JP2016061484A - Whole building cooling/heating system - Google Patents

Whole building cooling/heating system Download PDF

Info

Publication number
JP2016061484A
JP2016061484A JP2014189222A JP2014189222A JP2016061484A JP 2016061484 A JP2016061484 A JP 2016061484A JP 2014189222 A JP2014189222 A JP 2014189222A JP 2014189222 A JP2014189222 A JP 2014189222A JP 2016061484 A JP2016061484 A JP 2016061484A
Authority
JP
Japan
Prior art keywords
floor
ceiling
building
air
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014189222A
Other languages
Japanese (ja)
Other versions
JP6480690B2 (en
Inventor
克己 松田
Katsumi Matsuda
克己 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2014189222A priority Critical patent/JP6480690B2/en
Publication of JP2016061484A publication Critical patent/JP2016061484A/en
Application granted granted Critical
Publication of JP6480690B2 publication Critical patent/JP6480690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps

Abstract

PROBLEM TO BE SOLVED: To provide a whole building cooling/heating system which can comfortably cooling/heating the whole building without causing vertical temperature unevenness in a habitable room.SOLUTION: Radiation panels 21 are erected in habitable rooms R1-R4 of a building 1, a floor side ventilation port 30 is provided adjacent to the radiation panel 21 on a floor F, a ceiling side ventilation port 31 is provided adjacent to the radiation panel 21 on a ceiling C, and the floor side ventilation port 30 and the ceiling side ventilation port 31 are communicated by a circulation passage 40 partitioned separately from the habitable rooms R1-R4. Also, a heat source machine 22 is provided which supplies a heating medium cooled at cooling time to the radiation panel 21, and supplies the heating medium heated at the heating time to the radiation panel 21, and a circulation fan 41 is provided which forcibly circulates the air in the circulation passage 40 from the ceiling side ventilation port 31 toward the floor side ventilation port 30 at heating time, and which forcibly circulates the air in the circulation passage 40 from the floor side ventilation port 30 toward the ceiling side ventilation port 31 at cooling time.SELECTED DRAWING: Figure 1

Description

本発明は、戸建て住宅等の建物に用いられる全館冷暖房システムに関する。   The present invention relates to a whole-building air conditioning system used for buildings such as detached houses.

従来から、住宅等の建物に用いられる冷暖房システムとして、例えば特許文献1に示されるような輻射パネル装置が知られている。輻射パネル装置は、建物の各居室に設置される複数の輻射パネルと、室外等に設置されてそれぞれの輻射パネルに配管を介して接続される熱源機とを備え、熱源機から配管を介して各輻射パネルに所定温度に加熱した温水等の熱媒体を供給することにより輻射パネルからの放熱で居室等を暖房し、熱源機から輻射パネルに冷却した冷水等の熱媒体を供給することにより輻射パネルの吸熱作用で居室等を冷房して当該居室の空調を行うようになっている。   2. Description of the Related Art Conventionally, for example, a radiation panel device disclosed in Patent Document 1 is known as an air conditioning system used in a building such as a house. The radiant panel device includes a plurality of radiant panels installed in each room of a building, and a heat source device installed outside the room and connected to each radiant panel via a pipe, from the heat source machine via the pipe. By supplying a heat medium such as hot water heated to a predetermined temperature to each radiant panel, the room is heated by heat dissipation from the radiant panel, and by supplying a heat medium such as cold water cooled from the heat source unit to the radiant panel. The room is cooled by the heat absorbing action of the panel to air-condition the room.

一方、例えば特許文献2に示すように、複数の階層を有する住宅等の建物において、その最下階の居室の床下空間に熱源機を設け、この熱源機により床下空間の空気を暖め、暖められた空気の対流運動を利用して当該空気を壁体内に設けられた通気路や床に設けた開口部を通して各居室に供給しつつ小屋裏にまで運び、建物を全館暖房するようにした暖房システムが知られている。   On the other hand, as shown in Patent Document 2, for example, in a building such as a house having a plurality of floors, a heat source device is provided in the underfloor space of the lowermost room, and the air in the underfloor space is heated and warmed by this heat source device. A heating system that uses the convection motion of the air to carry the air to the back of the hut while supplying the air to each living room through an air passage provided in the wall or an opening provided in the floor, thereby heating the entire building. It has been known.

特開2011−226742号公報JP 2011-226742 A 特開2009−150643号公報JP 2009-150643 A

しかしながら、特許文献1に示される輻射パネルは、放射面が居室の上下方向に沿って略天地丈に延びる垂直な面に構成されているので、冷房時には放射面で冷やされた空気が当該放射面に沿って下降気流を生じ、暖房時には放射面で暖められた空気が当該放射面に沿って上昇気流を生じて、居室内に上下方向の温度むらを生じさせるという問題点があった。   However, since the radiation panel shown in Patent Document 1 is configured as a vertical surface whose radiation surface extends substantially in the vertical direction along the vertical direction of the living room, the air cooled by the radiation surface during cooling is the radiation surface. There is a problem in that a downward airflow is generated along the radiating surface, and the air warmed on the radiating surface at the time of heating causes an upward airflow along the radiating surface to cause temperature unevenness in the vertical direction in the living room.

これに対して、特許文献2に示される暖房システムは、床下空間で暖めた空気を建物内で循環させる構成であるので、1つの熱源機により建物の全館をむらなく暖房することができるが、建物を冷房する構成には適用することができないものである。   On the other hand, since the heating system shown in Patent Document 2 is configured to circulate the air heated in the underfloor space in the building, the entire building can be uniformly heated by one heat source unit. It cannot be applied to a structure for cooling a building.

本発明は、このような点を解決することを課題とするものであり、その目的は、居室に上下方向の温度むらを生じさせることなく建物の全館を快適に冷暖房可能な全館冷暖房システムを提供することにある。   An object of the present invention is to solve such a problem, and an object of the present invention is to provide a whole-building air conditioning system that can comfortably cool and heat the entire building without causing uneven temperature in the vertical direction of the living room. There is to do.

本発明の全館冷暖房システムは、建物の全館冷暖房システムであって、前記建物の居室に立設される輻射パネルと、前記居室の床に前記輻射パネルに隣接して設けられる床側通気口と、前記居室の天井に前記輻射パネルに隣接して設けられる天井側通気口と、前記居室とは別に区画して設けられ、前記床側通気口と前記天井側通気口とを連通させる循環路と、冷房時に冷却した熱媒体を前記輻射パネルに供給するとともに、暖房時に加熱した熱媒体を前記輻射パネルに供給する熱源機と、暖房時に前記循環路内の空気を前記天井側通気口の側から前記床側通気口の側へ向けて強制的に循環させるとともに、冷房時に前記循環路内の空気を前記床側通気口の側から前記天井側通気口の側へ向けて強制的に循環させる循環ファンと、を有することを特徴とする。   The entire building air-conditioning system of the present invention is a building-wide air-conditioning system, and includes a radiant panel standing in a room of the building, a floor-side vent provided on the floor of the room adjacent to the radiant panel, A ceiling-side vent provided in the ceiling of the living room adjacent to the radiation panel; a circulation path provided separately from the living room, and for communicating the floor-side vent and the ceiling-side vent; A heat source cooled during cooling is supplied to the radiant panel, a heat source unit is supplied to the radiant panel with a heat medium heated during heating, and air in the circulation path is heated from the ceiling side vent side during heating. A circulation fan that forcibly circulates toward the floor-side vent side and forcibly circulates air in the circulation path from the floor-side vent side to the ceiling-side vent side during cooling. And having And features.

本発明の全館冷暖房システムは、上記構成において、前記建物は、中間仕切り部により仕切られた複数の階層を有し、それぞれの階層の居室に前記輻射パネルが立設されるとともに、下階の居室の天井に設けられる天井側通気口は、上階の居室の床に設けられる床側通気口に連通し、前記循環路は、最下階の居室の床に設けられる床側通気口と最上階の居室の天井に設けられる天井側通気口とを連通させるのが好ましい。   In the entire building air conditioning system according to the present invention, in the above configuration, the building has a plurality of levels partitioned by an intermediate partition, and the radiation panel is erected in each level of the room, and the room on the lower floor The ceiling-side vent provided on the ceiling of the floor communicates with the floor-side vent provided on the floor of the upper-floor room, and the circulation path includes the floor-side vent provided on the floor of the lower-floor room and the uppermost floor. It is preferable to communicate with a ceiling side vent provided in the ceiling of the living room.

本発明の全館冷暖房システムは、上記構成において、前記循環路は、最下階の居室の床下空間と最上階の居室の天井裏空間とを前記建物の内部において直接的に連通させる直通ダクトであり、前記循環ファンは、前記床下空間、前記天井裏空間または前記直通ダクトの内部に配置されているのが好ましい。   In the entire building air conditioning system according to the present invention, in the above configuration, the circulation path is a direct duct that directly communicates the underfloor space of the lowermost floor room and the ceiling back space of the uppermost room inside the building. The circulation fan is preferably disposed inside the underfloor space, the ceiling space, or the direct duct.

本発明の全館冷暖房システムは、上記構成において、前記循環路は、前記中間仕切り部の一部を開口して形成されて床側循環口を介して最下階の居室の床下空間に連通するとともに天井側循環口を介して最上階の居室の天井裏空間に連通する吹抜け部であり、前記循環ファンは、最上階の天井に取り付けられて前記吹抜け部に配置されたシーリングファンであるのが好ましい。   In the entire building air conditioning system according to the present invention, in the above-described configuration, the circulation path is formed by opening a part of the intermediate partition portion, and communicates with the underfloor space of the lowermost room through the floor-side circulation port. Preferably, the ventilating part communicates with the ceiling space of the top floor living room via a ceiling-side circulation port, and the circulation fan is a ceiling fan attached to the ceiling of the top floor and disposed in the ventilated part. .

