JPH0215286B2 - - Google Patents
Info
- Publication number
- JPH0215286B2 JPH0215286B2 JP58103219A JP10321983A JPH0215286B2 JP H0215286 B2 JPH0215286 B2 JP H0215286B2 JP 58103219 A JP58103219 A JP 58103219A JP 10321983 A JP10321983 A JP 10321983A JP H0215286 B2 JPH0215286 B2 JP H0215286B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- strength
- conditions
- determined
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 26
- 238000005096 rolling process Methods 0.000 claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims description 14
- 239000010959 steel Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 238000005098 hot rolling Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
本発明は熱延鋼板の冷却方法に係り、特に鋼板
の圧延後の水冷却工程において、冷却速度CR、
冷却停止温度TFを制御して目標強度を得る熱延
鋼板の冷却方法に関する。
鋼板を圧延後、水冷却することにより強度を上
昇させ、低炭素量で溶接性のすぐれた高張力鋼板
を製造する技術は広く知られている。
冷却制御の公知技術として知られているのは、
冷却速度CRおよび/または冷却停止温度TFを圧
延前にあらかじめ設定する冷却制御方法がある
が、圧延条件および/または冷却条件の変動によ
り得られる材料特性、特に強度の変動が大きくな
り精密な制御ができない問題がある。また冷却速
度CR、冷却停止温度TFの設定値は経験的に決定
されるためプロセスコンピユータによる自動制御
には不適である。
本発明の目的は、上記従来の問題点を解決し、
本発明者の1人が先に特願昭57−178673号に開示
した圧延後の組織を制御し材質の安定制御を行う
方法に加えて、更に冷却後の組織を制御すること
により圧延と冷却を組合せた総括的な材質制御方
法を提供するにある。
本発明の要旨とするところは次のとおりであ
る。すなわち、鋼板を圧延後水冷却する工程にお
いて、化学成分、加熱条件、圧延条件から決定さ
れる水冷却を行わない場合の強度と目標強度との
差fを求め、冷却速度CR、冷却停止速度TFの関
数からなる強度上昇量を表わす多項式F(CR,
TF)の次の不等式を満たすCR,TFのうち
f−△f≦F≦f+△f(△f:許容強度誤差)
前記鋼板の板厚、冷却装置の能力から決まる
CR,TFの範囲内にはいるCR,TFにおいて、冷却
条件の変動にともなう前記多項式Fの変動を最小
にするようにCR,TFを制御することを特徴とす
る熱延鋼板の冷却方法である。
水冷による強度上昇効果は冷却による変態組織
の変化により説明されるが、その効果を定量する
場合、冷却条件から変動挙動を計算し、冷却後の
組織を予測し強度を確定する方法が公知となつて
いる。しかし、鋼板製造工程において、化学成
分、加熱条件、圧延条件から圧延直後の組織を予
測制御し、直ちに最適冷却条件を決定するという
システムにおいては上記の方法は制御用計算機の
能力の点で問題が多いので、本発明においては、
水冷却による強度上昇効果を水冷却を行わない場
合の強度に対する上昇量として定式化し、冷却速
度CR、冷却停止温度TFの関数として表わす方法
を採用した。
目標強度を得るための冷却条件決定の手順とし
て次のプロセスを考えた。すなわち、化学成分、
加熱条件、圧延条件から圧延直後の組織を予測
し、水冷を行わなかつた場合の強度を特願昭57−
178673号に開示した方法で予測し、目標強度との
差fを求め、水冷を行わない場合の強度に対する
上昇量を与える冷却速度CR、冷却停止温度TFを
含む多項式F(CR,TF)とfとの関係を示す下記
の不等式(1)の解の(CR,TF)空間における集合
を求める。
f−△f≦F(CR,TF)≦f+△f ……(1)
ただし△f:許容強度誤差
すなわち、(1)の不等式の解の集合と鋼板板厚と
冷却装置の能力から決まる(CR,TF)空間上の
集合との和集合を求める。もしこの和集合が空集
合である場合には装置の能力最大の冷却を行う
が、空集合でない場合には、目標強度を与える
CR,TFの組合せは無限に存在する。最適冷却条
件の決定方法として冷却条件の変動があつた場合
の強度変動を最小にするような条件を選択すると
いう基準を採用する。制御方法のアルゴリズムは
下記のとおりである。
冷却装置の冷却速度CRおよび冷却停止温度TF
の制御精度はCR,TFによつて変化する。そのた
め下記の如く初等解析幾何学的な取扱いが簡単に
できるように座標変換を行う。すなわち、CRと
TFが制御精度△CR(CR,TF)および△TF(CR,
TF)だけ変化した場合のF(CR,TF)の変動はそ
れぞれ下記(2),(3)式で与えられるが
△F(CR,TF)/△CR(CR,TF)=△CR(CR,TF)∂F
/∂CR……(2)
△F(CR,TF)/△TF(CR,TF)=△TC(CR,TF)∂F
/∂TF……(3)
(2),(3)式の右辺がそれぞれ∂F/∂x,∂F/∂yとな
るよ
うに座標変換(CR,TF)g→(x,y)を行う。
gの逆写像g-1が存在すると仮定し、Fをx,y
の関数としてF〔x(CR,TF),y(CR,TF)〕と
表示する。
強度変動を最小にするための条件決定方法は下
記のアルゴリズムによる。強度上昇量をZ軸に取
り、(x,y,Z)空間で考える。(x,y,Z)
空間で強度上昇量を表わす曲面はZ=F(x,y)
の方程式で表わされる。強度変動最小の必要十分
