JPH06177407A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH06177407A
JPH06177407A JP4349730A JP34973092A JPH06177407A JP H06177407 A JPH06177407 A JP H06177407A JP 4349730 A JP4349730 A JP 4349730A JP 34973092 A JP34973092 A JP 34973092A JP H06177407 A JPH06177407 A JP H06177407A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
moisture resistance
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4349730A
Other languages
Japanese (ja)
Inventor
Tadashi Sugihara
忠 杉原
Takeshi Machino
毅 町野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4349730A priority Critical patent/JPH06177407A/en
Publication of JPH06177407A publication Critical patent/JPH06177407A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To provide a transparent conductive film of good humidity resistance having little change of characteristic with time. CONSTITUTION:A transparent conductive film is a zinc oxide transparent conductive film 2 wherein 0.4 to 4.5 atomic % Al and 0.05 to 2.0 atomic % fluorine are contained. A transparent conductive film 2a from another point of view of this invention is formed by laminating a zinc oxide upper side transparent conductive film 6 containing 0.4 to 4.5 atomic % Al and 0.05 to 2.0 atomic % fluorine on a surface of a lower side transparent conductive film 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、たとえば太陽電池など
の光電変換素子、表示素子、面発熱体、帯電防止膜、タ
ッチパネルなどに用いられる透明導電膜に係わり、さら
に詳しくは、耐湿性を向上させた透明導電膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film used for photoelectric conversion elements such as solar cells, display elements, surface heating elements, antistatic films, touch panels, and more particularly, it has improved moisture resistance. The transparent conductive film.

【0002】[0002]

【従来の技術】太陽電池などの光電変換素子、表示素
子、面発熱体、帯電防止膜、タッチパネルなどを製造す
る場合には、透明導電膜が不可欠である。従来の透明導
電膜としては、ITO膜(錫をドープしたインジウム酸
化物膜)が知られている。ITO膜は、透明性に優れ、
低抵抗であるという利点を有する。
2. Description of the Related Art A transparent conductive film is indispensable when manufacturing photoelectric conversion elements such as solar cells, display elements, surface heating elements, antistatic films and touch panels. As a conventional transparent conductive film, an ITO film (tin-doped indium oxide film) is known. The ITO film has excellent transparency,
It has the advantage of low resistance.

【0003】ところが、ITO膜は、インジウムが高価
なことから、経済性に難点があった。そこで、ITO膜
に比較して安価な透明導電膜として、酸化亜鉛系の透明
導電膜が検討されている。しかしながら、酸化亜鉛系の
透明導電膜では、導電特性などの電気特性が劣るという
問題点を有している。
However, the ITO film has a difficulty in economy because indium is expensive. Therefore, a zinc oxide-based transparent conductive film has been studied as a transparent conductive film that is less expensive than an ITO film. However, the zinc oxide-based transparent conductive film has a problem that the electrical properties such as the conductive properties are inferior.

【0004】[0004]

【発明が解決しようとする課題】このため、特開昭62
−154411号公報に示すように、酸化亜鉛に対して
他元素を添加し、特性の向上を図った酸化亜鉛系の透明
導電膜も開発されている。しかしながら、このような従
来の酸化亜鉛系の透明導電膜では、ITO膜に比較して
耐湿性が悪く、特性の経時的変化が大きいことが本発明
者等によって見い出された。
For this reason, JP-A-62-62
As shown in Japanese Patent Publication No. 154411, a zinc oxide-based transparent conductive film in which another element is added to zinc oxide to improve characteristics has also been developed. However, the present inventors have found that such a conventional zinc oxide-based transparent conductive film has poor moisture resistance and a large change over time in characteristics as compared with an ITO film.

【0005】本発明者等は、耐湿性に優れた酸化亜鉛系
の透明導電膜について鋭意検討した結果、酸化亜鉛系の
透明導電膜に対して特定の範囲でフッ素元素を含有させ
ることにより、耐湿性が著しく向上することを見い出
し、本発明を完成するに至った。なお、特開平3−16
954号公報には、焼結体の低抵抗化を図るために、酸
化亜鉛系の焼結体にハロゲン元素を含ませる旨の記載が
あるが、この公報には、ハロゲン元素の内でも特にフッ
素を酸化亜鉛系透明導電膜中に特定原子%の範囲内で含
有させることにより、透明導電膜の耐湿性を著しく向上
させる旨の技術的思想は何等開示されておらず、本発明
とは無関係である。
As a result of earnest studies on the zinc oxide type transparent conductive film having excellent moisture resistance, the inventors of the present invention have found that the moisture resistance of the zinc oxide type transparent conductive film can be improved by adding a fluorine element in a specific range. The inventors have found that the properties are remarkably improved and have completed the present invention. Incidentally, JP-A-3-16
Japanese Patent Publication No. 954 describes that a zinc oxide-based sintered body contains a halogen element in order to reduce the resistance of the sintered body. Nothing is disclosed regarding the technical idea that the moisture resistance of the transparent conductive film is remarkably improved by containing Z in the zinc oxide type transparent conductive film in the range of a specific atomic%, and is not related to the present invention. is there.