本発明の全館冷暖房システムは、上記構成において、前記中間仕切り部は、下階の天井と上階の床との間に懐空間を有しているのが好ましい。   In the entire building air conditioning system according to the present invention, in the above configuration, it is preferable that the intermediate partition portion has a pocket space between the ceiling of the lower floor and the floor of the upper floor.

本発明の全館冷暖房システムは、上記構成において、前記輻射パネルが設けられていない部屋の天井に、前記懐空間の内部の空気を前記部屋の内部に向けて吹き出す天井吹出し部が設けられているのが好ましい。   In the entire building air conditioning system according to the present invention, in the above-described configuration, a ceiling blow-out unit that blows air inside the pocket space toward the inside of the room is provided on the ceiling of the room where the radiation panel is not provided. Is preferred.

本発明の全館冷暖房システムは、上記構成において、前記建物内に外気を供給する給気部と、前記建物内の空気を該建物の外部に排出する排気部とを備え、前記給気部は、前記居室の床下空間、前記居室の天井裏空間または前記循環路に外気を供給するのが好ましい。   The entire building air conditioning system according to the present invention includes the air supply unit that supplies the outside air into the building and the exhaust unit that discharges the air in the building to the outside of the building in the above configuration, It is preferable to supply outside air to the underfloor space of the living room, the ceiling space of the living room, or the circulation path.

本発明の全館冷暖房システムは、上記構成において、前記輻射パネルは隣接する2つの居室を仕切る間仕切り壁を兼ねるとともに当該2つの居室を冷暖房するのが好ましい。   In the entire building air conditioning system according to the present invention, in the above-described configuration, it is preferable that the radiation panel also serves as a partition wall for partitioning two adjacent living rooms and also cools and heats the two living rooms.

本発明の全館冷暖房システムは、上記構成において、前記建物は、熱損失係数が1.9〜0.6の高断熱住宅であり、
前記居室の床下空間、前記居室の天井裏空間および前記循環路は、それぞれ前記建物の断熱ラインの内側に設けられているのが好ましい。
The entire building air-conditioning system of the present invention is the above configuration, wherein the building is a highly insulated house having a heat loss coefficient of 1.9 to 0.6,
It is preferable that the underfloor space of the living room, the ceiling space of the living room, and the circulation path are respectively provided inside the heat insulation line of the building.

本発明の全館冷暖房システムは、上記構成において、前記建物の外皮の熱貫流率は、前記循環路の熱貫流率よりも小さいのが好ましい。   In the entire building air-conditioning system according to the present invention, in the above configuration, it is preferable that the heat flow rate of the outer skin of the building is smaller than the heat flow rate of the circulation path.

本発明によれば、居室に上下方向の温度むらを生じさせることなく建物の全館を快適に冷暖房可能な全館冷暖房システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the whole building air conditioning system which can cool / heat the whole building comfortably without producing the temperature unevenness of an up-down direction in a living room can be provided.

本発明の一実施形態である全館冷暖房システムを、冷房モード時における空気の流れとともに模式的に示す説明図である。It is explanatory drawing which shows typically the whole building air conditioning system which is one Embodiment of this invention with the flow of the air at the time of air_conditioning | cooling mode. 図1に示す全館冷暖房システムを、暖房モード時における空気の流れとともに模式的に示す説明図である。It is explanatory drawing which shows typically the whole building air conditioning system shown in FIG. 1 with the flow of the air at the time of heating mode. 図1、図2に示す輻射パネル装置の構成を示す斜視図である。It is a perspective view which shows the structure of the radiation panel apparatus shown in FIG. 1, FIG. 図1、図2に示す直通ダクトの半断面図である。FIG. 3 is a half sectional view of the direct duct shown in FIGS. 1 and 2. (a)は熱損失係数が0.6の建物の外壁の断面図であり、(b)は熱損失係数が1.9の建物の外壁の断面図である。(A) is sectional drawing of the outer wall of the building whose heat loss coefficient is 0.6, (b) is sectional drawing of the outer wall of the building whose heat loss coefficient is 1.9. 図1に示す全館冷暖房システムの変形例であって、循環路を吹抜け部で構成した場合を、冷房モード時における空気の流れとともに概略で示す説明図である。FIG. 9 is a modified example of the entire building air conditioning system shown in FIG. 1, and is an explanatory diagram schematically showing the case where the circulation path is configured by a blow-off section together with the air flow in the cooling mode. 図6に示す変形例の全館冷暖房システムを、暖房モード時における空気の流れとともに概略で示す説明図である。It is explanatory drawing which shows schematically the whole building air conditioning system of the modification shown in FIG. 6 with the flow of the air at the time of heating mode.

以下、図面を参照して、本発明をより具体的に例示説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

図1、図2には、本発明の一実施の形態である全館冷暖房システムを、3階建の戸建て住宅である建物1に適用した場合を示す。この建物1は、外壁2、屋根3および2つの中間仕切り部4、5を有し、これらの中間仕切り部4、5により建物1内が上下3つの階層に仕切られて3階建てに構成されている。   FIG. 1 and FIG. 2 show a case where the entire building air conditioning system according to one embodiment of the present invention is applied to a building 1 which is a three-story detached house. This building 1 has an outer wall 2, a roof 3, and two intermediate partition parts 4, 5, and the interior of the building 1 is partitioned into three upper and lower levels by these intermediate partition parts 4, 5 and is configured in three stories. ing.

2つの中間仕切り部4、5は、それぞれ下階の天井Cを構成するとともに上階の床Fを構成している。つまり、1階部分と2階部分とを仕切る中間仕切り部4は1階部分の天井Cを構成するとともに2階部分の床Fを構成し、2階部分と3階部分とを仕切る中間仕切り部5は2階部分の天井Cを構成するとともに3階部分の床Fを構成している。   The two intermediate partition parts 4 and 5 constitute the lower floor ceiling C and the upper floor F, respectively. That is, the intermediate partition part 4 that partitions the first floor part and the second floor part constitutes the ceiling C of the first floor part and the floor F of the second floor part and partitions the second floor part and the third floor part. 5 constitutes the ceiling C of the second floor part and the floor F of the third floor part.

なお、中間仕切り部4、5が切り欠かれて1階から3階に亘って上下に延びる空間は階段室や吹抜けに相当する部分である。   In addition, the space where the intermediate partition parts 4 and 5 are notched and extends up and down from the first floor to the third floor is a portion corresponding to a staircase or an atrium.

この建物1の1階部分の床Fの下側は床下空間10となっており、3階部分の天井Cの上側は天井裏空間(小屋裏空間)11となっている。また、2つの中間仕切り部4、5の内部には、それぞれ天井Cと床Fとに挟まれた懐空間12が設けられている。   The lower side of the floor F of the first floor portion of the building 1 is an underfloor space 10, and the upper side of the ceiling C of the third floor portion is a ceiling back space (shed space) 11. Further, a pocket space 12 sandwiched between the ceiling C and the floor F is provided inside the two intermediate partition portions 4 and 5, respectively.

この建物1の各階には、それぞれ居室R1〜R4が設けられている。例えば、この建物の1階部分には1つの居室R1が設けられ、この建物の2階部分には例えば2つの居室R2、R3が設けられ、この建物の3階部分には例えば1つの居室R4が設けられている。また、この建物1の1階部分には、居室R1に隣接して浴室や便所などの水回り室R5が設けられている。   Rooms R1 to R4 are provided on each floor of the building 1, respectively. For example, one living room R1 is provided in the first floor portion of the building, for example, two living rooms R2 and R3 are provided in the second floor portion of the building, and one living room R4 is provided in the third floor portion of the building, for example. Is provided. In addition, a water room R5 such as a bathroom or a toilet is provided on the first floor portion of the building 1 adjacent to the living room R1.

図3に示すように、この全館冷暖房システムは、この建物1を冷暖房する装置として輻射パネル装置20を備えている。図1、図3に示すように、輻射パネル装置20は、各階の居室R1〜R4に立設される複数の輻射パネル21と、これらの輻射パネル21に熱媒体を供給する熱源機22とを有している。   As shown in FIG. 3, the entire building air conditioning system includes a radiation panel device 20 as a device for air conditioning the building 1. As shown in FIGS. 1 and 3, the radiant panel device 20 includes a plurality of radiant panels 21 erected in the living rooms R1 to R4 on each floor, and a heat source unit 22 that supplies a heat medium to the radiant panels 21. Have.

輻射パネル21は、居室R1〜R4の上下方向に沿って略天地丈に延びる垂直な放射面21aを有し、その下端部分において居室R1〜R4の床Fの上に設置されるとともに、その上端部分において天井Cに支持されている。なお、輻射パネル21は、その放射面21aが居室R1〜R4の上下方向に沿って垂直に延び、その上端が天井Cの近くに達する構成であれば、必ずしもその上端が天井Cに達して当該天井Cに支持される構成でなくてもよい。   The radiation panel 21 has a vertical radiation surface 21a extending substantially in the vertical direction along the vertical direction of the living rooms R1 to R4, and is installed on the floor F of the living rooms R1 to R4 at the lower end portion thereof, and the upper end thereof. Part is supported by the ceiling C. In addition, if the radiation surface 21a is the structure which the radiation | emission surface 21a extends perpendicularly | vertically along the up-down direction of room R1-R4 and the upper end reaches near the ceiling C, the upper end necessarily reaches the ceiling C and the said The configuration may not be supported by the ceiling C.

