JPH02153844A - Abrasion-resistant functional two-layer thin film and production thereof - Google Patents

Abrasion-resistant functional two-layer thin film and production thereof

Info

Publication number
JPH02153844A
JPH02153844A JP30720088A JP30720088A JPH02153844A JP H02153844 A JPH02153844 A JP H02153844A JP 30720088 A JP30720088 A JP 30720088A JP 30720088 A JP30720088 A JP 30720088A JP H02153844 A JPH02153844 A JP H02153844A
Authority
JP
Japan
Prior art keywords
film
transparent electrode
thin film
electrode film
insulating protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30720088A
Other languages
Japanese (ja)
Inventor
Shoichi Ichikawa
市川 彰一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP30720088A priority Critical patent/JPH02153844A/en
Publication of JPH02153844A publication Critical patent/JPH02153844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To improve adhesive force between a transparent electrode film and an insulating protective film and prevent peeling between both by forming the transparent electrode film from a tin oxide thin film, forming the insulating protective film from a silicon oxide thin film and simultaneously forming a diffusion layer on the boundary part of both films. CONSTITUTION:An abrasion-resistant functional two-layer thin film 1 is composed of a transparent electrode film 3 consisting essentially of tin oxide on a glass substrate 2 and an insulating protective film 4, consisting essentially of silicon oxide and covering the transparent electrode film 3. A diffusion layer 5 is formed in the boundary part between the transparent electrode film 3 and the insulating protective film 4. Thereby, conformity in the interface between both thin films can be improved and adhesive force of both thin films can be remarkably improved to prevent peeling of the thin films and improve abrasion resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機能性多層薄膜の製造方法に関し、特に、透
明導電膜とこの透明導電膜を保護する絶縁保護膜の間の
密着力を向上させ、両者間の剥離を防止した耐摩耗性機
能性二層薄膜の製造方法に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a functional multilayer thin film, and in particular, to improving the adhesion between a transparent conductive film and an insulating protective film that protects the transparent conductive film. The present invention relates to a method for producing a wear-resistant functional two-layer thin film that prevents peeling between the two layers.

〔従来の技術〕[Conventional technology]

自動車のウィンドシールドガラス面での結露或いは雨滴
を検出するセンサとして、第7〜9図に示すようなくし
歯状の電極を用いた静電容量変化型の結露センサ51が
開発されている。
As a sensor for detecting dew condensation or raindrops on the windshield glass surface of an automobile, a capacitance variable type dew condensation sensor 51 using interdigitated electrodes as shown in FIGS. 7 to 9 has been developed.

この結露センサ51は、薄板状のガラス基板52上に、
一対の電極53a、53bとしてのくし歯状の透明電極
膜53を積層し、その上から透明の絶縁保護膜54で覆
っている。
This dew condensation sensor 51 is mounted on a thin glass substrate 52.
A comb-shaped transparent electrode film 53 is laminated as a pair of electrodes 53a and 53b, and is covered with a transparent insulating protective film 54 from above.

この透明電極膜53としては、いわゆるITO(Ind
ium Tin  0xide)が、比較的低い抵抗値
が得られるために良く用いられている。
This transparent electrode film 53 is made of so-called ITO (Ind.
ium Tin Oxide) is often used because it provides a relatively low resistance value.

また、絶縁保護膜54としては、高透光性、低屈折率、
安価といった点から、SiO□が一般的に用いられてい
る。
In addition, as the insulating protective film 54, high translucency, low refractive index,
SiO□ is generally used because it is inexpensive.