【0006】本発明は、このような実情に鑑みてなさ
れ、特に耐湿性に優れ、特性の経時的変化が少ない透明
導電膜を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a transparent conductive film which is particularly excellent in moisture resistance and has little change in characteristics over time.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の透明導電膜は、酸化亜鉛系の透明導電膜で
あり、Alが0.4〜4.5原子%含まれ、かつフッ素
が0.05〜2.0原子%含まれることを特徴とする。
また、本発明の別の観点に係る透明導電膜は、下層側透
明導電膜の表面側に、Alが0.4〜4.5原子%含ま
れ、かつフッ素が0.05〜2.0原子%含まれる酸化
亜鉛系の上層側透明導電膜が積層してあることを特徴と
する。下層側透明導電膜は、特に限定されないが、酸化
亜鉛系の透明導電膜であることが好ましい。
In order to achieve the above object, the transparent conductive film of the present invention is a zinc oxide-based transparent conductive film, contains 0.4 to 4.5 atomic% of Al, and It is characterized in that it contains 0.05 to 2.0 atomic% of fluorine.
Moreover, the transparent conductive film which concerns on another viewpoint of this invention contains 0.4-4.5 atom% of Al and 0.05-2.0 atom of fluorine in the surface side of the lower layer side transparent conductive film. % Of the zinc oxide-based upper transparent conductive film is laminated. The lower transparent conductive film is not particularly limited, but is preferably a zinc oxide-based transparent conductive film.

【0008】[0008]

【作用】本発明の透明導電膜では、Alが0.4〜4.
5原子%含まれ、かつフッ素が0.05〜2.0原子%
含まれる酸化亜鉛系の透明導電膜が少なくとも表面側に
形成される。Alを上記範囲で含ませることにより、酸
化亜鉛系透明導電膜の導電性および透明性が向上する。
また、この酸化亜鉛系の透明導電膜中に、ハロゲン元素
の内でも特にフッ素を特定範囲で含有させることによ
り、透明導電膜の耐湿性が著しく向上し、経時変化を有
効に抑制できる。フッ素の含有量が、0.05原子%よ
り低い場合あるいは2.0原子%より大きい場合には、
耐湿性向上の効果を有効に得ることは期待できない。ま
た、フッ素以外のハロゲン元素を酸化亜鉛系導電膜中に
含ませたとしても、耐湿性向上の効果はあまり期待でき
ない。
In the transparent conductive film of the present invention, Al is 0.4 to 4.
Contains 5 atomic% and contains 0.05 to 2.0 atomic% fluorine
The zinc oxide-based transparent conductive film contained is formed at least on the surface side. Inclusion of Al in the above range improves the conductivity and transparency of the zinc oxide-based transparent conductive film.
Further, by containing fluorine in the halogen element in a specific range in the zinc oxide-based transparent conductive film, the moisture resistance of the transparent conductive film is significantly improved, and the change with time can be effectively suppressed. When the fluorine content is lower than 0.05 atom% or higher than 2.0 atom%,
The effect of improving the moisture resistance cannot be expected effectively. Even if a halogen element other than fluorine is contained in the zinc oxide-based conductive film, the effect of improving the moisture resistance cannot be expected so much.

【0009】[0009]

【実施例】以下、本発明を、図面に示す実施例に基づき
具体的に説明する。図1は本発明の第1の観点に係る透
明導電膜の要部断面図、図2は本発明の第2の観点に係
る透明導電膜の要部断面図である。図1に示す本発明の
第1の観点に係る透明導電膜2は、単一層で構成され、
たとえば透明基板4の表面に積層して形成される。この
透明導電膜2は、酸化亜鉛系の透明導電膜であり、Al
が0.4〜4.5原子%含まれ、かつフッ素が0.05
〜2.0原子%含まれる。Alを含有させるのは、低抵
抗化および透明性向上のためであり、Alを上記範囲で
含有させることにより、低抵抗化および透明性向上が図
れる。Alの含有量が多すぎると、かえって抵抗が増大
する傾向にある。また、少なすぎると、低抵抗化の効果
がない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the embodiments shown in the drawings. 1 is a cross-sectional view of a main part of a transparent conductive film according to the first aspect of the present invention, and FIG. 2 is a cross-sectional view of a main part of a transparent conductive film according to the second aspect of the present invention. The transparent conductive film 2 according to the first aspect of the present invention shown in FIG. 1 is composed of a single layer,
For example, it is formed by laminating on the surface of the transparent substrate 4. The transparent conductive film 2 is a zinc oxide-based transparent conductive film and is made of Al.
Is contained in an amount of 0.4 to 4.5 atomic% and fluorine is 0.05
.About.2.0 at%. The inclusion of Al is for lowering resistance and improving transparency, and by including Al in the above range, lowering resistance and improvement of transparency can be achieved. If the Al content is too high, the resistance tends to increase. On the other hand, if the amount is too small, there is no effect of lowering the resistance.