条件は曲面上に垂直に立てたベクトルとZ軸に平
行なベクトルの内積が最大になることである。こ
の条件を下記の方法で求める。添付図面に示すよ
うに曲面上の任意の点P〔x0,y0,(x0,y0)〕を
考える。A→をx軸に平行なP点における曲面の接
ベクトルとし、B→をy軸に平行なP点における曲
面の接ベクトルとすると、A→,B→は次のように与
えられる。
A→=(cosθ1,O,−sinθ1) ……(4)
B→=(O,cosθ2,−sinθ2) ……(5)
ただしθ1はベクトルA→とx軸との角度であり、
またθ2はベクトルBとy軸との角度である。
P点における曲線に垂直なペクトルC→はA→とB→
とのベクトル積で表わされる。
C→=A→×B→={sinθ1・cosθ2,cosθ1・sin
θ2,
cosθ1・cosθ2) ……(6)
Z軸に平行なペクトルZ→との内積は以下のよう
に与えられる。
Z→・C→=cosθ1・cosθ2 ……(7)
簡単な次の変形により下記(8)式となる。
内積最大の条件は(8)式より求められる下記の(9)
式で表わされるG(x,y)を最小にすることで
ある。
G(x,y)=〔1+(∂F/∂x)2〕〔1+(∂F/∂
y)2〕
……(9)
(2),(3),(9)式よりGをCR,TFの関数で表示す
る下記(10)式が得られる。
G(CR,TF)
={1+〔△CR(CR,TF)〕2(∂F/∂CR)2}
×{1+〔△TF(CR,TF)〕2(∂F/∂TF)2}……(
10)
(10)式のG(CR,TF)は冷却条件の変動にともな
う上記(1)式Fの変動に依存し、この関数を最小に
することにより最適冷却条件が得られる。
更に冷却速度および冷却停止温度の制御精度を
下記(11)式、(12)式の如く近似することによりG
(CR,TF)を冷却条件の関数として計算できる。
△CR(CR,TF)=aCR ……(11)
△TF(CR,TF)=a(Ts−TF)+bCR ……(12)
ただし、TSは冷却開始温度、a,bは冷却装
置の制御精度に依存する定数である(10),(11),(12)式
よりG(CR,TF)は次式の如く近似できる。
G(CR,TF)=〔1+a2CR 2(∂F/∂CR)2〕{1
+〔a2(TS−TF)2+b2CR 2〕(∂F/∂TF)2}
……(13)
不等式(1)を満足し鋼板板厚と冷却設備から決ま
るCR,TFの範囲内のCR,TFのうちで(13)式の
G(CR,TF)を最小にするものが、本発明の求め
る冷却速度CRおよび冷却停止温度TFである。
本発明は上記の如く簡単な論理で冷却条件を決
定できるため、オンラインにおける冷却制御が計
算機の能力の負担をともなわずに可能である。
実施例
第1表に組成を示した供試材を連続鋳造後1150
℃に加熱後、ロール半径600mm、ロール回転速度
可変の可逆圧延機を用いて厚さ25mmに圧延した
後、水冷を行い厚鋼板を製造した。すなわち、特
願昭57−178673号に開示した方法により引張強度
を44±1Kgf/mm2に制御した。冷却
The present invention relates to a method for cooling a hot-rolled steel sheet, and in particular, in a water cooling process after rolling a steel sheet, the cooling rate C R ,
This invention relates to a method for cooling hot-rolled steel sheets to obtain target strength by controlling the cooling stop temperature TF . A widely known technique is to increase the strength of a steel plate by cooling it with water after rolling, thereby producing a high-strength steel plate with a low carbon content and excellent weldability. Known techniques for cooling control include:
There is a cooling control method in which the cooling rate C R and/or the cooling stop temperature T F are set in advance before rolling. There are problems that cannot be controlled. Furthermore, the set values for the cooling rate C R and the cooling stop temperature TF are determined empirically, and therefore are not suitable for automatic control by a process computer. The purpose of the present invention is to solve the above-mentioned conventional problems,