そして、これらの両薄膜は、イオンプレーティングある
いはスパッタリング等のように、真空中にて薄膜を形成
する一般的な手法を用いて、ガラス基板52に順次積層
されている。
Both of these thin films are sequentially laminated on the glass substrate 52 using a general method of forming thin films in a vacuum, such as ion plating or sputtering.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記透明電極膜53のITO(主としてfnt
os)と絶縁保護膜54のSingは、次頁の表1に示
すように、結晶形と格子定数の両方ともに大きく異なる
ため、両者を薄膜(それぞれれ、透明電極膜および絶縁
保護膜)として積層した場合、界面のなじみが悪く、密
着性が劣る。
However, ITO (mainly fnt) of the transparent electrode film 53
os) and the insulating protective film 54 are significantly different in both crystal form and lattice constant, as shown in Table 1 on the next page, so both are laminated as thin films (transparent electrode film and insulating protective film, respectively). In this case, the interface will not fit well and the adhesion will be poor.

それゆえ、両薄膜が界面で容易に剥離してしまうために
耐摩耗性に欠けるという問題があった。
Therefore, there was a problem that the two thin films easily peeled off at the interface, resulting in a lack of wear resistance.

−以下余白− 表1 薄膜材料と結晶形と格子定数 なお、機能性多層薄膜としては、従来から、例えば、時
開59−127001号公報あるいは時開63−577
57号公報に開示されているように電極膜として酸化チ
タンを用いたものがあるかは、前記透明電極膜53とし
て、ITOが、低抵抗化という点で有利であるために、
従来から良(用いられている。
-Margins below- Table 1 Thin film materials, crystal forms, and lattice constantsFurthermore, as a functional multilayer thin film, for example, there have been conventional publications such as Jikai No. 59-127001 or Jikai No. 63-577.
The reason why titanium oxide is used as an electrode film as disclosed in Japanese Patent No. 57 is because ITO is advantageous in terms of lower resistance as the transparent electrode film 53.
Traditionally good (used).

しかし、前記結露センサ51の場合、透明電極膜53の
シート抵抗値はそれほど低い必要はなく、100〜20
0Ω/口であれば充分である。そのため、透明電極膜5
3としては、ITO以外の材料でも可能である。
However, in the case of the dew condensation sensor 51, the sheet resistance value of the transparent electrode film 53 does not need to be so low, and is 100 to 20
0Ω/mouth is sufficient. Therefore, the transparent electrode film 5
As for No. 3, materials other than ITO are also possible.

したがって、本発明は、透明電極膜として、絶縁保護膜
を構成するSin、となじみの良い材料を使用するとと
もに、両薄膜の界面に拡散層を形成することにより、両
薄膜の密着性を向上させることを目的とする。
Therefore, the present invention improves the adhesion between both thin films by using a material that is compatible with Sin, which constitutes the insulating protective film, as the transparent electrode film, and by forming a diffusion layer at the interface between the two thin films. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明の耐摩耗性機能性二層薄膜は、ガラス基
板表面上に積層された少なくとも一層の透明電極膜とこ
の透明電極膜上に積層されてその表面を覆う絶縁保護膜
とで構成される多層膜であって、前記透明電極膜を酸化
錫薄膜で形成し、前記絶縁保護膜を酸化珪素薄膜で形成
するとともに、前記両薄膜の境界部に拡散層を形成した
ことを特徴としている。
Therefore, the wear-resistant functional two-layer thin film of the present invention is composed of at least one transparent electrode film laminated on the surface of a glass substrate and an insulating protective film laminated on the transparent electrode film to cover the surface. The multilayer film is characterized in that the transparent electrode film is formed of a tin oxide thin film, the insulating protective film is formed of a silicon oxide thin film, and a diffusion layer is formed at the boundary between the two thin films.