【0010】また、この酸化亜鉛系の透明導電膜2中
に、ハロゲン元素の内でも特にフッ素を特定範囲で含有
させることにより、透明導電膜の耐湿性が著しく向上
し、経時変化を有効に抑制できる。フッ素の含有量が、
0.05原子%より低い場合あるいは2.0原子%より
大きい場合には、耐湿性向上の効果を有効に得ることは
期待できない。また、フッ素以外のハロゲン元素を酸化
亜鉛系の透明導電膜2中に含ませたとしても、耐湿性向
上の効果はあまり期待できない。
Further, by including fluorine in the halogen element in a specific range in the zinc oxide type transparent conductive film 2, the moisture resistance of the transparent conductive film is remarkably improved and the change with time is effectively suppressed. it can. The content of fluorine is
If it is lower than 0.05 atom% or higher than 2.0 atom%, it cannot be expected that the effect of improving the moisture resistance can be effectively obtained. Even if a halogen element other than fluorine is contained in the zinc oxide-based transparent conductive film 2, the effect of improving the moisture resistance cannot be expected so much.

【0011】本発明に係る酸化亜鉛系の透明導電膜2
は、たとえばマグネトロンスパッタリング法、CVD法
などにより製造することができる。スパッタリング法に
より透明導電膜2を成膜するには、まず、アルミニウム
酸化物(Al23 )を0.5〜6重量%含有する酸化
亜鉛系焼結体を準備する。
The zinc oxide-based transparent conductive film 2 according to the present invention
Can be manufactured by, for example, a magnetron sputtering method, a CVD method, or the like. To form the transparent conductive film 2 by the sputtering method, first, a zinc oxide-based sintered body containing 0.5 to 6% by weight of aluminum oxide (Al 2 O 3 ) is prepared.

【0012】このような酸化亜鉛焼結体は、以下のよう
な製法で製造することができる。すなわち、0.5〜6
重量%のアルミニウム酸化物および94〜99.5重量
%の酸化亜鉛の粉体を混合後、冷間静水圧プレスなどで
成形後に、900〜1500℃で焼結させる。
Such a zinc oxide sintered body can be manufactured by the following manufacturing method. That is, 0.5 to 6
After mixing the powder of aluminum oxide of 94 wt% and the powder of zinc oxide of 94-99.5 wt%, the mixture is molded by cold isostatic pressing or the like and then sintered at 900-1500 ° C.

【0013】次に、このような焼結体をターゲットとし
て、たとえば直流(DC)または交流(RF)マグネト
ロンスパッタリング法により、基板4上に直接あるいは
他の機能薄膜を介して、本発明に係る酸化亜鉛系の透明
導電膜を成膜する。スパッタリングの条件は、特に限定
されないが、DCスパッタリングの場合には、たとえば
次の条件で行われる。
Next, by using such a sintered body as a target, for example, by direct current (DC) or alternating current (RF) magnetron sputtering, the oxidation according to the present invention is carried out directly on the substrate 4 or through another functional thin film. A zinc-based transparent conductive film is formed. The sputtering conditions are not particularly limited, but in the case of DC sputtering, for example, the following conditions are used.

【0014】 スパッタ・ガス: アルゴン/フッ素 スパッタ圧力 : 1〜10×10-3 Torr アルゴン流量 : 10〜40 SCCM フッ素流量 : 0.05〜3 SCCM スパッタ電流 : 0.3〜15 A スパッタ速度 : 100〜300 オングストロー
ム/分 スパッタ時間 : 0.5〜2時間 基板温度 : 200〜300℃
Sputtering gas: Argon / Fluorine Sputtering pressure: 1-10 × 10 −3 Torr Argon flow rate: 10-40 SCCM Fluorine flow rate: 0.05-3 SCCM Sputtering current: 0.3-15 A Sputtering rate: 100 ~ 300 Å / min Sputtering time: 0.5-2 hours Substrate temperature: 200-300 ° C

【0015】基板4としては、特に限定されないが、た
とえばガラス基板あるいはポリマー基板などが用いられ
る。基板上に成膜される本発明の透明導電膜の膜厚も特
に限定されないが、たとえば太陽電池の透明導電膜とし
て用いる場合には、20〜30nm程度が好ましい。本発
明の透明導電膜2の用途は、太陽電池などの光電変換素
子に限定されず、液晶表示装置などの表示装置、面状発
熱体、熱線反射膜、可視光の可変遮光膜、電磁遮光膜、
帯電防止膜、タッチパネル、光通信用部材膜など、あら
ゆる用途に応用でき、特に耐湿性が要求される用途に用
いて好適である。
The substrate 4 is not particularly limited, but for example, a glass substrate or a polymer substrate is used. The film thickness of the transparent conductive film of the present invention formed on the substrate is not particularly limited, but when it is used as a transparent conductive film of a solar cell, it is preferably about 20 to 30 nm. The application of the transparent conductive film 2 of the present invention is not limited to a photoelectric conversion element such as a solar cell, and is used for a display device such as a liquid crystal display device, a planar heating element, a heat ray reflection film, a visible light variable light shielding film, and an electromagnetic light shielding film. ,
It can be applied to various applications such as an antistatic film, a touch panel, and an optical communication member film, and is particularly suitable for applications requiring moisture resistance.

【0016】図2は本発明の第2の観点に係る透明導電
膜2aを示す。この透明導電膜2aは、基板4上に積層
された多層膜構造で構成され、下層側透明導電膜8と上
層側透明導電膜6とで構成される。下層側透明導電膜8
は、特に限定されず、耐湿性に劣る透明導電膜で良い。
この下層側透明導電膜8は、たとえばAlが0.4〜
4.5原子%含まれる酸化亜鉛系の透明導電膜あるいは
ITO膜で構成される。
FIG. 2 shows a transparent conductive film 2a according to the second aspect of the present invention. The transparent conductive film 2a has a multilayer film structure laminated on the substrate 4, and includes a lower layer side transparent conductive film 8 and an upper layer side transparent conductive film 6. Lower transparent conductive film 8
Is not particularly limited and may be a transparent conductive film having poor moisture resistance.
The lower transparent conductive film 8 has, for example, Al of 0.4 to
It is made of a zinc oxide-based transparent conductive film or an ITO film containing 4.5 atomic%.