In addition to the method of stably controlling the material quality by controlling the structure after rolling, which was previously disclosed in Japanese Patent Application No. 57-178673 by one of the inventors of the present invention, rolling and cooling are possible by further controlling the structure after cooling. The aim is to provide a comprehensive material control method that combines the following. The gist of the present invention is as follows. That is, in the process of water cooling a steel plate after rolling, the difference f between the strength without water cooling determined from the chemical composition, heating conditions, and rolling conditions and the target strength is determined, and the cooling rate C R and cooling stop rate are determined. A polynomial F (C R ,
Among C R and T F that satisfy the following inequality of T F
A hot rolling characterized in that C R and T F are controlled so as to minimize variations in the polynomial F due to variations in cooling conditions, with C R and T F falling within the range of C R and T F. This is a method of cooling steel plates. The effect of increasing strength due to water cooling is explained by changes in the transformed structure due to cooling, but when quantifying this effect, a method is known that calculates the fluctuation behavior from the cooling conditions, predicts the structure after cooling, and determines the strength. ing. However, in the steel sheet manufacturing process, the above method has problems in terms of the ability of the control computer in a system that predicts and controls the structure immediately after rolling from chemical composition, heating conditions, and rolling conditions and immediately determines the optimal cooling conditions. Since there are many, in the present invention,
A method was adopted in which the strength increase effect due to water cooling was formulated as the amount of increase in strength relative to the strength without water cooling, and expressed as a function of the cooling rate C R and the cooling stop temperature TF . The following process was considered to determine the cooling conditions to obtain the target strength. That is, chemical components,
The structure immediately after rolling was predicted from the heating conditions and rolling conditions, and the strength without water cooling was calculated in a patent application filed in 1983.
178673, calculate the difference f from the target strength, and calculate the polynomial F (C R , T Find a set of solutions in the (C R , T F ) space of the following inequality (1) that indicates the relationship between F ) and f. f−△f≦F(C R , T F )≦f+△f ...(1) where △f: Allowable strength error In other words, from the set of solutions to the inequality in (1), the steel plate thickness, and the capacity of the cooling device Find the union of the determined (C R , T F ) space. If this union is an empty set, cooling is performed to the maximum capacity of the device, but if it is not an empty set, the target strength is given.