図示はしないが、輻射パネル21は、その内部に熱源機22から供給される熱媒体を通すパイプを備えており、このパイプに加熱または冷却された熱媒体が通ることで暖房作用または冷却作用を生じる構成となっている。パイプは、熱源機22から供給される熱媒体と輻射パネル21との間で効率よく熱交換が行い得るように、例えば波型配置やU字型配置で輻射パネル21に内蔵された構成とされる。   Although not shown, the radiant panel 21 includes a pipe through which the heat medium supplied from the heat source unit 22 is passed, and the heating or cooling function is performed by passing the heated or cooled heat medium through the pipe. The resulting configuration. The pipe is configured to be incorporated in the radiant panel 21 in, for example, a wave shape arrangement or a U-shape arrangement so that heat can be efficiently exchanged between the heat medium supplied from the heat source device 22 and the radiant panel 21. The

なお、輻射パネル21としては、熱源機22から供給される熱媒体を通すパイプを内蔵したもの、あるいは熱媒体を直接通す中空部を有するものであれば、種々の形状ないし構成のものを用いることができる。例えば、輻射パネル21は、上下方向に延びる複数の羽根状のパネルを水平方向に等間隔に並べて配置したルーバー状の形態を有し、これらの羽根状のパネルの内部に熱源機22から供給される熱媒体が通るパイプを内蔵したもの(あるいは中空部を有するもの)とすることができる。   The radiant panel 21 may have various shapes or configurations as long as it has a built-in pipe through which the heat medium supplied from the heat source unit 22 passes or has a hollow part through which the heat medium passes directly. Can do. For example, the radiation panel 21 has a louver shape in which a plurality of blade-like panels extending in the vertical direction are arranged at equal intervals in the horizontal direction, and is supplied from the heat source device 22 to the inside of these blade-like panels. It is possible to have a built-in pipe (or a hollow part) through which a heat medium passes.

熱源機22は、例えば建物1の外部に配置され、熱媒体の供給用配管23と熱媒体の回収用配管24とを介して各居室R1〜R4に設けられる各輻射パネル21に接続されている。この熱源機22は、例えばヒートポンプで構成することができる。熱源機22は、冷房モードで作動する際には、熱媒体を冷却するとともに冷却した熱媒体を供給用配管23を介して輻射パネル21に供給することができる。また、熱源機22は、暖房モードで作動する際には、熱媒体を加熱するとともに加熱した熱媒体を供給用配管23を介して輻射パネル21に供給することができる。熱媒体としては例えば水が用いられるが、他の流体を用いることもできる。   The heat source device 22 is disposed, for example, outside the building 1, and is connected to each radiation panel 21 provided in each room R <b> 1 to R <b> 4 via a heat medium supply pipe 23 and a heat medium recovery pipe 24. . The heat source unit 22 can be constituted by a heat pump, for example. When operating in the cooling mode, the heat source device 22 can cool the heat medium and supply the cooled heat medium to the radiation panel 21 via the supply pipe 23. Further, when operating in the heating mode, the heat source device 22 can heat the heat medium and supply the heated heat medium to the radiation panel 21 via the supply pipe 23. For example, water is used as the heat medium, but other fluids can also be used.

熱源機22の運転を操作するためのコントローラ25を何れかの居室R1〜R4に設けることができる。このコントローラ25は、熱源機22の作動のオン・オフを行うとともに、冷房モードと暖房モードの切替えや温度調整等を行うことが可能な構成とすることができる。   A controller 25 for operating the heat source unit 22 can be provided in any of the living rooms R1 to R4. The controller 25 can be configured to turn on / off the operation of the heat source unit 22 and to perform switching between the cooling mode and the heating mode, temperature adjustment, and the like.

このような構成の輻射パネル装置20は、冷房モードで作動すると、熱源機22から各階の居室R1〜R4のそれぞれの輻射パネル21に冷却した熱媒体を供給し、これらの輻射パネル21の吸熱作用により各階の居室R1〜R4を冷房することができる。また、輻射パネル装置20は、暖房モードで作動したときには、熱源機22から各階の居室R1〜R4のそれぞれの輻射パネル21に加熱した熱媒体を供給し、これらの輻射パネル21からの放熱により各階の居室R1〜R4を暖房することができる。   When the radiating panel device 20 having such a configuration operates in the cooling mode, the cooling medium is supplied from the heat source unit 22 to the radiating panels 21 of the rooms R1 to R4 on each floor, and the radiating panel 21 absorbs heat. Thus, the rooms R1 to R4 on each floor can be cooled. In addition, when the radiant panel device 20 operates in the heating mode, the heated heat medium is supplied from the heat source unit 22 to the radiant panels 21 of the rooms R1 to R4 of the respective floors, and each radiant panel 21 is radiated by the heat radiation. The living rooms R1 to R4 can be heated.

輻射パネル21は、隣接する2つの居室を仕切る間仕切り壁を兼ねた構成とすることもできる。例えば、図1に示すように、建物1の2階部分において、ダイニングルームとされる居室R2とリビングルームとされる居室R3との間に、これらの居室R2、R3の間に移動通路を残した状態で輻射パネル21を間仕切り壁として配置する構成とすることができる。この場合、間仕切り壁を兼ねる輻射パネル21は、それぞれの居室R2、R3に面することになるので、1つの輻射パネル21によって両方の居室R2、R3を冷暖房することができる。したがって、各居室R2、R3への輻射パネル21の設置スペースを省略してこの全館冷暖房システムのレイアウト性を高めることができるとともに、別途間仕切り壁を設けることを不要としてこの全館冷暖房システムが用いられる建物1のコストを低減することができる。   The radiation panel 21 can also be configured to serve as a partition wall that partitions two adjacent living rooms. For example, as shown in FIG. 1, in the second floor portion of the building 1, a moving passage is left between the living room R <b> 2 which is a dining room and the living room R <b> 3 which is a living room. In this state, the radiation panel 21 can be arranged as a partition wall. In this case, since the radiation panel 21 that also serves as the partition wall faces the respective living rooms R2 and R3, both the living rooms R2 and R3 can be cooled and heated by the single radiation panel 21. Therefore, it is possible to improve the layout of the entire building air conditioning system by omitting the installation space of the radiation panel 21 in each of the living rooms R2, R3, and to use the entire building air conditioning system without the need for providing separate partitions. 1 cost can be reduced.

なお、輻射パネル21は、2つの居室R2、R3の間仕切り壁を兼ねた配置に限らず、例えば居室R2、R3の壁際に配置するなど、居室R2、R3を冷暖房することができる位置であれば任意の位置に配置することもできる。   In addition, the radiation panel 21 is not limited to the arrangement that also serves as the partition wall of the two living rooms R2 and R3, and may be a position that can cool and heat the living rooms R2 and R3, for example, arranged near the walls of the living rooms R2 and R3. It can also be arranged at an arbitrary position.

輻射パネル21が立設された居室R1〜R4の床Fには、それぞれ輻射パネル21の下端部分に隣接して、つまりその放射面21aに沿った下方側に位置して床側通気口30が設けられている。そして、1階の床Fに設けられた床側通気口30は床下空間10に連通し、2階の床Fに設けられた床側通気口30は1階と2階とを仕切る中間仕切り部4の懐空間12に連通し、3階の床Fに設けられた床側通気口30は2階と3階を仕切る中間仕切り部5の懐空間12に連通している。   The floors F of the living rooms R1 to R4 where the radiant panel 21 is erected are adjacent to the lower end portion of the radiant panel 21, that is, on the lower side along the radiating surface 21a, and have floor-side vents 30. Is provided. The floor-side vent 30 provided on the floor F on the first floor communicates with the under-floor space 10, and the floor-side vent 30 provided on the floor F on the second floor is an intermediate partition that partitions the first floor and the second floor. The floor side vent 30 provided in the floor F on the third floor communicates with the pocket space 12 of the intermediate partition 5 that partitions the second floor and the third floor.

なお、これらの床側通気口30は、図3に示すようなガラリ(ルーバー)を取り付けた構成とすることもできる。   In addition, these floor side vents 30 can also be set as the structure which attached the louver (louver) as shown in FIG.

また、輻射パネル21が立設された居室R1〜R4の天井Cには、それぞれ輻射パネル21の上端部分に隣接して、つまりその放射面21aに沿った上方側に位置して天井側通気口31が設けられている。そして、1階の天井Cに設けられた天井側通気口31は1階と2階とを仕切る中間仕切り部4の懐空間12に連通し、2階の天井Cに設けられた天井側通気口31は2階と3階とを仕切る中間仕切り部5の懐空間12に連通し、3階の天井Cに設けられた天井側通気口31はこの建物1の天井裏空間11に連通している。   Further, the ceilings C of the living rooms R1 to R4 where the radiation panel 21 is erected are respectively adjacent to the upper end portion of the radiation panel 21, that is, on the upper side along the radiation surface 21a. 31 is provided. The ceiling side vent 31 provided on the ceiling C on the first floor communicates with the pocket space 12 of the intermediate partition 4 that partitions the first floor and the second floor, and the ceiling side vent provided on the ceiling C on the second floor. 31 communicates with the pocket space 12 of the intermediate partition 5 that partitions the second floor and the third floor, and the ceiling-side vent 31 provided in the ceiling C on the third floor communicates with the ceiling space 11 of the building 1. .