【0017】上層側透明導電膜6は、Alが0.4〜
4.5原子%含まれ、かつフッ素が0.05〜2.0原
子%含まれる酸化亜鉛系の透明導電膜で構成される。こ
の膜が耐湿性に優れることから、透明導電膜2aの表面
側に形成される。この膜が表面側に形成されれば、透明
導電膜2aの膜構造は、二層以上の多層構造であっても
良い。
The upper transparent conductive film 6 has an Al content of 0.4 to 0.4.
It is composed of a zinc oxide-based transparent conductive film containing 4.5 atomic% and fluorine of 0.05 to 2.0 atomic%. Since this film has excellent moisture resistance, it is formed on the surface side of the transparent conductive film 2a. If this film is formed on the front surface side, the film structure of the transparent conductive film 2a may be a multilayer structure of two or more layers.

【0018】上層側透明導電膜6の膜厚は、特に限定さ
れないが、5〜100nmが好ましい。この膜が余りに
薄いと、耐湿性保護膜としての機能が低下することから
好ましくない。また、上層側透明導電膜6と下層側透明
導電膜8との界面は必ずしも明確である必要はなく、フ
ッ素濃度が膜厚方向に連続して変化する界面であっても
良い。
The thickness of the upper transparent conductive film 6 is not particularly limited, but is preferably 5 to 100 nm. If this film is too thin, the function as a moisture-resistant protective film is deteriorated, which is not preferable. Further, the interface between the upper layer side transparent conductive film 6 and the lower layer side transparent conductive film 8 does not necessarily have to be clear, and may be an interface where the fluorine concentration continuously changes in the film thickness direction.

【0019】以下、本発明をさらに具体的な実施例によ
り説明するが、本発明は、これら実施例に限定されな
い。
Hereinafter, the present invention will be described with reference to more specific examples, but the present invention is not limited to these examples.

【0020】実施例1 透明基板を準備し、その表面を研磨し表面の平均粗さを
500オングストローム以下とした。その基板の表面
を、超音波洗浄器を用いてアセトンで洗浄した。
Example 1 A transparent substrate was prepared and the surface thereof was polished to an average surface roughness of 500 angstroms or less. The surface of the substrate was cleaned with acetone using an ultrasonic cleaner.

【0021】このような基板の表面に、図2に示すよう
に、本発明の実施例に係る下層側透明導電膜8をおよび
上層側透明導電膜6を成膜するために、DCマグネトロ
ンスパッタリングで用いるターゲットを準備した。ター
ゲットと成る酸化亜鉛系焼結体は、Al23 を2重量
%含有し、ZnOを98重量%含有する粉体を混合後、
CIPで2ton/cm2 の圧力で成形し、これを大気中で1
200℃および3時間の条件で焼成することにより得ら
れる。
As shown in FIG. 2, the lower transparent conductive film 8 and the upper transparent conductive film 6 according to the embodiment of the present invention are formed on the surface of such a substrate by DC magnetron sputtering. The target to be used was prepared. The zinc oxide-based sintered body as a target contains 2% by weight of Al 2 O 3 and 98% by weight of ZnO.
Molded with CIP at a pressure of 2 ton / cm 2
It can be obtained by firing at 200 ° C. for 3 hours.

【0022】このようにして製造された酸化亜鉛系焼結
体をターゲットとして、DCマグネトロンスパッタリン
グ法により、基板4上に、まず、厚さ150nmの下層側
透明導電膜8を成膜した。スパッタリングの条件を以下
に示す。
First, the lower transparent conductive film 8 having a thickness of 150 nm was formed on the substrate 4 by the DC magnetron sputtering method using the zinc oxide type sintered body thus manufactured as a target. The sputtering conditions are shown below.

【0023】 スパッタ・ガス: アルゴン/酸素 スパッタ圧力 : 1×10-3 Torr アルゴン流量 : 50 SCCM 酸素流量 : 0.2 SCCM スパッタ電流 : 0.05 A スパッタ速度 : 80 オングストローム/
分 スパッタ時間 : 1 時間 基板温度 : 200 ℃
Sputtering gas: Argon / oxygen Sputtering pressure: 1 × 10 −3 Torr Argon flow rate: 50 SCCM Oxygen flow rate: 0.2 SCCM Sputtering current: 0.05 A Sputtering rate: 80 Å /
Min Sputtering time: 1 hour Substrate temperature: 200 ° C

【0024】引続き、同じターゲットを用いて、雰囲気
ガス中にフッ素を1SCCM流し、同様なDCスパッタリン
グを行ない、厚さ10nmの上層側透明導電膜6を成膜
し、本実施例の透明導電膜2aを成膜した。
Subsequently, using the same target, fluorine was flowed in the atmosphere gas at 1 SCCM and the same DC sputtering was performed to form an upper transparent conductive film 6 having a thickness of 10 nm. Was deposited.