また、本発明の耐摩耗性機能性二層薄膜の製造方法は、
ガラス基板表面上に、真空蒸着、イオンプレーティング
、スパッタリング等の物理的被膜形成方法で、少なくと
も一層の透明電極膜とこの透明電極膜を覆う絶縁保護膜
を積層する耐摩耗性機能性二層薄膜の製造方法であって
、ガラス基板表面上に、前記物理的被膜形成方法により
酸化錫薄膜を積層して透明電極膜とし、さらに、この透
明電極膜の上に酸化珪素薄膜を積層して絶縁保護膜とし
た後、加熱処理を行うことにより前記両薄膜の境界部に
拡散層を形成したことを特徴としでいる。
Furthermore, the method for producing the wear-resistant functional two-layer thin film of the present invention includes:
A wear-resistant functional two-layer thin film in which at least one transparent electrode film and an insulating protective film covering the transparent electrode film are laminated on the surface of a glass substrate using a physical film forming method such as vacuum evaporation, ion plating, or sputtering. A method for producing a transparent electrode film by laminating a tin oxide thin film on the surface of a glass substrate using the physical film forming method described above, and further laminating a silicon oxide thin film on the transparent electrode film for insulation protection. The invention is characterized in that a diffusion layer is formed at the boundary between the two thin films by heat treatment after forming the film.

〔作用〕[Effect]

本発明の耐摩耗性機能性二層薄膜およびその製造方法に
よれば、絶縁保護膜である酸化珪素薄膜となじみの良い
酸化錫薄膜を透明電極膜とし、両薄膜の境界部に加熱処
理により拡散層が形成されているので、この拡散層の存
在により前記両薄膜の境界部での密着性が向上している
According to the wear-resistant functional two-layer thin film and its manufacturing method of the present invention, a tin oxide thin film that is compatible with a silicon oxide thin film that is an insulating protective film is used as a transparent electrode film, and is diffused at the boundary between the two thin films by heat treatment. Since a layer is formed, the presence of this diffusion layer improves the adhesion at the boundary between the two thin films.

〔実施例〕〔Example〕

次に、本発明の一実施例に係わる耐摩耗性機能性二層薄
膜の製造方法を、第1図ないし第6図に基づき詳細に説
明する。
Next, a method for manufacturing a wear-resistant functional two-layer thin film according to an embodiment of the present invention will be explained in detail with reference to FIGS. 1 to 6.

まず、本発明の一実施例に係わる耐摩耗性機能性二層薄
膜の構成について説明する。
First, the structure of a wear-resistant functional two-layer thin film according to an embodiment of the present invention will be explained.

第1図は本実施例に係わる耐摩耗性機能性二層薄膜の部
分斜視図、第2図は第1図の耐摩耗性機能性二層薄膜の
断面図である。
FIG. 1 is a partial perspective view of the wear-resistant functional two-layer thin film according to this embodiment, and FIG. 2 is a cross-sectional view of the wear-resistant functional two-layer thin film of FIG.

第1図に示すように4、本実施例に係わる耐摩耗性機能
性二層薄膜1は、厚さ5mmのガラス基板2上に酸化錫
(Snow)を主成分とする透明電極膜3とこの透明電
極膜3を覆う酸化珪素(S i 02)を主成分とする
絶縁保護膜4とが積層されて構成されている。
As shown in FIG. 1, a wear-resistant functional two-layer thin film 1 according to the present embodiment consists of a transparent electrode film 3 whose main component is tin oxide (Snow) and a transparent electrode film 3 whose main component is tin oxide (Snow) on a glass substrate 2 with a thickness of 5 mm. The transparent electrode film 3 is covered with an insulating protective film 4 mainly composed of silicon oxide (S i 02), which is laminated.

そして、前記透明電極膜3と絶縁保護膜4との境界部に
は、第2図に示すように拡散層5が形成されている。
A diffusion layer 5 is formed at the boundary between the transparent electrode film 3 and the insulating protective film 4, as shown in FIG.

本実施例の透明電極膜3の酸化錫薄膜としては、SnO
,に二酸化アンチモン(Sb20.)を3重量パーセン
ト(以下−t%とする)添加することにより、導電性を
高めている。
The tin oxide thin film of the transparent electrode film 3 of this example is SnO
, by adding 3% by weight (hereinafter referred to as -t%) of antimony dioxide (Sb20.) to improve the conductivity.

