根裏に逃げ
る熱量を計算する。2重天井18は充分な断熱工
事が施工してあるとしてその熱貫流率を
0.3Kcal/m2・hr・℃とする。又屋根裏は外気と
の流通が少ないとして、外気が5℃の時屋根裏は
10℃であるとする。そうすると2重天井18を貫
流して屋根裏に逃げる熱は
0.3Kcal/m2・hr・℃×(26−10)℃
×50m2=240Kcal/hr
2階天井裏から天井格子を通つて矢印13に従
つて2階部屋に入る空気温度は
28.1℃−(600+240)Kcal/hr÷(10m3/分×
60分
×1.2Kg/m3×0.24Kcal/Kg・℃)=28.1℃
−4.9℃=23.2℃
2階天井裏空気の平均温度は
(28.1×23.2)÷2=257℃
即ち、先きに仮定した26℃はほぼ正しい。 Next, calculate the second floor. Like the first floor, the second floor will have a floor area of 50m 2 and an exterior wall area of 90m 2 . The amount of heat that flows through the second floor floor 22 and enters the second floor room is 380 Kcal/
Calculated as hr. The air volume entering the ceiling of the second floor through the duct 17 as shown by arrow 32 is 10 m 3 /min.
Its temperature is 28.1℃. The amount of heat flowing through the second floor ceiling 23 and entering the second floor room downward as shown by the arrow 30 is calculated as follows. The ceiling structure on the second floor has a downward heat transmission coefficient of 2.0 Kcal/m 2 , the same as the first floor.
hr・℃, assuming that the second floor room is also kept at 20℃, 2.0Kcal/m 2・hr・℃×(26−20)
×50=600Kcal/hr Next, calculate the amount of heat that flows through the double ceiling 18 on the second floor and escapes to the attic. Assuming that the double ceiling 18 has been sufficiently insulated, its heat transfer rate is
0.3Kcal/m 2・hr・℃. Also, assuming that the attic has little circulation with outside air, when the outside air is 5℃, the attic
Assume that the temperature is 10℃. Then, the heat that flows through the double ceiling 18 and escapes to the attic is 0.3Kcal/m 2・hr・℃×(26−10)℃
×50m 2 = 240Kcal/hr The temperature of the air entering the room on the second floor from the attic through the ceiling grid and following arrow 13 is 28.1℃−(600+240)Kcal/hr÷(10m 3 /min×
60 minutes ×1.2Kg/m 3 ×0.24Kcal/Kg・℃)=28.1℃
-4.9°C = 23.2°C The average temperature of the air in the attic on the second floor is (28.1 x 23.2) ÷ 2 = 257°C In other words, the 26°C assumed earlier is almost correct.
23.2℃になつた空気は2階天井23に設けられ
た格子孔を通つて矢印13に示す様に2階部屋に
入つて熱量の不足分を供給する。2階部屋の温度
は20℃だからその供給する熱量は
(23.2−20)℃×10m3/分×60分×1.2Kg/m3×0.24Kca
l/Kg=550Kcal/hr
この熱量に、2階床22を貫流して伝えられる
熱量380Kcal/hrと、2階天井23を貫流して伝
えられる熱量600Kcal/hrとを加えると2階部屋
に供給される全熱量になり、それは
550+380+600=1.530Kcal/hr
2階外壁や窓を通つて外に逃げる熱量は1階の
場合と同じく1.620Kcal/hrと見倣すとすると部
屋の出熱に対し入熱が6%少ない。部屋の温度を
20℃と仮定したから熱が不足するのであつて室温
を19.5℃とすれば殆んどバランスする。 The air, now at 23.2°C, enters the room on the second floor through a grid hole provided in the ceiling 23 on the second floor, as shown by arrow 13, and supplies the missing amount of heat. Since the temperature of the room on the second floor is 20℃, the amount of heat supplied is (23.2−20)℃×10m 3 /min×60 minutes×1.2Kg/m 3 ×0.24Kca
l/Kg=550Kcal/hr Adding to this amount of heat 380Kcal/hr of heat transmitted through the second floor floor 22 and 600Kcal/hr of heat transmitted through the second floor ceiling 23, the amount of heat is supplied to the second floor room. The total amount of heat generated is 550 + 380 + 600 = 1.530Kcal/hr.Assuming that the amount of heat escaping to the outside through the exterior walls and windows on the second floor is 1.620Kcal/hr, which is the same as that on the first floor, the amount of heat input to the room is 6% less fever. the temperature of the room
Since we assumed the temperature to be 20℃, there would be a lack of heat, but if we set the room temperature to 19.5℃, it would be almost balanced.