なお、これらの天井側通気口31も、床側通気口30と同様にガラリ(ルーバー)を取り付けた構成とすることもできる。   In addition, these ceiling side vents 31 can also be made into the structure which attached the louver (louver) similarly to the floor side vent hole 30. FIG.

さらに、1階の天井Cに設けられた天井側通気口31は1階と2階とを仕切る中間仕切り部4の懐空間12を介して2階の床Fに設けられた床側通気口30と連通し、2階の天井Cに設けられた天井側通気口31は2階と3階とを仕切る中間仕切り部5の懐空間12を介して3階の床Fに設けられた床側通気口30と連通している。   Further, a ceiling side vent 31 provided on the ceiling C on the first floor is a floor side vent 30 provided on the floor F on the second floor via the pocket space 12 of the intermediate partition 4 that partitions the first floor and the second floor. The ceiling-side vent 31 provided on the ceiling C on the second floor is connected to the floor-side ventilation provided on the floor F on the third floor via the pocket space 12 of the intermediate partition 5 that partitions the second and third floors. It communicates with the mouth 30.

このような構成により、建物1の床下空間10と天井裏空間11との間は、それぞれの居室R1〜R4の天井Cに設けられた天井側通気口31、それぞれの居室R1〜R4の床Fに設けられた床側通気口30および中間仕切り部4、5に設けられた懐空間12を介して連通されている。   With such a configuration, the space between the underfloor space 10 and the back space 11 of the building 1 is a ceiling-side vent 31 provided in the ceiling C of each living room R1 to R4, and the floor F of each living room R1 to R4. Are communicated with each other through a floor space 12 provided in the floor side vent 30 and the intermediate partitions 4 and 5 provided in the interior.

ここで、中間仕切り部4、5に懐空間12を設け、床側通気口30と天井側通気口31とを懐空間12を介して連通させる構成としたことにより、上階の輻射パネル21と下階の輻射パネル21とを、互いに水平方向にずれるように配置することができる。これにより、上階の床側通気口30と下階の天井側通気口31との位置合わせ、つまり上階の輻射パネル21と下階の輻射パネル21との位置合わせを不要として、各階における輻射パネル21のレイアウト性を高めることができる。   Here, by providing a pocket space 12 in the intermediate partitions 4 and 5 and having the floor-side vent 30 and the ceiling-side vent 31 communicate with each other via the pocket 12, The radiation panel 21 on the lower floor can be arranged so as to be displaced in the horizontal direction. This eliminates the need for alignment between the upper-floor floor-side vent 30 and the lower-floor ceiling-side vent 31, that is, alignment between the upper-floor radiation panel 21 and the lower-floor radiation panel 21. The layout of the panel 21 can be improved.

建物1には、最下階である1階の床Fに設けられた床側通気口30と最上階である3階の天井Cに設けられた天井側通気口31とを連通する循環路として直通ダクト40が設けられている。直通ダクト40は、上下に真っ直ぐに延びる円筒状に形成され、その一端において最上階の天井Cに接続されて天井裏空間11に連通するとともに、他端において最下階の床Fに接続されて床下空間10に連通している。つまり、直通ダクト40は、建物1の断熱ラインの内側において居室R1〜R4とは別に区画され、上記した床側通気口30、天井側通気口31および懐空間12を介した連通経路とは別の連通経路で建物1の床下空間10と天井裏空間11との間を直接的に連通して、床下空間10と天井裏空間11との間に循環経路を構成している。なお、直通ダクト40は、例えば四角筒状等異なる形状であってもよい。また、市販のダクト部材を利用したものでも、大工工事あるいは造作工事の一環としてボード材等を用いて筒状の空間を形成したものであってもよい。   The building 1 has a circulation path that connects the floor side vent 30 provided on the floor F on the first floor, which is the lowest floor, and the ceiling side vent 31 provided on the ceiling C, the third floor, which is the top floor. A direct duct 40 is provided. The direct duct 40 is formed in a cylindrical shape extending straight up and down, is connected to the ceiling C on the uppermost floor at one end thereof and communicates with the ceiling space 11, and is connected to the floor F on the lowermost floor at the other end. It communicates with the underfloor space 10. That is, the direct duct 40 is partitioned separately from the rooms R1 to R4 inside the heat insulation line of the building 1, and is separate from the communication path via the floor side vent 30, the ceiling side vent 31, and the pocket space 12 described above. The communication path directly communicates between the underfloor space 10 and the ceiling space 11 of the building 1 to form a circulation path between the underfloor space 10 and the ceiling space 11. The direct duct 40 may have a different shape such as a square tube. In addition, a commercially available duct member may be used, or a cylindrical space may be formed using a board material or the like as part of carpentry work or construction work.

このように、循環路を、床下空間10と天井裏空間11とを直接的に連通させる直通ダクト40で構成したことにより、床下空間10と天井裏空間11との間で効率よく空気を循環させることができる。   As described above, since the circulation path is configured by the direct duct 40 that directly communicates the underfloor space 10 and the ceiling space 11, air is efficiently circulated between the underfloor space 10 and the ceiling space 11. be able to.

床下空間10には循環ファン41が配置されている。この循環ファン41は、輻射パネル装置20が暖房モードで作動しているときには正転方向に作動して直通ダクト40の内部の空気を天井裏空間11の側から床下空間10の側へ向けて強制的に循環させ、輻射パネル装置20が冷房モードで作動しているときには逆転方向に作動して直通ダクト40の内部の空気を床下空間10の側から天井裏空間11の側へ向けて強制的に循環させる。   A circulation fan 41 is disposed in the underfloor space 10. The circulation fan 41 operates in the forward direction when the radiant panel device 20 is operating in the heating mode, forcing the air inside the direct duct 40 from the ceiling space 11 side toward the underfloor space 10 side. When the radiant panel device 20 is operating in the cooling mode, it is operated in the reverse direction to force air inside the direct duct 40 from the underfloor space 10 side toward the ceiling back space 11 side. Circulate.

なお、図示する場合では、循環ファン41は床下空間10に配置されるが、直通ダクト40の内部の空気を循環させることができれば、例えば天井裏空間11や直通ダクト40の内部などの任意の位置に配置することもできる。   In the illustrated case, the circulation fan 41 is disposed in the underfloor space 10. However, if the air inside the direct duct 40 can be circulated, for example, an arbitrary position such as the interior of the ceiling space 11 or the direct duct 40 is provided. It can also be arranged.

次に、このような構成の全館冷暖房システムにより建物1の全館を1つの熱源機22で冷暖房する際の空気の流れについて説明する。   Next, the flow of air when the entire building of the building 1 is air-conditioned with one heat source unit 22 by the entire building air-conditioning system having such a configuration will be described.

図1に示すように、全館冷暖房システムの輻射パネル装置20を冷房モードで作動させると、熱源機22から各居室R1〜R4に設置された輻射パネル21に冷却された熱媒体(冷水)が供給され、輻射パネル21の吸熱作用により当該輻射パネル21が設けられた居室R1〜R4が冷房される。   As shown in FIG. 1, when the radiant panel device 20 of the entire building air conditioning system is operated in the cooling mode, a cooled heat medium (cold water) is supplied from the heat source unit 22 to the radiant panels 21 installed in the respective rooms R1 to R4. The living rooms R1 to R4 in which the radiation panel 21 is provided are cooled by the heat absorbing action of the radiation panel 21.

このとき、輻射パネル21の放射面21aで冷やされた冷却空気は当該放射面21aに沿って下降気流を生じ、輻射パネル21の下端に隣接して設けられた床側通気口30から懐空間12ないし床下空間10へ導かれる。懐空間12に導かれた冷却空気は、下階の居室の天井Cに設けられた天井側通気口31を通して下階の居室に供給され、さらに下階の居室の輻射パネル21に沿って下降して当該居室の床Fに設けられた床側通気口30からさらに下階の懐空間12ないし床下空間10に導かれる。このように、輻射パネル21により冷却された冷却空気は、何れも、床側通気口30ないし天井側通気口31を通して下階に向けて流れ、床下空間10に導かれる。   At this time, the cooling air cooled by the radiation surface 21 a of the radiant panel 21 generates a downward air flow along the radiation surface 21 a and passes through the floor-side vent 30 provided adjacent to the lower end of the radiant panel 21. Or it is led to the underfloor space 10. The cooling air guided to the pocket space 12 is supplied to the lower-floor room through the ceiling-side vent 31 provided in the ceiling C of the lower-floor room, and further descends along the radiation panel 21 of the lower-floor room. The floor side vent 30 provided in the floor F of the living room is further led to the pocket space 12 or the floor space 10 on the lower floor. Thus, all the cooling air cooled by the radiation panel 21 flows toward the lower floor through the floor side vent 30 or the ceiling side vent 31 and is guided to the underfloor space 10.

床下空間10に導かれた冷却空気は、循環ファン41により直通ダクト40に沿って天井裏空間11に導かれ、そこから最上階の天井Cに設けられた天井側通気口31を通して再度居室R4に供給される。以下、上記と同様な経路で冷却空気が床下空間10に向けて各階の居室R1〜R4を通って下降していくことで、これらの居室R1〜R4が冷房される。   The cooling air guided to the underfloor space 10 is guided to the ceiling space 11 along the direct duct 40 by the circulation fan 41, and from there to the room R4 again through the ceiling side vent 31 provided in the ceiling C on the uppermost floor. Supplied. Thereafter, the cooling air descends through the rooms R1 to R4 of each floor toward the underfloor space 10 through the same path as described above, thereby cooling the rooms R1 to R4.