次に、本発明の一実施例に係わる耐摩耗性機能性二層薄
膜の製造方法について説明する。
Next, a method for manufacturing a wear-resistant functional two-layer thin film according to an embodiment of the present invention will be described.

前記したように、まず、sb、o、を3wt%添加した
SnO,を電子ビーム照射により加熱・蒸発させて、ガ
ラス基板2の温度=300℃、O1雰囲気中、真空度−
4,OX l O−”Pa、高周波出力=300W、D
Cバイアス=−soov、蒸着速度=10人/Sの条件
の下で、前記ガラス基板2上にS n Oz  (S 
b )薄膜からなる透明電極膜3を形成した。
As described above, first, SnO added with 3 wt% of sb, o, is heated and evaporated by electron beam irradiation, and the temperature of the glass substrate 2 is 300°C in an O1 atmosphere with a degree of vacuum -
4, OX l O-”Pa, high frequency output = 300W, D
S n Oz (S
b) A transparent electrode film 3 made of a thin film was formed.

その上に、真空度=4.ox 10−!Pa、DCバイ
アス=OVすなわちDCバイアス無しとした以外は、前
記透明電極膜3の蒸着条件と同じ条件にて、絶縁保護膜
4として、Stowを蒸着した。
On top of that, vacuum level = 4. ox 10-! Stow was deposited as the insulating protective film 4 under the same deposition conditions as the transparent electrode film 3 except that Pa and DC bias = OV, that is, there was no DC bias.

膜厚はそれぞれ3000人および7000人であった− さらにその後、02雰囲気中、真空度=7.0X10−
”Pa、雰囲気温度−400〜700℃の範囲の条件の
下で加熱処理を行うことにより、前記透明電極膜3と絶
縁保護膜4の境界部分に拡散層5を形成した。加熱処理
時間も種々変えて実施した。
The film thickness was 3000 and 7000, respectively.Furthermore, in 02 atmosphere, vacuum degree = 7.0X10-
The diffusion layer 5 was formed at the boundary between the transparent electrode film 3 and the insulating protective film 4 by performing heat treatment under the conditions of "Pa and ambient temperature in the range of -400 to 700°C.The heat treatment time also varied. I changed it and implemented it.

比較例として、前記加熱処理の工程を省いたこと以外は
前記実施例と同じ工程および同じ蒸着条件にて透明電極
膜および絶縁保護膜としてそれぞれ本実施例と同じSn
O,薄膜および3tOtff膜を形成した機能性二層膜
(以下、比較例1とする)、および、この比較例1と同
じ工程および同じ蒸着条件にて透明電極膜として本実施
例とは異なるITO薄膜および絶縁保護膜として本実施
例と同じS;OZ薄膜を形成した機能性二層膜(以下、
比較例2とする)を製造した。
As a comparative example, the same Sn as in this example was used as a transparent electrode film and an insulating protective film using the same process and same vapor deposition conditions as in the example above except that the heat treatment step was omitted.
A functional two-layer film in which O, a thin film and a 3tOtff film were formed (hereinafter referred to as Comparative Example 1), and an ITO film different from this example as a transparent electrode film in the same process and under the same vapor deposition conditions as Comparative Example 1. A functional two-layer film (hereinafter referred to as
Comparative Example 2) was manufactured.

これら両比較例の透明電極膜および絶縁保護膜の膜厚は
、実施例と同じく、それぞれ3000人および7000
人である。
The film thicknesses of the transparent electrode film and the insulating protective film in both of these comparative examples were 3000 and 7000, respectively, the same as in the example.
It's a person.

次に、本実施例および比較例のテーバ摩耗試験を行った
結果を、第3〜6図を参照して説明する。
Next, the results of the Taber abrasion test of this example and comparative example will be explained with reference to FIGS. 3 to 6.