【0025】下層側透明導電膜8および上層側透明導電
膜6の原子分析をEPMAを用いて行ったところ、下層
側透明導電膜8は、Alが1.5原子%含まれる酸化亜
鉛系膜であり、上層側透明導電膜6は、Alが1.5原
子%含まれ、フッ素が0.5原子%含まれる酸化亜鉛系
膜であることが確認された。
When the atomic analysis of the lower transparent conductive film 8 and the upper transparent conductive film 6 was performed using EPMA, the lower transparent conductive film 8 was a zinc oxide based film containing 1.5 atomic% of Al. It was confirmed that the upper transparent conductive film 6 was a zinc oxide-based film containing 1.5 atomic% of Al and 0.5 atomic% of fluorine.

【0026】このようにして製造された透明導電膜2a
を75℃および湿度95%の条件下で、48時間経過前
後の抵抗率の変化および透過率(波長550nmにおけ
る)の変化を測定した結果を表1に示す。表1に示すよ
うに、本実施例の透明導電膜2aでは、耐湿試験前後に
おいて、抵抗率の増大および透過率の減少がほとんど見
られず、耐湿性に優れた膜であることが確認された。
The transparent conductive film 2a manufactured in this way
Table 1 shows the results of measuring changes in resistivity and changes in transmittance (at a wavelength of 550 nm) before and after 48 hours under conditions of 75 ° C. and 95% humidity. As shown in Table 1, the transparent conductive film 2a of this example was confirmed to be a film excellent in moisture resistance, with almost no increase in resistivity and decrease in transmittance before and after the moisture resistance test. .

【0027】[0027]

【表1】 [Table 1]

【0028】実施例2 下層側透明導電膜の膜厚を200nmとし、上層側透明導
電膜を成膜する際のフッ素の流量を2SCCMとし、成膜時
の基板温度を250℃とした以外は実施例1と同様にし
て透明導電膜を成膜した。下層側透明導電膜のフッ素含
有量は1原子%であった。実施例1と同様にして耐湿性
の試験を行なった結果を表1に示す。
Example 2 Except that the film thickness of the lower transparent conductive film was 200 nm, the flow rate of fluorine was 2 SCCM when the upper transparent conductive film was formed, and the substrate temperature during film formation was 250 ° C. A transparent conductive film was formed in the same manner as in Example 1. The fluorine content of the lower layer side transparent conductive film was 1 atomic%. The results of the moisture resistance test conducted in the same manner as in Example 1 are shown in Table 1.

【0029】表1に示すように、本実施例の透明導電膜
2aでは、耐湿試験前後において、抵抗率の増大および
透過率の減少がほとんど見られず、耐湿性に優れた膜で
あることが確認された。
As shown in Table 1, the transparent conductive film 2a of this example is a film excellent in moisture resistance, showing almost no increase in resistivity and decrease in transmittance before and after the moisture resistance test. confirmed.

【0030】実施例3 下層側透明導電膜および上層側透明導電膜に含まれるア
ルミニウムの含有原子%を3原子%とし、上層側透明導
電膜に含まれるフッ素の含有量を0.3原子%とし、下
層側透明導電膜の膜厚を200nmとし、上層側透明導電
膜の膜厚を20nmとし、基板温度を230℃とし、R
Fマグネトロンスパッタリングを用いた以外は、実施例
1と同様にして透明導電膜を成膜した。実施例1と同様
にして耐湿性の試験を行なった結果を表1に示す。表1
に示すように、本実施例の透明導電膜2aでは、耐湿試
験前後において、抵抗率の増大および透過率の減少がほ
とんど見られず、耐湿性に優れた膜であることが確認さ
れた。
Example 3 The content of aluminum contained in the lower transparent conductive film and the upper transparent conductive film was 3 atom%, and the content of fluorine contained in the upper transparent conductive film was 0.3 atom%. , The lower transparent conductive film has a thickness of 200 nm, the upper transparent conductive film has a thickness of 20 nm, the substrate temperature is 230 ° C., and R
A transparent conductive film was formed in the same manner as in Example 1 except that F magnetron sputtering was used. The results of the moisture resistance test conducted in the same manner as in Example 1 are shown in Table 1. Table 1
As shown in, the transparent conductive film 2a of this example was confirmed to be a film excellent in moisture resistance, with almost no increase in resistivity and decrease in transmittance before and after the moisture resistance test.

【0031】実施例4 下層側透明導電膜および上層側透明導電膜に含まれるア
ルミニウムの含有原子%を3.5原子%とし、上層側透
明導電膜に含まれるフッ素の含有量を1.5原子%と
し、下層側透明導電膜の膜厚を300nmとし、上層側透
明導電膜の膜厚を20nmとし、基板温度を350℃と
し、RFマグネトロンスパッタリングを用いた以外は、
実施例1と同様にして透明導電膜を成膜した。実施例1
と同様にして耐湿性の試験を行なった結果を表1に示
す。表1に示すように、本実施例の透明導電膜2aで
は、耐湿試験前後において、抵抗率の増大および透過率
の減少がほとんど見られず、耐湿性に優れた膜であるこ
とが確認された。
Example 4 The aluminum content in the lower transparent conductive film and the upper transparent conductive film was 3.5 atom%, and the fluorine content in the upper transparent conductive film was 1.5 atom. %, The thickness of the lower transparent conductive film was 300 nm, the thickness of the upper transparent conductive film was 20 nm, the substrate temperature was 350 ° C., and RF magnetron sputtering was used.
A transparent conductive film was formed in the same manner as in Example 1. Example 1
The results of the moisture resistance test conducted in the same manner as in Table 1 are shown in Table 1. As shown in Table 1, the transparent conductive film 2a of this example was confirmed to be a film excellent in moisture resistance, with almost no increase in resistivity and decrease in transmittance before and after the moisture resistance test. .