There are infinite combinations of C R and TF . As a method for determining the optimal cooling conditions, a criterion is adopted to select conditions that minimize intensity fluctuations when there are fluctuations in the cooling conditions. The algorithm of the control method is as follows. Cooling rate C R and cooling stop temperature T F of the cooling device
The control accuracy varies depending on C R and TF . Therefore, coordinate transformation is performed to facilitate elementary analytical geometry handling as described below. That is, C R and
T F is the control accuracy △C R (C R , T F ) and △T F (C R ,
The fluctuation of F (C R , T F ) when it changes by T F ) is given by the following equations (2 ) and ( 3 ) , respectively . T F )=△C R (C R , T F )∂F
/∂C R ...(2) △F (C R , T F ) / △T F (C R , T F ) = △T C (C R , T F ) ∂F
/∂T F ...(3) Coordinate transformation (C R , T F )g→(x, Do y).
Assuming that there exists an inverse mapping g -1 of g, let F be x, y
It is expressed as F[x(C R , T F ), y(C R , T F )] as a function of . The method for determining conditions for minimizing intensity fluctuations is based on the following algorithm. The amount of increase in strength is taken as the Z axis and considered in (x, y, Z) space. (x, y, Z)
The curved surface that represents the amount of increase in strength in space is Z = F (x, y)
It is expressed by the equation. A necessary and sufficient condition for minimizing the intensity fluctuation is that the inner product of a vector perpendicular to the curved surface and a vector parallel to the Z axis becomes maximum. This condition is determined by the following method. Consider an arbitrary point P [x 0 , y 0 , (x 0 , y 0 )] on a curved surface as shown in the attached drawing. If A→ is the tangent vector of the curved surface at point P parallel to the x-axis, and B→ is the tangent vector of the curved surface at point P parallel to the y-axis, then A→ and B→ are given as follows. A→=(cosθ 1 , O, −sinθ 1 ) …(4) B→=(O, cosθ 2 , −sinθ 2 ) …(5) However, θ 1 is the angle between vector A→ and the x-axis. can be,
Further, θ 2 is the angle between the vector B and the y-axis. The spectrum C→ perpendicular to the curve at point P is A→ and B→
It is expressed as a vector product of C→=A→×B→={sinθ 1・cosθ 2 , cosθ 1・sin
θ 2 ,
cosθ 1・cosθ 2 ) ...(6) The inner product with the vector Z→ parallel to the Z axis is given as follows. Z→・C→=cosθ 1・cosθ 2 ...(7) The following simple transformation results in the following equation (8). The condition for the maximum inner product is the following (9) obtained from equation (8).
The goal is to minimize G(x,y) expressed by the formula. G(x,y)=[1+(∂F/∂x) 2 ][1+(∂F/∂x)
y) 2 ] ...(9) From equations (2), (3), and (9), the following equation (10), which expresses G as a function of CR and TF , can be obtained. G (C R , T F ) = {1+ [△C R (C R , T F )] 2 (∂F/∂C R ) 2 } × {1+ [△T F (C R , T F )] 2 (∂F/∂T F ) 2 }……(
10) G (C R , T F ) in Equation (10) depends on the variation in Equation F in (1) above as the cooling conditions change, and the optimum cooling condition can be obtained by minimizing this function. Furthermore, by approximating the control accuracy of the cooling rate and cooling stop temperature as shown in equations (11) and (12) below,
(C R , T F ) can be calculated as a function of cooling conditions. △C R (C R , T F ) = aC R ... (11) △T F (C R , T F ) = a (T s - T F ) + bC R ... (12) However, T S is cooled Starting temperatures a and b are constants depending on the control accuracy of the cooling device. From equations (10), (11), and (12), G (C R , T F ) can be approximated as shown in the following equation. G (C R , T F ) = [1 + a 2 C R 2 (∂F/∂C R ) 2 ] {1 + [a 2 (T S −T F ) 2 +b 2 C R 2 ] (∂F/∂ T F ) 2 } ...(13 ) G (C R , T F ) are the cooling rate C R and cooling stop temperature T F required by the present invention. Since the present invention can determine cooling conditions using simple logic as described above, online cooling control is possible without burdening computer capacity. Example After continuous casting of the sample material whose composition is shown in Table 1, 1150