第3図は本実施例の耐摩耗性機能性二層薄膜lの加熱処
理条件を変えた場合のテーバ摩耗試験後のヘーズ値の変
化特性図であり、加熱処理工程における雰囲気温度を4
00℃、500℃、600°C2700℃とし、加熱処
理時間を変えてこの加熱処理時間を横軸としたヘーズ値
の変化を示している。
Figure 3 is a characteristic diagram of the change in haze value after the Taber abrasion test when the heat treatment conditions of the wear-resistant functional two-layer thin film l of this example were changed, and the atmospheric temperature in the heat treatment process was changed to 4.
00° C., 500° C., 600° C., and 2700° C., and the heat treatment time is changed, and the change in haze value with the heat treatment time as the horizontal axis is shown.

このテーパ摩耗試験における摩耗輪はC5−10F、荷
重は500gとし、1000回転まで行った。前記ヘー
ズ値は耐摩耗性を示す指標となるもので、摩耗による傷
付きが少ない程小さな値となる。
The wear wheel in this taper wear test was C5-10F, the load was 500 g, and the test was performed up to 1000 revolutions. The haze value is an index showing wear resistance, and the less damage caused by wear, the smaller the value.

第3図から分かるように、加熱処理時間を雰囲気温度5
00℃の場合で約60分、同700℃の場合で約30分
とすることで、それぞれヘーズ値が目標の2%以下とな
り、充分な耐久性を確保できることがわかる。
As can be seen from Figure 3, the heat treatment time was
It can be seen that by setting the heating time to about 60 minutes at 00°C and about 30 minutes at 700°C, the haze value becomes 2% or less of the target, and sufficient durability can be ensured.

第4図はテーパ摩耗回数の増大に応じた本実施例の耐摩
耗性機能性二層薄膜と比較例1および比較例2とのヘー
ズ値の変化特性図であり、テーパ摩耗回数を横軸とした
ヘーズ値の変化を示している。
Figure 4 is a characteristic diagram of changes in haze value between the wear-resistant functional two-layer thin film of this example and Comparative Examples 1 and 2 as the number of taper wear increases, and the horizontal axis represents the number of taper wear. It shows the change in haze value.

本実施例の耐摩耗性機能性二層薄膜においては、加熱処
理工程での雰囲気温度を500℃、加熱処理時間を1時
間とした。
In the wear-resistant functional two-layer thin film of this example, the ambient temperature in the heat treatment step was 500° C., and the heat treatment time was 1 hour.

この第4図かられかるように、本実施例の耐摩耗性機能
性二層薄膜は、テーパ摩耗回数1000回転後において
も、ヘーズ値は目標の2%以下であり、比較例2のヘー
ズ値がテーバ摩耗回数1000回転で11を越えている
のと較べても、本実施例の耐摩耗性機能性二層薄膜の耐
久性が大幅に向上していることがわかる。
As can be seen from FIG. 4, the wear-resistant functional two-layer thin film of this example has a haze value of 2% or less of the target value even after 1000 rotations of the taper, and the haze value of Comparative Example 2 is over 11 at 1000 rotations of Taber wear, which shows that the durability of the wear-resistant functional two-layer thin film of this example is greatly improved.

なお、透明電極膜および絶縁保護膜として本実施例とお
なし材料を用い加熱処理を行なわかった前記比較例1に
あっては、前記比較例2に比べて耐摩耗性が改善されて
はいるが、本実施例に比べれば未だ耐摩耗性が不充分で
ある。
In addition, in Comparative Example 1, in which the transparent electrode film and the insulating protective film were heat-treated using the same materials as those of this example, the abrasion resistance was improved compared to Comparative Example 2. However, compared to this example, the wear resistance is still insufficient.

