JPS63123B2 - - Google Patents

Info

Publication number
JPS63123B2
JPS63123B2 JP54104481A JP10448179A JPS63123B2 JP S63123 B2 JPS63123 B2 JP S63123B2 JP 54104481 A JP54104481 A JP 54104481A JP 10448179 A JP10448179 A JP 10448179A JP S63123 B2 JPS63123 B2 JP S63123B2
Authority
JP
Japan
Prior art keywords
pass
rolling
crown
shape control
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54104481A
Other languages
Japanese (ja)
Other versions
JPS5630018A (en
Inventor
Toshiaki Fuchinami
Kazuo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10448179A priority Critical patent/JPS5630018A/en
Publication of JPS5630018A publication Critical patent/JPS5630018A/en
Publication of JPS63123B2 publication Critical patent/JPS63123B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、可逆圧延機による板材の圧延におい
て、圧延パスの後半は圧延時の板の形状を良好に
保つ圧下パターンで圧延し、圧延パスの前半は圧
延機の能力を最大に用いる圧下パターンで圧延を
行なう圧延制御方法に関するものである。 一般に板材の圧延においては、板厚精度ととも
に形状の良好な圧延成品を得るように圧延するこ
とが重要である。ここでいう良好な形状とは、耳
波、中波等の波のない平坦な板をいう。良好な形
状を得るための圧延方法として従来、圧延の各パ
スにおけるクラウン率(板クラウン量と板厚の
比)が一定になるように圧延する方法が用いられ
ていて、たとえば厚鋼板の圧延では、圧延パスの
前半は圧延機能力の範囲内で最大の圧下量となる
圧下パターン(以下全負荷パターンという)で圧
延し、圧延パスの後半は各パスでのクラウン率が
一定となる圧下パターン(以下形状パスという)
で圧延する圧延制御方法が従来から行なわれてい
る。このような圧延制御方法で問題となるのは、
全負荷パスと形状パスの境をどのパスにもつてく
るかということであるが、従来行なわれている方
法は、圧延成品の目標クラウン(最終パスでの狙
いクラウン)を定め、クラウン率一定の条件を用
いて最終パスから逐次上流パスの圧下量を定めて
いき、圧延荷重又は圧延トルクのいづれかが圧延
機の能力以上となるところで形状パスを中止し、
残りの上流パスを全負荷パスとして全パススケジ
ユールを定める方法である。このような従来の方
法では、最終パス狙いクラウンの与え方、その時
のロールプロフイールの状態によつて、板の寸法
が同じであつても形状パスのパス回数が一定せ
ず、良好な形状を得られないことがある。この様
子を第1図に示す。図中の曲線イは狙いクラウン
が大きいかもしくはロールクラウンが大きいとき
の例で、圧延機の負荷制限値(圧延荷重制限およ
び圧延トルク制限の両方を含む。以下同じ)であ
る曲線ハ以内でとり得る形状パス回数は2回とな
り、曲線ロは狙いクラウンが小さいかもしくはロ
ールクラウンが小さい時の例で、圧延機負荷制限
内でとり得る形状パス回数は5回となる。このよ
うに狙いクラウンやロールクラウンによつて形状
パス回数が変化する理由を次に簡単に説明する。
一般に圧延板のクラウンCRは下記のクラウン計
算式 CR=f1(F、W)+g1(CW)+g2(CB) … f1(F、W):圧延荷重によるロールベンデイン
グがもたらす板クラウン ただし、F:圧延荷重、W:板幅 g1(CW):ワークロールクラウンがもたらす板
クラウン ただし、CW:板幅部分のワークロールクラ
ウン g2(CB):バツクアツプロールクラウンがもた
らす板クラウン ただし、CB:板幅部分のバツクアツプロー
ルクラウン で算出され、圧延荷重(F)が大きくなると板ク
ラウン(CR)は大きくなり、ロールクラウン
(CW又はCB)が大きくなると板クラウン(CR)
は小さくなる関係にある。前記形状パスの圧下量
を定める際の圧延荷重は上記式にもとづいて求
める方式であるので、最終パスの狙いクラウンを
大きく与えると、最終パス時の圧延荷重を大きく
とることとなり、結局第1図の曲線イのようなパ
ターンとなる。又同じ狙いクラウンでもロールク
ラウンが大きいと圧延荷重を大きくとらねばなら
ず、やはり曲線イのようなパターンになる。上記
と逆の場合は第1図の曲線ロのようなパターンに
なる。 圧延において良好な形状を得るのに必要な形状
制御パスの回数は板の材質および寸法(成品厚、
成品幅)に応じてほゞ決まつており、上記の従来
方法によつて求めた形状パスの回数がこの必要形
状制御パス回数より少ないと良好な形状が得られ
なくなり、又逆に必要形状制御パス回数より多す
ぎると全体のパス回数が増え圧延能率を低下させ
ることになる。 本発明は上記のような従来法の欠点を解消した
板圧延における形状制御方法であり、その要旨は
可逆圧延機による板材の圧延において、最終パス
を含んで最終パス寄りの複数回のパスを形状制御
パスとして、圧延材の材質および圧延成品寸法に
応じて該形状制御パスのパス回数を定めておき、
最終パスでの圧延材の目標クラウンと形状制御パ
スにおける圧延材のクラウン率(クラウン量/板
厚)の減少割合とをもとに圧延荷重を含むクラウ
ン計算式および出側板厚と圧下量を含む圧延荷重
計算式を用いて最終パスから順次遡つて各形状制
御パスの圧下量を求め、該形状制御パスより上流
の各パスは圧延機の負荷制限値に近い負荷となる
圧下量を求めて全パススケジユールを定め、該ス
ケジユールにもとづいて圧延することを特徴とす
る板圧延における形状制御方法にある。以下本発
明の方法を厚鋼板の圧延に適用した実施例に基づ
いて詳細に説明する。 まずはじめに、圧延成品の寸法(板厚と板幅)
別に第1表に示すごとく形状制御パスの必要回数
を定めておく。
In the rolling of a plate material using a reversible rolling mill, the present invention uses a rolling pattern that maintains the shape of the plate well during rolling in the latter half of the rolling pass, and a rolling pattern that maximizes the capacity of the rolling mill in the first half of the rolling pass. The present invention relates to a rolling control method for rolling. In general, when rolling plate materials, it is important to perform rolling so as to obtain a rolled product with good plate thickness accuracy and good shape. The good shape here refers to a flat plate without waves such as ear waves or medium waves. Conventionally, as a rolling method to obtain a good shape, a method has been used in which the crown ratio (ratio of plate crown amount to plate thickness) is constant in each rolling pass.For example, in rolling thick steel plates, , the first half of the rolling pass is rolled with a rolling pattern that provides the maximum rolling amount within the range of rolling capacity (hereinafter referred to as the full load pattern), and the second half of the rolling pass is rolled with a rolling pattern that provides a constant crown ratio in each pass ( (hereinafter referred to as shape path)
Conventionally, a rolling control method has been used in which rolling is performed. The problem with this rolling control method is that
The problem is which pass should bring the boundary between the full load pass and the shape pass, but the conventional method is to determine the target crown of the rolled product (the target crown in the final pass), and then set the crown ratio at a constant value. Using the conditions, determine the rolling reduction amount of the upstream passes sequentially from the final pass, and stop the shape pass when either the rolling load or the rolling torque exceeds the capacity of the rolling mill.