After heating to ℃, it was rolled to a thickness of 25 mm using a reversible rolling mill with a roll radius of 600 mm and a variable roll rotation speed, and then water-cooled to produce a thick steel plate. That is, the tensile strength was controlled to 44±1 kgf/mm 2 by the method disclosed in Japanese Patent Application No. 57-178673. cooling
【表】
後の目標強度を50±2Kgf/mm2の範囲内とするた
めに冷却による強度上昇量を6±Kgf/mm2になる
ような冷却条件を本発明法により決定した。
すなわち強度上昇量F(CR,TF)は下記の如く
近似できる。
F(CR,TF)
=C1+C2lnCR+C3(Ar3−TF)lnCR
+C4tanh〔C5(Ar3−TF)〕
+C6tanh〔C7(Ar3−TF)〕 ……(14)
ただしAr3はγ→α変態点、C1〜C7は定数であ
る。
次の不等式(15)を
5≦F(CR,TF)≦7 ……(15)
満足するCR,TFをニユートン法により求め、更
に設備の能力から決まる制限条件により、CR,
TFを限定した。
更に上記の条件のうち次に示すG(CR,TF)を
G(CR,TF)
={1+〔a2(TS−TF)2+b2CR 2〕(∂F/∂TF)2}
×〔1+a2×CR(∂F/∂CR)2〕 ……(16)
最小にするようCR,TFを決定した。Fが(14)
式のように表示できる場合にCR,TFが一意的に
決まることは初等解析学から明らかである。
本発明法で制御した水冷材の圧延直角方向の引
張強度の平均値を従来法と比較して第2表に示し
た。第2表から本発明法は従来法に比べて均一な[Table] In order to set the subsequent target strength within the range of 50±2 Kgf/mm 2 , cooling conditions were determined by the method of the present invention so that the amount of increase in strength due to cooling would be 6±Kgf/mm 2 . That is, the strength increase amount F (C R , T F ) can be approximated as follows. F (C R , T F ) = C 1 + C 2 lnC R + C 3 (Ar 3 − T F ) lnC R + C 4 tanh [C 5 (Ar 3 − T F )] + C 6 tanh [C 7 (Ar 3 − T F )] ... (14) However, Ar 3 is the γ→α transformation point, and C 1 to C 7 are constants. The following inequality (15) is expressed as 5≦F(C R , T F )≦7 (15) Find C R , T F that satisfies the following using Newton's method, and further determine C R , T F based on the limiting conditions determined by the capacity of the equipment.
T F was limited. Furthermore, among the above conditions, the following G (C R , T F ) is calculated as G (C R , T F ) = {1 + [a 2 ( TS − T F ) 2 + b 2 C R 2 ] (∂F/ ∂T F ) 2 } × [1+a 2 ×C R (∂F/∂C R ) 2 ] ... (16) CR and T F were determined to minimize them . F is (14)
It is clear from elementary analysis that C R and T F are uniquely determined when they can be expressed as shown in the equation. The average value of the tensile strength in the direction perpendicular to rolling of the water-cooled material controlled by the method of the present invention is shown in Table 2 in comparison with that of the conventional method. Table 2 shows that the method of the present invention is more uniform than the conventional method.
【表】
材質が得られることは明らかである。
本発明は上記実施例からも明らかなように、水
冷却による強度上昇効果を、水冷却を行わない場
合の強度に対する上昇量Fとして定式化し、冷却
速度CR冷却停止温度TF、上昇量Fを含む関数G
(CR,TF)を最小とする冷却速度CR、冷却停止温
度TFに制御して熱延鋼板を冷却することにより
目標強度を安定して得る効果をあげることができ
た。[Table] It is clear that the material can be obtained. As is clear from the above embodiments, the present invention formulates the strength increase effect due to water cooling as the amount of increase F relative to the strength without water cooling, cooling rate C R cooling stop temperature T F , amount of increase F A function G containing
By controlling the cooling rate C R and the cooling stop temperature T F to minimize (C R , T F ) and cooling the hot rolled steel sheet, it was possible to achieve the effect of stably achieving the target strength.
添付図面は本発明における最適冷却条件決定の
ための座標の変換を示す線図である。
The accompanying drawing is a diagram showing coordinate transformation for determining optimal cooling conditions in the present invention.