このように、各居室R1〜R4に設けられた輻射パネル21で各居室R1〜R4を冷房しつつ、当該輻射パネル21により冷却されて下降気流を生じた冷却空気を、当該冷却空気が生じる対流運動と循環ファン41による強制循環とを利用して建物1内で循環(還流)させて、全ての居室R1〜R4を上下方向の温度むらを生じさせることなく快適に冷房することができる。また、このような全館冷房を、1つの熱源機22から複数の輻射パネル21に冷却した熱媒体を供給することにより行うことができる。   Thus, while cooling each room R1-R4 with the radiation panel 21 provided in each room R1-R4, the convection which the said cooling air produces | generates the cooling air which was cooled by the said radiation panel 21 and produced the downdraft It is possible to circulate (reflux) in the building 1 using exercise and forced circulation by the circulation fan 41 to cool all the rooms R1 to R4 comfortably without causing temperature unevenness in the vertical direction. In addition, such a whole building cooling can be performed by supplying a cooled heat medium from one heat source device 22 to a plurality of radiation panels 21.

一方、図2に示すように、全館冷暖房システムの輻射パネル装置20を暖房モードで作動させると、熱源機22から各居室R1〜R4に設置された輻射パネル21に加熱された熱媒体(温水)が供給され、輻射パネル21からの放熱により当該輻射パネル21が設けられた居室R1〜R4が暖房される。   On the other hand, as shown in FIG. 2, when the radiation panel device 20 of the entire building air conditioning system is operated in the heating mode, the heat medium (hot water) heated from the heat source unit 22 to the radiation panels 21 installed in the respective rooms R1 to R4. Is supplied, and the living rooms R1 to R4 provided with the radiation panel 21 are heated by heat radiation from the radiation panel 21.

このとき、輻射パネル21の放射面21aで暖められた加熱空気は当該放射面21aに沿って上昇気流を生じ、輻射パネル21の上端に隣接して設けられた天井側通気口31から懐空間12ないし天井裏空間11へ導かれる。懐空間12に導かれた加熱空気は、上階の居室の床Fに設けられた床側通気口30を通して上階の居室に供給され、さらに上階の居室の輻射パネル21に沿って上昇して当該居室の天井Cに設けられた天井側通気口31からさらに上階の懐空間12ないし天井裏空間11に導かれる。このように、輻射パネル21により加熱された加熱空気は、何れも、天井側通気口31ないし床側通気口30を通して上階に向けて流れ、天井裏空間11に導かれる。   At this time, the heated air heated by the radiation surface 21 a of the radiation panel 21 generates an upward air flow along the radiation surface 21 a, and the space 12 from the ceiling-side vent 31 provided adjacent to the upper end of the radiation panel 21. Or it is led to the ceiling space 11. The heated air guided to the pocket space 12 is supplied to the upper-floor room through the floor-side vent 30 provided in the floor F of the upper-floor room, and further rises along the radiation panel 21 of the upper-floor room. Then, the air is further guided from the ceiling-side vent 31 provided in the ceiling C of the living room to the pocket space 12 or the ceiling space 11 on the upper floor. Thus, all of the heated air heated by the radiation panel 21 flows toward the upper floor through the ceiling side vent 31 or the floor side vent 30 and is led to the ceiling space 11.

天井裏空間11に導かれた加熱空気は、循環ファン41により直通ダクト40に沿って床下空間10に導かれ、そこから最下階の床Fに設けられた床側通気口30を通して再度居室R1に供給される。以下、上記と同様な経路で加熱空気が天井裏空間11に向けて各階の居室R1〜R4を通って上昇していくことで、これらの居室R1〜R4が暖房される。   The heated air led to the ceiling space 11 is led to the underfloor space 10 along the direct duct 40 by the circulation fan 41, and from there through the floor side vent 30 provided in the floor F on the lowermost floor, the living room R1 again. To be supplied. Thereafter, the heated air rises through the rooms R1 to R4 on each floor toward the ceiling space 11 through the same path as described above, so that these rooms R1 to R4 are heated.

このように、各居室R1〜R4に設けられた輻射パネル21で各居室R1〜R4を暖房しつつ、当該輻射パネル21により加熱されて上昇気流を生じた加熱空気を、当該加熱空気が生じる対流運動と循環ファン41による強制循環とを利用して建物1内で循環(還流)させて、全ての居室R1〜R4を上下方向の温度むらを生じさせることなく快適に暖房することができる。また、このような全館暖房を、1つの熱源機22から複数の輻射パネル21に加熱した熱媒体を供給することにより行うことができる。   Thus, while heating each room R1-R4 with the radiation panel 21 provided in each room R1-R4, the convection which the said heating air produces | generates the heating air which was heated by the said radiation panel 21 and produced the updraft Circulation (recirculation) is performed in the building 1 using exercise and forced circulation by the circulation fan 41, and all the living rooms R1 to R4 can be comfortably heated without causing uneven temperature in the vertical direction. Moreover, such a whole building heating can be performed by supplying a heated heat medium from one heat source device 22 to the plurality of radiation panels 21.

本発明の全館冷暖房システムでは、輻射パネル21が設けられない部屋の天井Cに、天井吹出し部42を設けることもできる。図1、図2では、水回り室R5の天井Cに天井吹出し部42を設けた場合を示す。この天井吹出し部42は、例えば給気ファンとして構成することができ、水回り室R5の天井Cを構成する中間仕切り部4の懐空間12の内部の空気を水回り室R5の内部に向けて吹き出させることができる。   In the entire building air conditioning system of the present invention, the ceiling outlet 42 can be provided on the ceiling C of the room where the radiation panel 21 is not provided. In FIG. 1, FIG. 2, the case where the ceiling blowing part 42 is provided in the ceiling C of the water chamber R5 is shown. This ceiling blowing part 42 can be configured as an air supply fan, for example, and directs the air inside the pocket space 12 of the intermediate partition part 4 that constitutes the ceiling C of the water circulating room R5 toward the inside of the water circulating room R5. Can be blown out.

このような天井吹出し部42を設けたことにより、例えば、居室R1と水回り室R5との間を仕切る間仕切りが輻射パネル21ではなく通常の壁とされて水回り室R5に輻射パネル21が設けられない場合であっても、輻射パネル21により加熱または冷却されて懐空間12に入り込んだ空気を、天井吹出し部42から水回り室R5に吹き込んで当該水回り室R5を冷暖房させることができる。つまり、水回り室R5のように輻射パネル21が設けられない部屋にも、輻射パネル21により加熱または冷却された空気を供給することができる。これにより、輻射パネル21が設けられない部屋の快適性を高めることができる。   By providing such a ceiling blow-out portion 42, for example, the partition that partitions the living room R1 and the water supply room R5 is not a radiant panel 21, but a normal wall, and the radiant panel 21 is provided in the water supply room R5. Even if it is not possible, the air that has been heated or cooled by the radiant panel 21 and entered the pocket space 12 can be blown from the ceiling blowing portion 42 into the water-circulating chamber R5 to cool and cool the water-circulating chamber R5. That is, the air heated or cooled by the radiation panel 21 can be supplied also to the room where the radiation panel 21 is not provided, such as the water chamber R5. Thereby, the comfort of the room in which the radiation panel 21 is not provided can be improved.

なお、天井吹出し部42と同様の構成の給気ファン43を、輻射パネル21が設けられた居室R1〜R4の輻射パネル21から離れた部分における天井Cに設けることもできる。これにより、居室R1〜R4内の輻射パネル21によって冷暖房されづらい部分にも輻射パネル21により加熱または冷却された空気を供給することができ、これにより当該居室R1〜R4の温度むらをさらに低減させることができる。   In addition, the air supply fan 43 having the same configuration as that of the ceiling blow-out unit 42 can be provided on the ceiling C in a portion away from the radiation panel 21 of the living rooms R1 to R4 where the radiation panel 21 is provided. Thereby, the air heated or cooled by the radiation panel 21 can be supplied also to the part which is hard to be air-conditioned by the radiation panel 21 in the living rooms R1 to R4, thereby further reducing the temperature unevenness of the living rooms R1 to R4. be able to.

建物1には、建物1内に外気を供給する給気部50と、建物1内の空気を該建物1の外部に排出する排気部51とを設けることもできる。図示する場合では、外壁2の床下空間10を区画する位置に給気部50を設けた場合を示す。この場合、給気部50は、例えば外気導入ファンとして構成することができ、床下空間10に外気を供給することができる。なお、給気部50は床下空間10に外気を供給する構成に限らず、天井裏空間11や直通ダクト(循環部)40の内部に外気を供給する構成としてもよい。   The building 1 can also be provided with an air supply unit 50 that supplies outside air into the building 1 and an exhaust unit 51 that discharges the air inside the building 1 to the outside of the building 1. In the case shown in the figure, a case is shown in which an air supply unit 50 is provided at a position that partitions the underfloor space 10 of the outer wall 2. In this case, the air supply unit 50 can be configured as an outside air introduction fan, for example, and can supply outside air to the underfloor space 10. The air supply unit 50 is not limited to a configuration that supplies outside air to the underfloor space 10, and may be configured to supply outside air to the interior of the ceiling space 11 and the direct duct (circulation unit) 40.