そして、このテーパ摩耗試験でテーパ摩耗回数を100
0回転実施した後のサンプルの表面あらさを、表面あら
さ計で測定した結果を示したものが第5図および第6図
であり、第5図が比較例2の表面あらさの測定結果、第
6図が本実施例の表面あらさの測定結果を示すチャート
である。
In this taper wear test, the number of taper wears was increased to 100.
Figures 5 and 6 show the results of measuring the surface roughness of the sample after 0 revolutions using a surface roughness meter. The figure is a chart showing the measurement results of the surface roughness of this example.

この第5図および第6図からも分かるように、従来品で
ある比較例2のように、ITOil膜/5IOW薄膜の
積層構造では、テーパ摩耗試験後の表面は凸凹が激しく
、耐摩耗性が劣っていることが分かる。この比較例2に
おいて、削られた深さは約7000人であり、絶縁保護
膜である5iOt’a膜の膜厚に等しいことから、IT
O薄膜/S■otal膜の界面で剥離していることがわ
かる。
As can be seen from FIGS. 5 and 6, in the case of the conventional product Comparative Example 2, which has a laminated structure of ITOil film/5IOW thin film, the surface after the taper abrasion test is extremely uneven, and the wear resistance is poor. I know I'm inferior. In Comparative Example 2, the etched depth is approximately 7,000 people, which is equal to the thickness of the 5iOt'a film, which is an insulating protective film.
It can be seen that peeling occurs at the interface of the O thin film/S■otal film.

一方、本実施例のように、境界部に拡散層を形成したS
now  (Sb)薄膜/SIO!薄膜の積層構造のも
のは、テーパ摩耗試験後においても、表面はほぼ平坦で
あり、界面の整合性が改善され、両薄膜の密着力が強化
されることによって、剥離が防止され、耐摩耗性が大幅
に向上している。
On the other hand, as in this example, S
now (Sb) thin film/SIO! Even after the taper abrasion test, the thin film laminated structure has a nearly flat surface, which improves the consistency of the interface and strengthens the adhesion between both thin films, preventing peeling and improving wear resistance. has improved significantly.

本実施例の場合、Snow  (Sb)Fit膜で形成
された透明電極膜3のシート抵抗値は、130Ω/口で
あり、くし歯電極構造とした静電容量変化型検出センサ
ー等には充分応用できるものである。
In the case of this example, the sheet resistance value of the transparent electrode film 3 formed of the Snow (Sb)Fit film is 130Ω/mouth, which is sufficient for application to a capacitance change type detection sensor with a comb-like electrode structure. It is possible.

〔効果〕〔effect〕

以上述べたように、本発明によれば、酸化錫と酸化珪素
という結晶形が同じで格子定数の近い材料の組合せを用
いて、透明電極膜および絶縁保護膜を積層させているの
で、両薄膜の界面での整合性が改善され、さらに、加熱
処理により両薄膜の境界部に拡散層を形成させたので、
両薄膜の密着力が大幅に向上して、薄膜の剥離が防止で
き耐摩耗性が大幅に向上するという優れた効果を奏する
As described above, according to the present invention, the transparent electrode film and the insulating protective film are laminated using a combination of materials such as tin oxide and silicon oxide, which have the same crystal form and similar lattice constants. The consistency at the interface was improved, and a diffusion layer was formed at the boundary between the two thin films through heat treatment.
The adhesion between the two thin films is greatly improved, the peeling of the thin films is prevented, and the abrasion resistance is greatly improved.