【0032】実施例5 下層側透明導電膜および上層側透明導電膜に含まれるア
ルミニウムの含有原子%を4原子%とし、上層側透明導
電膜に含まれるフッ素の含有量を0.1原子%とし、下
層側透明導電膜の膜厚を300nmとし、上層側透明導電
膜の膜厚を30nmとし、基板温度を580℃とし、C
VD法を用いた以外は、実施例1と同様にして透明導電
膜を成膜した。実施例1と同様にして耐湿性の試験を行
なった結果を表1に示す。表1に示すように、本実施例
の透明導電膜2aでは、耐湿試験前後において、抵抗率
の増大および透過率の減少がほとんど見られず、耐湿性
に優れた膜であることが確認された。
Example 5 The content of aluminum contained in the lower transparent conductive film and the upper transparent conductive film was 4 atom%, and the content of fluorine contained in the upper transparent conductive film was 0.1 atom%. , The lower transparent conductive film has a thickness of 300 nm, the upper transparent conductive film has a thickness of 30 nm, the substrate temperature is 580 ° C., and C
A transparent conductive film was formed in the same manner as in Example 1 except that the VD method was used. The results of the moisture resistance test conducted in the same manner as in Example 1 are shown in Table 1. As shown in Table 1, the transparent conductive film 2a of this example was confirmed to be a film excellent in moisture resistance, with almost no increase in resistivity and decrease in transmittance before and after the moisture resistance test. .

【0033】比較例1 上層側透明導電膜を形成しない以外は、実施例1と同様
にして下層側透明導電膜のみから成る透明導電膜を成膜
した。実施例1と同様にして耐湿性の試験を行なった結
果を表2に示す。表2に示すように、比較例の透明導電
膜では、耐湿試験後において、抵抗率が増大すると共
に、透過率が低下し、実施例1〜5に比較して耐湿性に
劣る膜であることが確認された。
Comparative Example 1 A transparent conductive film composed of only a lower transparent conductive film was formed in the same manner as in Example 1 except that the upper transparent conductive film was not formed. The results of the moisture resistance test conducted in the same manner as in Example 1 are shown in Table 2. As shown in Table 2, in the transparent conductive film of the comparative example, after the moisture resistance test, the resistivity was increased and the transmittance was decreased, and the film was inferior in moisture resistance to Examples 1 to 5. Was confirmed.

【表2】 [Table 2]

【0034】比較例2 上層側透明導電膜を形成しない以外は、実施例2と同様
にして下層側透明導電膜のみから成る透明導電膜を成膜
した。実施例2と同様にして耐湿性の試験を行なった結
果を表2に示す。表2に示すように、比較例の透明導電
膜では、耐湿試験後において、抵抗率が増大すると共
に、透過率が低下し、実施例1〜5に比較して耐湿性に
劣る膜であることが確認された。
Comparative Example 2 A transparent conductive film consisting of only a lower transparent conductive film was formed in the same manner as in Example 2 except that the upper transparent conductive film was not formed. Table 2 shows the results of the moisture resistance test conducted in the same manner as in Example 2. As shown in Table 2, in the transparent conductive film of the comparative example, after the moisture resistance test, the resistivity was increased and the transmittance was decreased, and the film was inferior in moisture resistance to Examples 1 to 5. Was confirmed.

【0035】比較例3 上層側透明導電膜を形成しない以外は、実施例3と同様
にして下層側透明導電膜のみから成る透明導電膜を成膜
した。実施例3と同様にして耐湿性の試験を行なった結
果を表2に示す。表2に示すように、比較例の透明導電
膜では、耐湿試験後において、抵抗率が増大すると共
に、透過率が低下し、実施例1〜5に比較して耐湿性に
劣る膜であることが確認された。
Comparative Example 3 A transparent conductive film consisting only of a lower transparent conductive film was formed in the same manner as in Example 3 except that the upper transparent conductive film was not formed. Table 2 shows the results of the moisture resistance test conducted in the same manner as in Example 3. As shown in Table 2, in the transparent conductive film of the comparative example, after the moisture resistance test, the resistivity was increased and the transmittance was decreased, and the film was inferior in moisture resistance to Examples 1 to 5. Was confirmed.

【0036】比較例4 上層側透明導電膜を形成しない以外は、実施例4と同様
にして下層側透明導電膜のみから成る透明導電膜を成膜
した。実施例4と同様にして耐湿性の試験を行なった結
果を表2に示す。表2に示すように、比較例の透明導電
膜では、耐湿試験後において、抵抗率が増大すると共
に、透過率が低下し、実施例1〜5に比較して耐湿性に
劣る膜であることが確認された。
Comparative Example 4 A transparent conductive film composed of only a lower layer side transparent conductive film was formed in the same manner as in Example 4 except that the upper layer side transparent conductive film was not formed. Table 2 shows the results of the moisture resistance test conducted in the same manner as in Example 4. As shown in Table 2, in the transparent conductive film of the comparative example, after the moisture resistance test, the resistivity was increased and the transmittance was decreased, and the film was inferior in moisture resistance to Examples 1 to 5. Was confirmed.