1階が20.5℃、2階が19.5℃であるから特に支
障がないが、強いて1階、2階共20℃にし様と思
えば1階天井裏に送る温風の量を少し減らし、2
階天井裏に送る温風の量を増せば良い。それはダ
ンパーその他で簡単にできる。 Since the temperature on the first floor is 20.5℃ and the second floor is 19.5℃, there is no particular problem, but if you want to force both the first and second floors to 20℃, reduce the amount of hot air sent to the attic on the first floor, and
All you have to do is increase the amount of warm air sent to the attic of the floor. This can easily be done with a damper or something else.
この様にして見ると、部屋内を20℃に保つ時、
1階は23.0℃の空気が天井格子孔から、又2階は
23.2℃の空気が天井格子孔から吹き込まれること
になる。それぞれ室温と大差ないマイルドな空気
が吹き込まれるのであるから室内に温度不均一が
少なくしかも床暖房があるから快適な環境にな
る。又長い曲がりくねつた通路を通つた後で室内
に入るのであるからフアンの音も殆んど聞えなく
なる。 Looking at it this way, when keeping the room at 20℃,
On the first floor, air at 23.0℃ flows through the ceiling grid hole, and on the second floor,
Air at 23.2°C will be blown in through the ceiling grid holes. Since mild air that is not much different from the room temperature is blown into each room, there is less uneven temperature inside the room, and the underfloor heating creates a comfortable environment. Also, since you enter the room after passing through a long winding passage, you can hardly hear the sound of the fan.
次に床下の地中に伝わつた熱について述べる。
熱は地表面26から地中に伝導し、蓄熱される。
長時間例えば12時間程度運転すれば地表面は殆ん
ど床下空気温度に近くなる。先きの例で床下空気
温度31℃の温合地表面は27℃程度になり、地中に
一定の熱勾配で地下1m位迄に蓄熱される。深
夜、ヒートポンプ及びフアンの運転を止めると床
下や各部屋は温度が下がり始めるがそうすると床
下地表面から対流や放射で熱が1階床20に伝わ
り、長時間の余熱床暖房効果を得ることができ
る。ヒートポンプを止めたままフアン1′,9,
10を運転して空気を天井裏迄循環すれば地中蓄
熱を使つて2階迄暖房することもできる。2階の
暖房が必要ない時に、1階フアン9、2階フアン
10を止め、ダンパー3を開き、空気を床下だけ
循環させながらヒートポンプで床下暖房をすれ
ば、1階は床暖房だけで相当温かく、且つ地中蓄
熱がでできる。一定時間ヒートポンプを運転した
後でヒートポンプを止めると、地中に蓄熱された
熱がゆつくり出て来て1階床を長時間床暖房し快
適な環境を得ることができる。 Next, we will discuss the heat transmitted to the ground beneath the floor.
Heat is conducted from the earth's surface 26 into the earth and is stored therein.
If the vehicle is operated for a long time, for example, 12 hours, the temperature of the ground surface will be close to the temperature of the air below the floor. In the previous example, when the air temperature under the floor warms up to 31°C, the temperature at the ground surface becomes about 27°C, and heat is stored underground with a constant thermal gradient up to about 1 meter underground. When the heat pump and fans stop operating late at night, the temperature under the floor and in each room begins to drop, but when this happens, heat is transferred from the subfloor surface to the first floor 20 by convection and radiation, providing a long-term residual heat floor heating effect. . Fan 1', 9, with the heat pump stopped
If you operate the unit 10 and circulate the air all the way to the ceiling, you can heat up to the second floor using underground heat storage. When there is no need to heat the second floor, the first floor fan 9 and second floor fan 10 are turned off, damper 3 is opened, and air is circulated only under the floor while the heat pump performs underfloor heating.The first floor can be kept quite warm with just the floor heating. , and can store heat underground. When the heat pump is stopped after operating for a certain period of time, the heat stored in the ground slowly comes out, heating the first floor for a long time and creating a comfortable environment.