また、従来のように稀少で高価な金属であるインジウム
の酸化物を主成分とするITOを用いた場合は製品コス
トが高かったが、−船釣な金属であるSnの酸化物の使
用によって、製品コストを大幅に低減することができる
という優れた効果を奏する。
In addition, the product cost was high when using conventional ITO whose main component is the oxide of indium, which is a rare and expensive metal, but by using the oxide of Sn, which is a commonly used metal, This has the excellent effect of significantly reducing product costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる耐摩耗性機能性二N
薄膜の部分斜視図、第2図は第1図の耐摩耗性機能性二
層薄膜の断面図である。 第3図は加熱処理条件を変えた場合の本発明の一実施例
に係わる耐摩耗性機能性二層薄膜のテーパ摩耗試験後の
ヘーズ値の変化特性図、第4図はテーパ摩耗回数の増大
に応じた本発明の一実施例の耐摩耗性機能性二層薄膜と
比較例1および比較例2のヘーズ(tの変化特性図、第
5図は比較例2の機能性薄膜の表面あらさの測定結果を
示すチャート、第6図が本発明の一実施例に係わる耐摩
耗性機能性二層薄膜の表面あらさの測定結果を示すチャ
ートである。 第7図は機能性薄膜を応用した結露センサの平面図、第
8図は従来の機能性薄膜を応用した第7図の結露センサ
の部分拡大図、第9図は第8図のIX−IX断面図であ
る。 ■ ・・・・耐摩耗性機能性二層薄膜 2 ・・・・ガラス基板 3 ・・・・透明電極膜 4 ・・・・絶縁保護膜 5 ・・・・拡散層
Figure 1 shows wear-resistant functionality 2N according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the wear-resistant functional two-layer thin film of FIG. 1; Figure 3 is a characteristic diagram of changes in haze value after a taper abrasion test of a wear-resistant functional two-layer thin film according to an embodiment of the present invention when heat treatment conditions are changed, and Figure 4 is an increase in the number of taper abrasions. Figure 5 shows the change characteristics of haze (t) of the abrasion-resistant functional thin film of one example of the present invention and Comparative Examples 1 and 2 according to the characteristics of the surface roughness of the functional thin film of Comparative Example 2. 6 is a chart showing the measurement results of the surface roughness of the wear-resistant functional two-layer thin film according to an embodiment of the present invention. FIG. 7 is a chart showing the measurement results of the functional thin film. Fig. 8 is a partially enlarged view of the dew condensation sensor shown in Fig. 7 using a conventional functional thin film, and Fig. 9 is a sectional view taken along line IX-IX in Fig. 8. Functional two-layer thin film 2...Glass substrate 3...Transparent electrode film 4...Insulating protective film 5...Diffusion layer

Claims (2)

【特許請求の範囲】[Claims] (1)ガラス基板表面上に積層された少なくとも一層の
透明電極膜とこの透明電極膜上に積層されてその表面を
覆う絶縁保護膜とで構成される多層膜であって、前記透
明電極膜を酸化錫薄膜で形成し、前記絶縁保護膜を酸化
珪素薄膜で形成するとともに、前記両薄膜の境界部に拡
散層を形成したことを特徴とする耐摩耗性機能性二層薄
膜。
(1) A multilayer film consisting of at least one transparent electrode film laminated on the surface of a glass substrate and an insulating protective film laminated on the transparent electrode film to cover the surface, the transparent electrode film being A wear-resistant functional two-layer thin film, characterized in that it is formed of a tin oxide thin film, the insulating protective film is formed of a silicon oxide thin film, and a diffusion layer is formed at the boundary between the two thin films.
(2)ガラス基板表面上に、真空蒸着、イオンプレーテ
ィング、スパッタリング等の物理的被膜形成方法で、少
なくとも一層の透明電極膜とこの透明電極膜を覆う絶縁
保護膜を積層する耐摩耗性機能性二層薄膜の製造方法で
あって、ガラス基板表面上に、前記物理的被膜形成方法
により酸化錫薄膜を積層して透明電極膜とし、さらに、
この透明電極膜の上に酸化珪素薄膜を積層して絶縁保護
膜とした後、加熱処理を行うことにより前記両薄膜の境
界部に拡散層を形成したことを特徴とする耐摩耗性機能
性二層薄膜の製造方法。
(2) Wear-resistant functionality in which at least one transparent electrode film and an insulating protective film covering the transparent electrode film are laminated on the surface of a glass substrate using a physical film formation method such as vacuum deposition, ion plating, or sputtering. A method for producing a two-layer thin film, comprising laminating a tin oxide thin film on the surface of a glass substrate by the physical film forming method to form a transparent electrode film, and further comprising:
A wear-resistant functional secondary film characterized in that a silicon oxide thin film is laminated on the transparent electrode film to form an insulating protective film, and then a diffusion layer is formed at the boundary between the two thin films by heat treatment. Method for manufacturing layered thin films.
JP30720088A 1988-12-05 1988-12-05 Abrasion-resistant functional two-layer thin film and production thereof Pending JPH02153844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30720088A JPH02153844A (en) 1988-12-05 1988-12-05 Abrasion-resistant functional two-layer thin film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30720088A JPH02153844A (en) 1988-12-05 1988-12-05 Abrasion-resistant functional two-layer thin film and production thereof