Claims (1)
成分、加熱条件、圧延条件から決定される水冷却
を行わない場合の強度と目標強度との差fを求
め、冷却速度CR、冷却停止速度TFの関数からな
る強度上昇量を表わす多項式F(CR,TF)の次の
不等式を満たすCR,TFのうち f−△f≦F≦f+△f(△f:許容強度誤差) 前記鋼板の板厚、冷却装置の能力から決まる
CR,TFの範囲内にはいるCR,TFにおいて、冷却
条件の変動にともなう前記多項式Fの変動を最小
にするようにCR,TFを制御することを特徴とす
る熱延鋼板の冷却方法。[Claims] 1. In the process of water cooling a steel plate after rolling, the difference f between the strength without water cooling determined from the chemical composition, heating conditions, and rolling conditions and the target strength is determined, and the cooling rate C is determined. Among C R , T F that satisfies the following inequality of the polynomial F (C R , T F ) representing the amount of strength increase consisting of a function of R and cooling stop rate T F , f−△f≦F≦f+△f (△ f: Allowable strength error) Determined by the thickness of the steel plate and the capacity of the cooling device.
A hot rolling characterized in that C R and T F are controlled so as to minimize variations in the polynomial F due to variations in cooling conditions, with C R and T F falling within the range of C R and T F. Method of cooling steel plates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58103219A JPS59229219A (en) | 1983-06-09 | 1983-06-09 | Cooling method of hot rolled steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58103219A JPS59229219A (en) | 1983-06-09 | 1983-06-09 | Cooling method of hot rolled steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59229219A JPS59229219A (en) | 1984-12-22 |
JPH0215286B2 true JPH0215286B2 (en) | 1990-04-11 |
Family
ID=14348384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58103219A Granted JPS59229219A (en) | 1983-06-09 | 1983-06-09 | Cooling method of hot rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59229219A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4259335B2 (en) * | 2004-01-30 | 2009-04-30 | 住友金属工業株式会社 | Method for correcting model parameters in steel process and method for producing hot-rolled steel sheet using the method |
-
1983
- 1983-06-09 JP JP58103219A patent/JPS59229219A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59229219A (en) | 1984-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5054302A (en) | Hardness compensated thickness control method for wet skin-pass rolled sheet | |
JPH0215286B2 (en) | ||
JPH06256858A (en) | Cooling method for hot rolled steel sheet | |
JP2910521B2 (en) | Sheet temperature control method of steel strip in continuous annealing furnace | |
JPH0160530B2 (en) | ||
JPS5967324A (en) | Method for controlling quality of rolled material in hot rolling | |
JPH0217241B2 (en) | ||
JPH04361158A (en) | Estimation and control of material quality of steel plate | |
JPS61199507A (en) | Control method of forward slip in metallic sheet rolling | |
JP2003253343A (en) | Process for continuously heat treating metal strip | |
JPH0857523A (en) | Controlled cooling method | |
JPS5941489B2 (en) | How to set the furnace temperature correction amount for a multi-zone continuous heating furnace | |
JPS62158512A (en) | Shape control method for plate rolling | |
JPH02170924A (en) | Manufacture of continuously annealed material | |
JP3412833B2 (en) | How to set the plate temperature for quenching of high-tensile steel sheet in continuous annealing furnace | |
SU908447A1 (en) | Method of controlling metal strip hot rolling process | |
JPS6133884B2 (en) | ||
JPS58117830A (en) | Controlling method for quality of rolled material in hot rolling | |
JPH0381009A (en) | Method for controlling plate temperature in warm rolling of stainless steel strip | |
JPS62238012A (en) | Shape control method for plate stock | |
JPH03140415A (en) | Method for determining material heating-up curve in heating furnace | |
JPH0456090B2 (en) | ||
JPS61199038A (en) | Method for controlling temperature of strip in continuous annealing furnace | |
JPH06306453A (en) | Method for eliminating skid mark in continuous heating furnace | |
JPH0428467A (en) | Method for controlling molten steel temperature |