先きに示した数値例でヒートポンプの動力を計
算して見ると次の通りである。床下放熱器1を出
た空気の温度は34℃であり、各部屋から廊下を通
つて矢印33の様に戻る空気温は室温と同じく20
℃である。循環する空気は20m3/分であるから放
熱器1の出す熱量は
(34−20)℃×20m3/分×60分×1.2Kg/m3×0.24Kcal
/Kg=4.840Kcal/hr
外気温5℃、放熱器を通つた空気温が34℃の場
合ヒートポンプは1KWにつき約3.000Kcal/hrを
出すからヒートポンプの動力は4.840÷3.000=
1.6KW即ち約2KWの動力を必要とすることにな
る。 The power of the heat pump is calculated as follows using the numerical example shown earlier. The temperature of the air that exits the underfloor radiator 1 is 34°C, and the air temperature that returns from each room through the hallway as shown by arrow 33 is 20°C, the same as the room temperature.
It is ℃. Since the circulating air is 20m 3 /min, the amount of heat emitted by radiator 1 is (34-20)℃ x 20m 3 /min x 60 minutes x 1.2Kg/m 3 x 0.24Kcal
/Kg=4.840Kcal/hr When the outside temperature is 5℃ and the air temperature passing through the radiator is 34℃, the heat pump outputs about 3.000Kcal/hr per 1KW, so the power of the heat pump is 4.840÷3.000=
A power of 1.6KW, or approximately 2KW, is required.
以上は暖房の場合の説明であつたが、この装置
はそのまま冷房に使うことができる。冷房の場合
はヒートポンプセツト7に中の四方弁を切替えて
暖房の時凝縮器であつた1を蒸発器に、又セツト
7の中にあつて暖房の時蒸発器であつた熱交換器
を凝縮器にする。冷媒の凝縮熱は附属するフアン
で外気中に放出する。蒸発器1はフアン1′によ
り通過する空気から熱を奪う。蒸発器1で冷却さ
れた空気は暖房の時に説明したと同じ径路で循環
する。1階床20・天井21、2階床22・天井
23での熱の流れは暖房の時と全く逆になり、1
階天井格子から入る矢印12の空気、2階天井格
子から入る矢印13の空気は室温より低温ではあ
るがそれぞれ床、天井から熱を貰つているから室
温に近いマイルドなものが入る。従つて室内の空
気温に不均一が少なく、又その吹き込む空気が直
接身体に当たつても健康を害する様なことはな
い。床下の地面から地中に蓄熱することも、今度
は逆に冷熱を蓄えるわけで作用は暖房の場合と全
く逆と考えれば良い。只冷房の場合は1階床2
0、2階床22の熱貫流は上から下に向い、その
熱貫流率は暖房の場合に比べて少さくなる。即
ち、熱が伝わり難い。しかし、これと逆に1階天
井21、2階天井23の熱貫流は下から上に向
い、その熱貫流率は暖房の場合に比べて大きくな
り、即ち熱が伝わり易い。又、床下地面の熱貫流
も暖房の場合に比べて大きい。冷房の場合は除湿
する必要がある。即ち、冷却器1で空気中の水分
を水滴として除き、その水を外部に排出する。こ
の様に冷却・除湿した空気を床、天井の熱交換で
温度を上げ、除湿され且つマイルドな温度になつ
た空気を室内に導入するから室内は快適に保たれ
る。冷房の場合は上から冷やされる率が大きいか
ら、この場合も俗に云う「頭寒足熱」となり、健
康に良い環境となる。熱量計算は暖房の場合に準
じ、熱の流れだけを逆にして行なえば良い。これ
迄の計算に適用した数値はこれに限るわけではな
く、説明を解り易くするための一例を示したもの
である。 The above explanation was for heating, but this device can be used as is for cooling. In the case of cooling, switch the four-way valve inside heat pump set 7 to turn 1, which was a condenser during heating, into an evaporator, and turn the heat exchanger in set 7, which was an evaporator during heating, into a condenser. Make it into a vessel. The heat of condensation of the refrigerant is released into the outside air by the attached fan. The evaporator 1 removes heat from the air passing through it by means of a fan 1'. The air cooled by the evaporator 1 is circulated along the same path as described for heating. The flow of heat between the floor 20 and ceiling 21 on the first floor and the floor 22 and ceiling 23 on the second floor is completely opposite to that during heating.