一方、排気部51は、例えば図1、図2において1階の水回り室R5の天井Cに設けられるように、排気ファン51aを備えた排気ダクトとして構成することができる。この場合、排気ダクトの一端は水回り室R5に開口し、他端は建物1の外部に開口しており、排気ダクトの中間部分に排気ファン51aが設けられる。   On the other hand, the exhaust part 51 can be configured as an exhaust duct provided with an exhaust fan 51a so as to be provided, for example, on the ceiling C of the water circulation room R5 on the first floor in FIGS. In this case, one end of the exhaust duct is opened to the water chamber R5, the other end is opened to the outside of the building 1, and an exhaust fan 51a is provided in the middle part of the exhaust duct.

また、排気部51は、例えば図1、図2において2階にダイニングキッチンとして利用される居室R2に設けられるレンジフード51bを有する構成することもできる。この場合、レンジフード51bに内蔵された排気ファン(不図示)により居室R2内の空気を外部に排気することができる。   Moreover, the exhaust part 51 can also comprise the range hood 51b provided in living room R2 utilized as a dining kitchen on the 2nd floor in FIG. 1, FIG. 2, for example. In this case, the air in the room R2 can be exhausted to the outside by an exhaust fan (not shown) built in the range hood 51b.

さらに、排気部51は、例えば図1、図2において3階の外壁2の部分に設けられるように、単なる排気ファンにより構成することもできる。   Furthermore, the exhaust part 51 can also be comprised with a simple exhaust fan so that it may be provided, for example in the part of the outer wall 2 of the 3rd floor in FIG. 1, FIG.

このように、建物1に給気部50と排気部51とを設けることにより、建物1を循環する空気に給気部50から外気を供給しつつ建物1を循環する空気の一部を排気部51から建物1の外部に排気することができる。これにより、建物1内を循環する空気の一部を換気して、冷暖房された空気による不快感を低減させることができる。   Thus, by providing the air supply unit 50 and the exhaust unit 51 in the building 1, a part of the air circulating in the building 1 is supplied to the air circulating in the building 1 while supplying the outside air from the air supply unit 50 to the exhaust unit. The air can be exhausted from 51 to the outside of the building 1. Thereby, a part of the air circulating in the building 1 can be ventilated to reduce discomfort caused by the air that has been air-conditioned.

この全館冷暖房システムは、例えば熱損失係数(Q値)が1.9〜0.6の高断熱住宅である建物1に適用されるのが好ましい。この場合、床下空間10、天井裏空間11および直通ダクト(循環路)40は、それぞれ建物1の断熱ラインの内側に設けられるのが好ましい。なお、建物1の断熱ラインとは、建物1の屋内と屋外の間に設けられた断熱材層のことである。   This whole building air conditioning system is preferably applied to a building 1 which is a highly insulated house having a heat loss coefficient (Q value) of 1.9 to 0.6, for example. In this case, the underfloor space 10, the ceiling back space 11 and the direct duct (circulation path) 40 are preferably provided inside the heat insulation line of the building 1. In addition, the heat insulation line of the building 1 is a heat insulating material layer provided between the indoor and the outdoor of the building 1.

このような高断熱住宅に全館冷暖房システムを設けることにより、より小さな出力の熱源機22で効率よく全館を冷暖房することができる。   By providing the whole building air-conditioning system in such a highly insulated house, the whole building can be efficiently air-conditioned by the heat source unit 22 having a smaller output.

また、この全館冷暖房システムが設けられる建物1が上記のような高断熱住宅とされた場合には、建物1の外皮つまり外壁2の熱貫流率(K値)を直通ダクト(循環路)40の熱貫流率よりも小さくするのが好ましい。   Further, when the building 1 provided with the entire building air conditioning system is a highly insulated house as described above, the heat transmissivity (K value) of the outer skin of the building 1, that is, the outer wall 2, is set to the direct duct (circulation path) 40. It is preferable to make it smaller than the heat transmissibility.

例えば、本実施の形態においては、直通ダクト40は、図4に示すように、板厚が0.5mmの帯状の亜鉛鋼板を螺旋状に巻いて直径300mmの円筒体に形成されたスパイラルダクト40aの外周面に断熱材としてグラスウール40bを25mmの厚みで巻き付けた構成となっており、その熱貫流率は1.39(W/m2・K)である。 For example, in the present embodiment, as shown in FIG. 4, the direct duct 40 is a spiral duct 40a formed into a cylindrical body having a diameter of 300 mm by spirally winding a strip-shaped galvanized steel plate having a thickness of 0.5 mm. The glass wool 40b is wound as a heat insulating material around the outer peripheral surface with a thickness of 25 mm, and the thermal conductivity is 1.39 (W / m 2 · K).

これに対して、熱損失係数が0.6の建物1の場合、図5(a)に示すように、外壁2は、例えば12mmの厚みの合板2aの室内側に140mmの厚みのウレタンボード2bと12mmの厚みの石膏ボード2cとが貼り付けられ、合板2aの屋外側に50mmの厚みのウレタンボード2dが貼り付けられるとともに当該ウレタンボード2dの外側に通気胴縁2eを介してサイディング2fが固定された構成とされる。したがって、このような構成の外壁(外皮)2の熱貫流率は0.12(W/m2・K)となり、直通ダクト40の熱還流率の約1/12の値となる。 On the other hand, in the case of the building 1 having a heat loss coefficient of 0.6, as shown in FIG. 5A, the outer wall 2 is, for example, a urethane board 2b having a thickness of 140 mm on the indoor side of a plywood 2a having a thickness of 12 mm. And a 12 mm thick gypsum board 2c, a 50 mm thick urethane board 2d is affixed to the outdoor side of the plywood 2a, and a siding 2f is fixed to the outside of the urethane board 2d via a ventilator edge 2e. The configuration is made. Therefore, the heat flow rate of the outer wall (outer skin) 2 having such a configuration is 0.12 (W / m 2 · K), which is about 1/12 of the heat reflux rate of the direct duct 40.

また、熱損失係数が1.9の建物1の場合、図5(b)に示すように、外壁2は、例えば12mmの厚みの合板2aの室内側に100mmの厚みのグラスウール2gと12mmの厚みの石膏ボード2cとが貼り付けられ、合板2aの屋外側に通気胴縁2eを介してサイディング2fが固定された構成とされる。このような構成の外壁(外皮)2の熱貫流率は0.35(W/m2・K)であり、直通ダクト40の熱還流率の約1/4となる。 Further, in the case of the building 1 having a heat loss coefficient of 1.9, as shown in FIG. 5B, the outer wall 2 has a glass wool 2g of 100 mm thickness and a thickness of 12 mm on the indoor side of a plywood 2a having a thickness of 12 mm, for example. The siding 2f is fixed to the outdoor side of the plywood 2a through the ventilation trunk edge 2e. The heat flow rate of the outer wall (outer skin) 2 having such a configuration is 0.35 (W / m 2 · K), which is about ¼ of the heat reflux rate of the direct duct 40.

このように、建物1の外壁(外皮)2の熱貫流率を直通ダクト40の熱貫流率よりも小さくしたことにより、直通ダクト40を通る空気の熱が直通ダクト40の表面から逃げても、その熱を建物1の内部に供給させるとともに建物1の外壁2を通して建物1の外部に逃げることを防止して、この全館冷暖房システムによる建物1の冷暖房効率をさらに高めることができる。   Thus, even if the heat of the air passing through the direct duct 40 escapes from the surface of the direct duct 40 by making the heat flow rate of the outer wall (outer skin) 2 of the building 1 smaller than the heat flow rate of the direct duct 40, The heat can be supplied to the inside of the building 1 and can be prevented from escaping to the outside of the building 1 through the outer wall 2 of the building 1, thereby further improving the cooling / heating efficiency of the building 1 by this whole-building air conditioning system.

なお、上記のように、建物1の外壁2の熱貫流率は、直通ダクト40の熱貫流率の1/4〜1/12の値に設定されるのが好ましいが、直通ダクト40の熱貫流率よりも小さければ、直通ダクト40の熱貫流率の1/12の値よりもさらに小さな値に設定することもできる。   Note that, as described above, the heat flow rate of the outer wall 2 of the building 1 is preferably set to a value of ¼ to 1/12 of the heat flow rate of the direct duct 40. If it is smaller than the rate, it can be set to a value smaller than 1/12 of the heat flow rate of the direct duct 40.

図6は図1に示す全館冷暖房システムの変形例であって、循環路を吹抜け部60で構成した場合を、冷房モード時における空気の流れとともに概略で示す説明図であり、図7は図6に示す変形例の全館冷暖房システムを、暖房モード時における空気の流れとともに概略で示す説明図である。   FIG. 6 is a modified example of the whole building air conditioning system shown in FIG. 1, and is an explanatory diagram schematically showing the case where the circulation path is configured by the blow-off portion 60 together with the air flow in the cooling mode, and FIG. It is explanatory drawing which shows schematically the whole building air conditioning system of the modification shown in FIG. 4 with the flow of the air at the time of heating mode.