【0037】比較例5 上層側透明導電膜を形成しない以外は、実施例5と同様
にして下層側透明導電膜のみから成る透明導電膜を成膜
した。実施例5と同様にして耐湿性の試験を行なった結
果を表2に示す。表2に示すように、比較例の透明導電
膜では、耐湿試験後において、抵抗率が増大すると共
に、透過率が低下し、実施例1〜5に比較して耐湿性に
劣る膜であることが確認された。
Comparative Example 5 A transparent conductive film consisting only of a lower transparent conductive film was formed in the same manner as in Example 5 except that the upper transparent conductive film was not formed. Table 2 shows the results of the moisture resistance test conducted in the same manner as in Example 5. As shown in Table 2, in the transparent conductive film of the comparative example, after the moisture resistance test, the resistivity was increased and the transmittance was decreased, and the film was inferior in moisture resistance to Examples 1 to 5. Was confirmed.

【0038】比較例6 上層側透明導電膜を形成する際に、フッ素の代わりに塩
素を流し、塩素を0.5原子%含む上層側透明導電膜を
成膜した以外は実施例1と同様にして透明導電膜を成膜
した。実施例1と同様にして耐湿性の試験を行なった結
果を表3に示す。表3に示すように、比較例の透明導電
膜では、耐湿試験後において、抵抗率が増大すると共
に、透過率が低下し、実施例1〜5に比較して耐湿性に
劣る膜であることが確認された。
Comparative Example 6 In the same manner as in Example 1 except that when forming the upper transparent conductive film, chlorine was flowed in place of fluorine to form an upper transparent conductive film containing 0.5 atom% of chlorine. To form a transparent conductive film. Table 3 shows the results of the moisture resistance test conducted in the same manner as in Example 1. As shown in Table 3, in the transparent conductive film of the comparative example, after the humidity resistance test, the resistivity was increased and the transmittance was decreased, and the film was inferior in moisture resistance to Examples 1 to 5. Was confirmed.

【表3】 [Table 3]

【0039】比較例7 上層側透明導電膜を形成する際に、フッ素の含有原子%
を3原子%とした以外は、実施例1と同様にして透明導
電膜を成膜した。実施例1と同様にして耐湿性の試験を
行なった結果を表3に示す。表3に示すように、比較例
7の透明導電膜では、耐湿試験前後における抵抗率およ
び透過率の変化は少ないが、抵抗率が高いと共に、透過
率が低く、本実施例1〜5に比較すれば、透明導電膜と
しては良好でないことが確認された。
Comparative Example 7 When forming the upper transparent conductive film, the fluorine-containing atomic% was
A transparent conductive film was formed in the same manner as in Example 1 except that was set to 3 atomic%. Table 3 shows the results of the moisture resistance test conducted in the same manner as in Example 1. As shown in Table 3, in the transparent conductive film of Comparative Example 7, the resistance and the transmittance were little changed before and after the humidity resistance test, but the resistivity was high and the transmittance was low. Then, it was confirmed that the transparent conductive film was not good.

【0040】[0040]

【発明の効果】以上説明してきたように、本発明によれ
ば、透明導電膜の耐湿性が向上し、導電性および透明性
などの特性の経時的変化が少なくなり、耐久性が向上す
るという優れた効果を奏する。したがって、本発明の透
明導電膜は、特に耐湿性が要求される分野に用いて好適
である。
As described above, according to the present invention, the moisture resistance of the transparent conductive film is improved, the characteristics such as conductivity and transparency are less changed with time, and the durability is improved. It has an excellent effect. Therefore, the transparent conductive film of the present invention is suitable for use in a field where moisture resistance is particularly required.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の観点に係る透明導電膜の要部断
面図である。
FIG. 1 is a cross-sectional view of a main part of a transparent conductive film according to a first aspect of the present invention.

【図2】本発明の第2の観点に係る透明導電膜の要部断
面図である。
FIG. 2 is a sectional view of an essential part of a transparent conductive film according to a second aspect of the present invention.

【符号の説明】[Explanation of symbols]