The air shown by arrow 12 entering from the ceiling lattice on the second floor, and the air shown by arrow 13 entering from the second floor ceiling lattice, are colder than room temperature, but they receive heat from the floor and ceiling, respectively, so they enter mild air close to room temperature. Therefore, there is little non-uniformity in the indoor air temperature, and even if the blown air hits the body directly, it will not harm your health. Storing heat underground from the ground beneath the floor also stores cold heat, so you can think of it as the complete opposite of heating. In case of only air conditioning, 1st floor floor 2
The heat flow through the 0th and 2nd floor floors 22 is from top to bottom, and the heat flow rate is lower than that in the case of heating. In other words, heat is difficult to transfer. However, on the contrary, heat flow through the ceiling 21 on the first floor and the ceiling 23 on the second floor is from bottom to top, and the heat penetration coefficient is larger than in the case of heating, that is, heat is easily transmitted. Furthermore, the heat flow through the subfloor is also larger than in the case of heating. In the case of air conditioning, it is necessary to dehumidify. That is, the cooler 1 removes moisture from the air as water droplets and discharges the water to the outside. The temperature of the cooled and dehumidified air is increased through heat exchange between the floor and ceiling, and the dehumidified and mildly heated air is introduced into the room, keeping the room comfortable. In the case of an air conditioner, the rate of cooling from above is large, so in this case as well, the environment is good for health, resulting in what is commonly called ``cold head and fever.'' The amount of heat can be calculated in the same way as for heating, only by reversing the flow of heat. The numerical values applied to the calculations so far are not limited to these, but are shown as an example to make the explanation easier to understand.
今迄の説明で明らかな様に本発明による暖冷房
装置を適用すれば快適に空調された環境を得るこ
とができ、且つ地中に蓄熱又は蓄冷して動力の節
約を計ることができて斯界に大きな貢献をもたら
すものである。 As is clear from the explanations so far, by applying the heating and cooling device according to the present invention, it is possible to obtain a comfortably air-conditioned environment, and it is also possible to save power by storing heat or cold underground. This will make a major contribution to the
第1図は本発明による実施例としての住居家屋
の上部構造を取除きその基礎部分と空気を上部に
導くダクトを示す斜視図である。第2図は第1図
による家屋の縦断面図であるが分かり易くするた
めに第1図に対応せず模式図にして示してある。
第3図は第2図のAで示した円内の部分の拡大詳
細図である。
1……暖房の放熱器(冷房の場合は空気冷却
器)、3……空気通路ダンパー、5……建物の外
壁基礎、6……建物の内部基礎、7……ヒートポ
ンプセツト、8……ヒートポンプと熱交換器1と
を結ぶ配管、9,10……フアン、11……ダク
ト、14,15……廊下、16……階段、17…
…外壁、18……2重天井、19……屋根、20
……1階床、21……1階天井、22……2階
床、23……2階天井、24……床下地上コンク
リート層、25……防水層、26……押さえモル
タル層、2,4,12,12′,13,13′,3
1,32,33……空気の進路を示す矢印、2
7,28,29,30……熱の伝わりを示す矢
印。
FIG. 1 is a perspective view of a residential building according to an embodiment of the present invention, with the upper structure removed, showing its foundation and a duct for guiding air to the upper part. FIG. 2 is a longitudinal sectional view of the house shown in FIG. 1, but for the sake of clarity, it is shown as a schematic diagram without corresponding to FIG. 1.
FIG. 3 is an enlarged detailed view of the area within the circle indicated by A in FIG. 2. 1... Heat radiator for heating (air cooler for cooling), 3... Air passage damper, 5... External wall foundation of the building, 6... Internal foundation of the building, 7... Heat pump set, 8... Heat pump and the heat exchanger 1, 9, 10...fan, 11...duct, 14, 15...corridor, 16...stairs, 17...
...Outer wall, 18...Double ceiling, 19...Roof, 20
... 1st floor floor, 21 ... 1st floor ceiling, 22 ... 2nd floor, 23 ... 2nd floor ceiling, 24 ... subfloor concrete layer, 25 ... waterproof layer, 26 ... presser mortar layer, 2, 4, 12, 12', 13, 13', 3
1, 32, 33...Arrow indicating the path of air, 2
7, 28, 29, 30...Arrows indicating heat transfer.