図6、図7に示すように、循環路は建物1の吹抜け部60で構成することもできる。つまり、2つの中間仕切り部4、5の一部を開口して建物1に吹抜け部60を設けるとともに、最下階の床Fの吹抜け部60に面する部分に床側循環口61を設け、この床側循環口61により床下空間10を吹抜け部60に連通させるとともに、最上階の天井Cの吹抜け部60に面する部分に天井側循環口62を設け、この天井側循環口62により天井裏空間11を吹抜け部60に連通させた構成とすることができる。この場合においては、循環ファン41は、最上階の天井Cに取り付けられて吹抜け部60に配置されるシーリングファン(天井扇)とするのが好ましい。なお、この吹抜け部60は、階段室としてもよい。   As shown in FIG. 6 and FIG. 7, the circulation path can also be configured by an atrium 60 of the building 1. That is, while opening a part of the two intermediate partition parts 4 and 5 and providing the blow-off part 60 in the building 1, the floor-side circulation port 61 is provided in the part facing the blow-off part 60 of the floor F on the lowest floor, The floor-side circulation port 61 allows the underfloor space 10 to communicate with the vent 60 and a ceiling-side circulation port 62 is provided in a portion facing the vent 60 of the ceiling C on the uppermost floor. It can be set as the structure which connected the space 11 to the blow-off part 60. FIG. In this case, the circulation fan 41 is preferably a ceiling fan (ceiling fan) that is attached to the ceiling C on the uppermost floor and disposed in the blow-off portion 60. In addition, this blow-off part 60 is good also as a staircase.

このような変形例の構成においても、冷房モードでの作動時には床下空間10に導かれた冷却空気を床側循環口61を介して吹抜け部60に導くとともに、シーリングファンとして構成された循環ファン41により吹抜け部60内を最上階の天井Cに向けて移動させ、当該天井Cに設けられた天井側循環口62から天井裏空間11に取り込み、一方、暖房モードでの作動時には天井裏空間11に導かれた加熱空気を天井側循環口62を介して吹抜け部60に導くとともに、シーリングファとして構成された循環ファン41により吹抜け部60の内部を最下階の床Fに向けて移動させ、当該床Fに設けられた床側循環口61から床下空間10に取り込みことで、空気を全館で循環させることができる。   Even in the configuration of such a modified example, the cooling air guided to the underfloor space 10 is guided to the blow-off portion 60 through the floor-side circulation port 61 during operation in the cooling mode, and the circulation fan 41 configured as a ceiling fan is used. The interior of the atrium 60 is moved toward the ceiling C on the uppermost floor and taken into the ceiling space 11 from the ceiling side circulation port 62 provided on the ceiling C. On the other hand, when operating in the heating mode, the ceiling space 11 The guided heated air is guided to the blow-through portion 60 through the ceiling-side circulation port 62, and the inside of the blow-off portion 60 is moved toward the floor F on the lowest floor by the circulation fan 41 configured as a ceiling fan. By taking in the underfloor space 10 from the floor-side circulation port 61 provided in the floor F, air can be circulated throughout the entire building.

このように、循環路を吹抜け部60で構成した場合には、直通ダクト40を設けることを不要として、そのコストを低減することができるとともに省スペース化を図ることができる。   As described above, when the circulation path is configured by the blow-off portion 60, it is unnecessary to provide the direct duct 40, and the cost can be reduced and the space can be saved.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   It goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

例えば、本発明の全館冷暖房システムは、高断熱、高気密の戸建て住宅に適用するのが好ましいが、高断熱、高気密ではない戸建て住宅や、メゾネットタイプの集合住宅、住宅以外の他の建物にも適用することができる。   For example, the entire building air conditioning system of the present invention is preferably applied to a highly insulated and airtight detached house, but also to a highly insulated and not airtight detached house, a maisonette type apartment house, and other buildings other than houses. Can be applied.

また、前記実施の形態においては、輻射パネル21が設置される床Fの輻射パネル21に対する一方側にのみ床側通気口30を設けるようにしているが、床Fの輻射パネル21を挟んだ両側にそれぞれ床側通気口30を設けることもできる。同様に、前記実施の形態においては、輻射パネル21が設置される天井Cの輻射パネル21に対して一方側にのみ天井側通気口31を設けるようにしているが、天井Cの輻射パネル21を挟んだ両側にそれぞれ天井側通気口31を設けることもできる。   Moreover, in the said embodiment, although the floor side vent 30 is provided only in the one side with respect to the radiation panel 21 of the floor F in which the radiation panel 21 is installed, both sides which pinched | interposed the radiation panel 21 of the floor F Each can also be provided with a floor-side vent 30. Similarly, in the above-described embodiment, the ceiling-side vent 31 is provided only on one side with respect to the radiation panel 21 of the ceiling C on which the radiation panel 21 is installed. Ceiling side vents 31 can also be provided on both sides sandwiched, respectively.

また、前記実施の形態においては、中間仕切り部4、5はそれぞれ懐空間12を有する構成とされているが、これに限らず、これらの中間仕切り部4、5は、例えば床スラブのみで構成されたものなど、懐空間12を有していない構成とすることもできる。   Moreover, in the said embodiment, although the intermediate partition parts 4 and 5 are set as the structure which has the pocket space 12, respectively, these intermediate partition parts 4 and 5 are comprised only with a floor slab, for example. It is also possible to adopt a configuration that does not have the pocket space 12, such as those made.

本発明の全館冷暖房システムは、図1、図2に示す3階建ての建物1に限らず、任意の階層を有する種々の建物に適用することができる。   The whole-building air conditioning system of the present invention is not limited to the three-story building 1 shown in FIGS. 1 and 2, and can be applied to various buildings having an arbitrary level.

本発明は、全館冷暖房システムを備えた住宅等の建物を建築する際に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used when building a building such as a house equipped with a whole building air conditioning system.

1 建物
2 外壁
2a 合板
2b ウレタンボード
2c 石膏ボード
2d ウレタンボード
2e 通気胴縁
2f サイディング
2g グラスウール
3 屋根
4 中間仕切り部
5 中間仕切り部
10 床下空間
11 天井裏空間
12 懐空間
20 輻射パネル装置
21 輻射パネル
21a 放射面
22 熱源機
23 供給用配管
24 回収用配管
30 床側通気口
31 天井側通気口
40 直通ダクト(循環路)
40a スパイラルダクト
40b グラスウール
41 循環ファン
42 天井吹出し部
43 給気ファン
50 給気部
51 排気部
51a 排気ファン
51b レンジフード
60 吹抜け部(循環部)
61 床側循環口
62 天井側循環口
C 天井
F 床
R1〜R4 居室
R5 水回り室
DESCRIPTION OF SYMBOLS 1 Building 2 Exterior wall 2a Plywood 2b Urethane board 2c Gypsum board 2d Urethane board 2e Venting trunk edge 2f Siding 2g Glass wool 3 Roof 4 Middle partition part 5 Middle partition part 10 Floor space 11 Ceiling space 12 Spatial space 20 Radiation panel device 21 Radiation panel 21a Radiation surface 22 Heat source machine 23 Supply pipe 24 Recovery pipe 30 Floor side vent 31 Ceiling side vent 40 Direct duct (circulation path)
40a Spiral duct 40b Glass wool 41 Circulating fan 42 Ceiling blow-out part 43 Air supply fan 50 Air supply part 51 Exhaust part 51a Exhaust fan 51b Range hood 60 Blow-through part (circulation part)
61 Floor side circulation port 62 Ceiling side circulation port C Ceiling F Floor R1-R4 Living room R5 Water room

Claims (10)