Publications (1)

Publication Number Publication Date
JPH02153844A true JPH02153844A (en) 1990-06-13

Family

ID=17966245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30720088A Pending JPH02153844A (en) 1988-12-05 1988-12-05 Abrasion-resistant functional two-layer thin film and production thereof

Country Status (1)

Country Link
JP (1) JPH02153844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667541A2 (en) * 1994-02-15 1995-08-16 Dai Nippon Printing Co., Ltd. Optical functional materials and process for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667541A2 (en) * 1994-02-15 1995-08-16 Dai Nippon Printing Co., Ltd. Optical functional materials and process for producing the same
EP0667541A3 (en) * 1994-02-15 1997-10-29 Dainippon Printing Co Ltd Optical functional materials and process for producing the same.
US5909314A (en) * 1994-02-15 1999-06-01 Dai Nippon Printing Co., Ltd. Optical functional materials and process for producing the same
US6064524A (en) * 1994-02-15 2000-05-16 Dai Nippon Printing Co., Ltd. Optical functional materials and process for producing the same
US6340404B1 (en) 1994-02-15 2002-01-22 Dai Nippon Printing Co., Ltd. Optical functional materials and process for producing the same
EP1249716A1 (en) * 1994-02-15 2002-10-16 Dai Nippon Printing Co., Ltd. Optical functional materials and process for producing the same
EP1837684A2 (en) * 1994-02-15 2007-09-26 Dai Nippon Printing Co., Ltd. Optical functional materials and process for producing the same
EP1837684A3 (en) * 1994-02-15 2008-02-13 Dai Nippon Printing Co., Ltd. Optical functional materials and process for producing the same

Similar Documents

Publication Publication Date Title
US7632572B2 (en) Double silver low-emissivity and solar control coatings
US5270517A (en) Method for fabricating an electrically heatable coated transparency
US5902505A (en) Heat load reduction windshield
JP2651203B2 (en) Transparent body and method for producing the same
JPH08336928A (en) Plate made from translucent material and manufacture thereof
JP6301324B2 (en) Conductive film and electronic device having conductive film
JP3785675B2 (en) Substrate with transparent conductive film and method for producing the same
JP4013329B2 (en) Laminate and glass laminate for window
JP2509215B2 (en) Transparent conductive film with antireflection function
JP3257913B2 (en) Transparent electrode
JPH03187735A (en) Selective permeable membrane
JPH02153844A (en) Abrasion-resistant functional two-layer thin film and production thereof
JP2989886B2 (en) Analog touch panel
JPH06177407A (en) Transparent conductive film
JPS61284703A (en) Silver mirror
JPH08174746A (en) Transparent conductive film
JPH1049306A (en) Transparent conductive film for touch panel
JPH09221340A (en) Substrate with transparent conductive film
JPH07105740A (en) Transparent conductive film
JPH08132554A (en) Transparent conductive film
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
JPH0112663B2 (en)
JP2613206B2 (en) Method for producing transparent conductive film
KR950020952A (en) Piezoelectric Analytical Touch Panel
JPH09260735A (en) Thin-film piezoelectric element