2,2a… 透明導電膜 4… 基板 6… 上層側透明導電膜 8… 下層側透明導電膜 2, 2a ... Transparent conductive film 4 ... Substrate 6 ... Upper layer side transparent conductive film 8 ... Lower layer side transparent conductive film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛系の透明導電膜であり、Alが
0.4〜4.5原子%含まれ、かつフッ素が0.05〜
2.0原子%含まれる透明導電膜。
1. A zinc oxide-based transparent conductive film containing 0.4 to 4.5 atomic% of Al and 0.05 to 0.05 of fluorine.
A transparent conductive film containing 2.0 atom%.
【請求項2】 下層側透明導電膜の表面側に、Alが
0.4〜4.5原子%含まれ、かつフッ素が0.05〜
2.0原子%含まれる酸化亜鉛系の上層側透明導電膜が
積層してある透明導電膜。
2. The lower transparent conductive film contains 0.4 to 4.5 atomic% of Al and 0.05 to 0.05 of fluorine on the surface side.
A transparent conductive film, in which a zinc oxide-based upper transparent conductive film containing 2.0 atomic% is laminated.
【請求項3】 上記下層側透明導電膜が酸化亜鉛系の透
明導電膜である請求項2に記載の透明導電膜。
3. The transparent conductive film according to claim 2, wherein the lower transparent conductive film is a zinc oxide-based transparent conductive film.
JP4349730A 1992-12-02 1992-12-02 Transparent conductive film Withdrawn JPH06177407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4349730A JPH06177407A (en) 1992-12-02 1992-12-02 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4349730A JPH06177407A (en) 1992-12-02 1992-12-02 Transparent conductive film

Publications (1)

Publication Number Publication Date
JPH06177407A true JPH06177407A (en) 1994-06-24

Family

ID=18405719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4349730A Withdrawn JPH06177407A (en) 1992-12-02 1992-12-02 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPH06177407A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060058563A (en) * 2004-11-25 2006-05-30 한국과학기술연구원 Tansparent conducting thin films consisting of zno with high figure of merit
WO2007066490A1 (en) * 2005-12-08 2007-06-14 Nippon Mining & Metals Co., Ltd. Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
JP2008066699A (en) * 2006-08-10 2008-03-21 Kochi Univ Of Technology Transparent electromagnetic shielding film
JP2009265629A (en) * 2008-03-31 2009-11-12 Kochi Univ Of Technology Display substrate, and manufacturing method and display device therefor
JP2010034027A (en) * 2008-06-23 2010-02-12 Hitachi Ltd Substrate with transparent conductive film, manufacturing method thereof, display element using substrate with transparent conductive film, and solar cell using substrate with transparent conductive film
JP2010519720A (en) * 2007-02-26 2010-06-03 エルジー・ケム・リミテッド Conductive laminate and manufacturing method thereof
WO2022114026A1 (en) * 2020-11-30 2022-06-02 Agc株式会社 Transparent electrode substrate and solar cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060058563A (en) * 2004-11-25 2006-05-30 한국과학기술연구원 Tansparent conducting thin films consisting of zno with high figure of merit
WO2007066490A1 (en) * 2005-12-08 2007-06-14 Nippon Mining & Metals Co., Ltd. Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
JP4926977B2 (en) * 2005-12-08 2012-05-09 Jx日鉱日石金属株式会社 Gallium oxide-zinc oxide sintered sputtering target
JP2008066699A (en) * 2006-08-10 2008-03-21 Kochi Univ Of Technology Transparent electromagnetic shielding film
JP2010519720A (en) * 2007-02-26 2010-06-03 エルジー・ケム・リミテッド Conductive laminate and manufacturing method thereof
JP2009265629A (en) * 2008-03-31 2009-11-12 Kochi Univ Of Technology Display substrate, and manufacturing method and display device therefor
JP2010034027A (en) * 2008-06-23 2010-02-12 Hitachi Ltd Substrate with transparent conductive film, manufacturing method thereof, display element using substrate with transparent conductive film, and solar cell using substrate with transparent conductive film
WO2022114026A1 (en) * 2020-11-30 2022-06-02 Agc株式会社 Transparent electrode substrate and solar cell
JP7160232B1 (en) * 2020-11-30 2022-10-25 Agc株式会社 Transparent electrode substrate and solar cell
CN115579406A (en) * 2020-11-30 2023-01-06 Agc株式会社 Transparent electrode substrate and solar cell

Similar Documents

Publication Publication Date Title
JP4359981B2 (en) Glass laminate and method for producing the same
US5028759A (en) Low emissivity film for a heated windshield
US5270517A (en) Method for fabricating an electrically heatable coated transparency
JPS63239044A (en) Transparent conductive laminate
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JPH05334924A (en) Manufacture of transparent conductive film
JP4013329B2 (en) Laminate and glass laminate for window
JP2509215B2 (en) Transparent conductive film with antireflection function
JP2003034828A (en) Ag ALLOY FILM FOR SHIELDING ELECTROMAGNETIC WAVE, BODY HAVING Ag ALLOY FILM FOR SHIELDING ELECTROMAGNETIC WAVE, AND SPUTTERING TARGET OF Ag ALLOY FOR SHIELDING ELECTROMAGNETIC WAVE
JP2020510591A (en) Coated article having a LOW-E coating with a doped silver IR reflective layer
JP2917456B2 (en) Glowless glass
JPH06128743A (en) Transparent electrically conductive film, production and target used therefor
JPH06177407A (en) Transparent conductive film
JP2950886B2 (en) Method for manufacturing glass with permselective membrane
JP4137254B2 (en) Method for producing transparent conductive laminate
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
JPH07249316A (en) Transparent conductive film and transparent substrate using the transparent conductive film
JP2989886B2 (en) Analog touch panel
JP4172049B2 (en) Transparent conductive film
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
JPH0742572B2 (en) Transparent conductive film
JPH0668713A (en) Transparent conductive film
JP2906524B2 (en) Infrared reflective article
JPH11262968A (en) Transparent conductive film
JP4135235B2 (en) Laminated body and method for producing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307