建物の全館冷暖房システムであって、
前記建物の居室に立設される輻射パネルと、
前記居室の床に前記輻射パネルに隣接して設けられる床側通気口と、
前記居室の天井に前記輻射パネルに隣接して設けられる天井側通気口と、
前記居室とは別に区画して設けられ、前記床側通気口と前記天井側通気口とを連通させる循環路と、
冷房時に冷却した熱媒体を前記輻射パネルに供給するとともに、暖房時に加熱した熱媒体を前記輻射パネルに供給する熱源機と、
暖房時に前記循環路内の空気を前記天井側通気口の側から前記床側通気口の側へ向けて強制的に循環させるとともに、冷房時に前記循環路内の空気を前記床側通気口の側から前記天井側通気口の側へ向けて強制的に循環させる循環ファンと、を有することを特徴とする全館冷暖房システム。
A whole building air conditioning system,
A radiation panel standing in the room of the building;
A floor-side vent provided on the floor of the living room adjacent to the radiation panel;
A ceiling-side vent provided in the ceiling of the living room adjacent to the radiation panel;
A circulation path that is provided separately from the living room and communicates the floor-side vent and the ceiling-side vent;
A heat source that supplies a heat medium cooled during cooling to the radiant panel, and supplies a heat medium heated during heating to the radiant panel;
The air in the circulation path is forcibly circulated from the ceiling-side vent side to the floor-side vent side during heating, and the air in the circulation path is circulated on the floor-side vent side during cooling. And a circulation fan that forcibly circulates toward the ceiling-side vent side.
前記建物は、中間仕切り部により仕切られた複数の階層を有し、
それぞれの階層の居室に前記輻射パネルが立設されるとともに、
下階の居室の天井に設けられる天井側通気口は、上階の居室の床に設けられる床側通気口に連通し、
前記循環路は、最下階の居室の床に設けられる床側通気口と最上階の居室の天井に設けられる天井側通気口とを連通させることを特徴とする請求項1に記載の全館冷暖房システム。
The building has a plurality of levels partitioned by an intermediate partition,
The radiation panel is erected in the living room of each floor,
The ceiling side vent on the ceiling of the lower floor room communicates with the floor side vent on the floor of the upper floor room,
2. The whole building air conditioning system according to claim 1, wherein the circulation path connects a floor side vent provided in the floor of the lowermost floor room and a ceiling side vent provided in the ceiling of the uppermost room. system.
前記循環路は、最下階の居室の床下空間と最上階の居室の天井裏空間とを前記建物の内部において直接的に連通させる直通ダクトであり、
前記循環ファンは、前記床下空間、前記天井裏空間または前記直通ダクトの内部に配置されていることを特徴とする請求項2に記載の全館冷暖房システム。
The circulation path is a direct duct that directly communicates the underfloor space of the lowermost floor room and the ceiling back space of the uppermost floor room in the building,
The whole-building air conditioning system according to claim 2, wherein the circulation fan is disposed in the underfloor space, the ceiling space, or the direct duct.
前記循環路は、前記中間仕切り部の一部を開口して形成されて床側循環口を介して最下階の居室の床下空間に連通するとともに天井側循環口を介して最上階の居室の天井裏空間に連通する吹抜け部であり、
前記循環ファンは、最上階の天井に取り付けられて前記吹抜け部に配置されたシーリングファンであることを特徴とする請求項2に記載の全館冷暖房システム。
The circulation path is formed by opening a part of the intermediate partition part, and communicates with the underfloor space of the lowermost floor room through the floor side circulation opening, and is connected to the uppermost floor room through the ceiling side circulation opening. A stairwell communicating with the space behind the ceiling,
3. The whole building air conditioning system according to claim 2, wherein the circulation fan is a ceiling fan that is attached to a ceiling on a top floor and disposed in the blow-off portion.
前記中間仕切り部は、下階の天井と上階の床との間に懐空間を有していることを特徴とする請求項2〜4の何れか1項に記載の全館冷暖房システム。   The whole building air conditioning system according to any one of claims 2 to 4, wherein the intermediate partition has a pocket space between a ceiling on a lower floor and a floor on an upper floor. 前記輻射パネルが設けられていない部屋の天井に、前記懐空間の内部の空気を前記部屋の内部に向けて吹き出す天井吹出し部が設けられていることを特徴とする請求項5に記載の全館冷暖房システム。   The whole building air-conditioning according to claim 5, wherein a ceiling blowout unit that blows air inside the pocket space toward the inside of the room is provided on a ceiling of the room where the radiation panel is not provided. system. 前記建物内に外気を供給する給気部と、前記建物内の空気を該建物の外部に排出する排気部とを備え、
前記給気部は、前記居室の床下空間、前記居室の天井裏空間または前記循環路に外気を供給することを特徴とする請求項1〜6の何れか1項に記載の全館冷暖房システム。
An air supply unit that supplies outside air into the building, and an exhaust unit that discharges air in the building to the outside of the building,
The whole building air-conditioning / heating system according to any one of claims 1 to 6, wherein the air supply unit supplies outside air to an underfloor space of the living room, a ceiling back space of the living room, or the circulation path.
前記輻射パネルは隣接する2つの居室を仕切る間仕切り壁を兼ねるとともに当該2つの居室を冷暖房することを特徴とする請求項1〜7の何れか1項に記載の全館冷暖房システム。   The whole building air-conditioning system according to any one of claims 1 to 7, wherein the radiation panel serves as a partition wall for partitioning two adjacent rooms and heats and cools the two rooms. 前記建物は、熱損失係数が1.9〜0.6の高断熱住宅であり、
前記居室の床下空間、前記居室の天井裏空間および前記循環路は、それぞれ前記建物の断熱ラインの内側に設けられていることを特徴とする請求項1〜8の何れか1項に記載の全館冷暖房システム。
The building is a highly insulated house having a heat loss coefficient of 1.9 to 0.6,
The whole building according to any one of claims 1 to 8, wherein the underfloor space of the living room, the back space of the ceiling of the living room, and the circulation path are respectively provided inside the heat insulation line of the building. Air conditioning system.
前記建物の外皮の熱貫流率は、前記循環路の熱貫流率よりも小さいことを特徴とする請求項9に記載の全館冷暖房システム。   The whole building air-conditioning system according to claim 9, wherein the heat flow rate of the outer skin of the building is smaller than the heat flow rate of the circulation path.
JP2014189222A 2014-09-17 2014-09-17 Whole building air conditioning system Active JP6480690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189222A JP6480690B2 (en) 2014-09-17 2014-09-17 Whole building air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189222A JP6480690B2 (en) 2014-09-17 2014-09-17 Whole building air conditioning system

Publications (2)

Publication Number Publication Date
JP2016061484A true JP2016061484A (en) 2016-04-25
JP6480690B2 JP6480690B2 (en) 2019-03-13

Family

ID=55797567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189222A Active JP6480690B2 (en) 2014-09-17 2014-09-17 Whole building air conditioning system

Country Status (1)

Country Link
JP (1) JP6480690B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008246A (en) * 2018-07-11 2020-01-16 三菱電機株式会社 Air conditioning system, model selection method of air conditioning system, model selection device of air conditioning system, and model selection system of air conditioning system
JP2022043431A (en) * 2020-09-04 2022-03-16 株式会社カネコ Dwelling house with air purification function
WO2022070178A1 (en) * 2020-09-30 2022-04-07 Veev Group, Inc. Air convection system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174368A (en) * 1993-10-29 1995-07-14 Takenaka Komuten Co Ltd Radiation cooling and heating device
JPH08135035A (en) * 1994-11-01 1996-05-28 Hayashi Kensetsu Kogyo Kk Ventilation method of high airtight house and high airtight house which adopts ventilation method thereof
JP2003193585A (en) * 2001-12-27 2003-07-09 Asahi Fiber Glass Co Ltd Selection supporting system for heat insulation construction method
US6619557B1 (en) * 2000-06-27 2003-09-16 Giuseppe Bonura High-efficiency system for the thermoregulation of a room by silent radiant panels, particularly equipped to operate as doors
JP2008156884A (en) * 2006-12-22 2008-07-10 Porasu Kurashi Kagaku Kenkyusho:Kk Wooden house ventilation system
JP2010019502A (en) * 2008-07-11 2010-01-28 Toru Hayashi Air conditioning system using underground heat
JP2010116670A (en) * 2008-11-11 2010-05-27 Misawa Homes Co Ltd Building
JP2014006005A (en) * 2012-06-25 2014-01-16 Ecofactory Co Ltd Room unit of air conditioner
JP2014163528A (en) * 2013-02-21 2014-09-08 Sakura Prolink:Kk Cooling, heating and ventilation system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174368A (en) * 1993-10-29 1995-07-14 Takenaka Komuten Co Ltd Radiation cooling and heating device
JPH08135035A (en) * 1994-11-01 1996-05-28 Hayashi Kensetsu Kogyo Kk Ventilation method of high airtight house and high airtight house which adopts ventilation method thereof
US6619557B1 (en) * 2000-06-27 2003-09-16 Giuseppe Bonura High-efficiency system for the thermoregulation of a room by silent radiant panels, particularly equipped to operate as doors
JP2003193585A (en) * 2001-12-27 2003-07-09 Asahi Fiber Glass Co Ltd Selection supporting system for heat insulation construction method
JP2008156884A (en) * 2006-12-22 2008-07-10 Porasu Kurashi Kagaku Kenkyusho:Kk Wooden house ventilation system
JP2010019502A (en) * 2008-07-11 2010-01-28 Toru Hayashi Air conditioning system using underground heat
JP2010116670A (en) * 2008-11-11 2010-05-27 Misawa Homes Co Ltd Building
JP2014006005A (en) * 2012-06-25 2014-01-16 Ecofactory Co Ltd Room unit of air conditioner
JP2014163528A (en) * 2013-02-21 2014-09-08 Sakura Prolink:Kk Cooling, heating and ventilation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008246A (en) * 2018-07-11 2020-01-16 三菱電機株式会社 Air conditioning system, model selection method of air conditioning system, model selection device of air conditioning system, and model selection system of air conditioning system
JP2022043431A (en) * 2020-09-04 2022-03-16 株式会社カネコ Dwelling house with air purification function
JP7131849B2 (en) 2020-09-04 2022-09-06 株式会社カネコ House with air purification function
JP7131849B6 (en) 2020-09-04 2022-10-07 株式会社カネコ House with air purification function
WO2022070178A1 (en) * 2020-09-30 2022-04-07 Veev Group, Inc. Air convection system

Also Published As

Publication number Publication date
JP6480690B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP3208689U (en) Ventilation and air conditioning structure for highly insulated and airtight houses
JP5235098B2 (en) Building air conditioning ventilation system
JP2009139015A (en) Building
JP2008134032A (en) Air conditioning system
WO2015137443A1 (en) Energy-saving building heating and cooling system integrated using effective air circulation technology
JP4595022B1 (en) Operation control device for heating system, heating system, and building
JP6480690B2 (en) Whole building air conditioning system
JP2009250442A (en) Air conditioning equipment for building, and building equipped with the same
JP5632702B2 (en) Air conditioning equipment for multi-story buildings
CN109477647B (en) Construction method of air conditioning system and design method of air conditioning system
JP2018184810A (en) Air conditioning system and house
WO2015194450A1 (en) Heating and cooling ventilation system for multi-family housing complex
JP6456240B2 (en) Air conditioning system
JP2017129339A (en) Whole building air conditioning system
JP2017067413A (en) Temperature adjustment system and building
JP2009216339A (en) Air conditioner for building and building equipped with it
JP2015218440A (en) Wall structure of multi-storied building and building
JP3233818U (en) Air conditioning system
JP2019200000A (en) Air conditioning system
JP4574317B2 (en) Heating air conditioning method and heating air conditioning system
JP2018016997A (en) Ventilation structure of building
JPH11325508A (en) Air conditioning system
JP7033486B2 (en) Personal air conditioning system
JP6654822B2 (en) Air conditioning systems and buildings
JP7387255B2 (en) Whole building air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190208

R150 Certificate of patent or registration of utility model

Ref document number: 6480690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150