Claims (1)
房の場合は空気冷却器となる暖冷房装置の熱交換
器を置き、暖房の場合は該熱交換器で暖められた
空気を、又冷房の場合は該熱交換器で冷やされた
空気を、フアンで床下空間の全部又は一部を循環
させ、床下の地表面から地中に熱又は冷熱を伝導
させて蓄熱又は蓄冷し、そして該空気をダクトを
通して天井裏に導いて天井裏の全部又は一部を循
環させた後天井に設けた開孔を通して各部屋の中
に導き、次に各部仕切壁の開孔や扉の開孔、隙間
などを通して廊下に導き、合流して一階廊下の床
に設けた開孔を通して床下に導き、先の熱交換器
に戻すよう循環させて暖冷房し、暖冷房装置を停
止した後、床下地中の該蓄熱又は蓄冷がゆつくり
上に出て家屋を暖冷房するようにしたことを特徴
とする暖冷房装置。1 A heat exchanger for heating and cooling equipment is placed under the floor of a building, which serves as an air heater for heating and an air cooler for cooling. In the case of , the air cooled by the heat exchanger is circulated through all or part of the underfloor space using a fan, heat or cold is conducted from the ground surface under the floor to the ground to store heat or cool, and the air is guided through the duct to the attic and circulated in all or part of the attic, and then guided into each room through the openings in the ceiling, and then the openings in the partition walls, the openings in the doors, the gaps, etc. It is guided into the hallway through the hole, joins the hole made in the floor of the first-floor hallway, and is led under the floor.It is circulated back to the previous heat exchanger for heating and cooling.After the heating and cooling equipment is stopped, the water in the basement is A heating and cooling device characterized in that the heat storage or cold storage slowly rises to the top to heat and cool a house.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18255283A JPS6073226A (en) | 1983-09-30 | 1983-09-30 | Room heating and cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18255283A JPS6073226A (en) | 1983-09-30 | 1983-09-30 | Room heating and cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6073226A JPS6073226A (en) | 1985-04-25 |
JPH0215779B2 true JPH0215779B2 (en) | 1990-04-13 |
Family
ID=16120271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18255283A Granted JPS6073226A (en) | 1983-09-30 | 1983-09-30 | Room heating and cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6073226A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2520125B2 (en) * | 1987-04-11 | 1996-07-31 | 株式会社アイジー技術研究所 | Building structure |
JP3558241B2 (en) * | 1995-12-01 | 2004-08-25 | 大阪瓦斯株式会社 | Ventilation and heating system for highly airtight and highly insulated houses |
JP3709465B1 (en) * | 2003-11-19 | 2005-10-26 | 株式会社健康ハウス | Indoor environment improvement building |
JP2012021758A (en) * | 2010-07-13 | 2012-02-02 | Concept House Co Ltd | Whole-house air conditioning ventilation system for highly airtight and highly heat insulating house |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4941848U (en) * | 1972-07-13 | 1974-04-12 |
-
1983
- 1983-09-30 JP JP18255283A patent/JPS6073226A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6073226A (en) | 1985-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2559871A (en) | House structure and heating system therefor | |
JP7093067B2 (en) | Air conditioning system and house | |
JP7045710B2 (en) | Buildings that utilize radiant heat | |
JPH0215779B2 (en) | ||
JP2001279837A (en) | Air cycle building/house and ventilation system for building/house | |
JP3187707B2 (en) | Building cooling / heating / ventilation system | |
JPS6344903B2 (en) | ||
JP2016061484A (en) | Whole building cooling/heating system | |
JP3408001B2 (en) | Ventilation method of highly airtight house, and highly airtight house adopting the ventilation method | |
Arnold | Air conditioning in office buildings after World War II | |
JP4086335B2 (en) | Highly airtight and highly insulated building | |
JP4049380B2 (en) | Building ventilation system | |
JP3044506B2 (en) | Apartment house with inverted beam floor structure | |
JP3111393B2 (en) | Cooling, heating and ventilation systems in multi-dwelling houses with inverted beam structure | |
JPH0941506A (en) | Building | |
JP3727229B2 (en) | Air circulation type air conditioning system | |
JP2001193206A (en) | Floor structure of residence and method for constructing floor | |
JP2000274733A (en) | Air conditioning device for multiple dwelling house | |
JP7432954B2 (en) | Building | |
JP3044505B2 (en) | Building structure in house | |
JP2909839B2 (en) | Ventilation air conditioning system | |
JP2795895B2 (en) | House | |
JP3563901B2 (en) | Building heating and cooling system | |
JP2002115343A (en) | Dwelling house | |
JPH09217947A (en) | Air-conditioning system for house |