This is a method of determining a total path schedule with the remaining upstream paths as fully loaded paths. In such conventional methods, the number of shape passes varies even if the dimensions of the plate are the same, depending on how the final pass aims to give the crown and the state of the roll profile at that time, making it difficult to obtain a good shape. Sometimes I can't. This situation is shown in FIG. Curve A in the figure is an example when the target crown is large or the roll crown is large, and the curve A is an example when the target crown is large or the roll crown is large. The number of shape passes that can be obtained is 2, and curve B is an example when the target crown is small or the roll crown is small, and the number of shape passes that can be taken within the rolling mill load limit is 5. The reason why the number of shape passes changes depending on the aim crown and roll crown will be briefly explained next.
In general, the crown CR of a rolled plate is calculated using the following crown calculation formula CR = f 1 (F, W) + g 1 (CW) + g 2 (CB) ... f 1 (F, W): Sheet crown caused by roll bending due to rolling load However, F: Rolling load, W: Strip width g 1 (CW): Strip crown caused by work roll crown. However, CW: Work roll crown in the strip width portion g 2 (CB): Strip crown caused by back-up roll crown. , CB: Calculated by the back-up roll crown of the plate width part. As the rolling load (F) increases, the plate crown (CR) increases, and as the roll crown (CW or CB) increases, the plate crown (CR) increases.
is in a relationship that becomes smaller. The rolling load when determining the amount of reduction in the shape pass is determined based on the above formula, so if the target crown of the final pass is set large, the rolling load during the final pass will be increased, and as a result, as shown in Figure 1. The pattern looks like curve A. Even if the target crown is the same, if the roll crown is large, the rolling load must be increased, resulting in a pattern similar to curve A. In the opposite case to the above, a pattern like curve B in FIG. 1 will result. The number of shape control passes required to obtain a good shape during rolling depends on the material and dimensions of the plate (product thickness,
If the number of shape passes determined by the conventional method described above is less than the required number of shape control passes, it will not be possible to obtain a good shape, or conversely, the required shape control will not be possible. If it is larger than the number of passes, the total number of passes will increase and the rolling efficiency will be reduced. The present invention is a shape control method in plate rolling that eliminates the drawbacks of the conventional method as described above. As a control pass, the number of passes of the shape control pass is determined according to the material of the rolled material and the dimensions of the rolled product,
Based on the target crown of the rolled material in the final pass and the reduction rate of the crown ratio (crown amount/plate thickness) of the rolled material in the shape control pass, the crown calculation formula including the rolling load, the exit plate thickness and the reduction amount are included. Using the rolling load calculation formula, calculate the rolling amount for each shape control pass sequentially from the final pass, and for each pass upstream of the shape control pass, calculate the rolling amount that results in a load close to the load limit value of the rolling mill. A shape control method in plate rolling, characterized by determining a pass schedule and rolling based on the schedule. Hereinafter, the method of the present invention will be explained in detail based on an example in which it is applied to rolling of a thick steel plate. First of all, the dimensions of the rolled product (thickness and width)
Separately, the required number of shape control passes is determined as shown in Table 1.

【表】 この必要パス回数は経験的に定められるもの
で、成品板厚が大きく成品板幅が小さい場合は必
要パス回数は少なく、成品板厚が小さく成品板幅
が大きい場合は必要パス回数は多い。この理由
は、板厚が小さく板幅が大きい場合は形状がくず
れやすく、その逆の場合は形状がくずれにくいこ
とによる。 つぎに圧延成品の目標クラウンすなわち最終パ
ス(nパス)での圧延材の目標クラウン(以下狙
いクラウンという)CRnを定め、前述の式から
最終パス時の圧延荷重Fnを求める。この最終パ
ス時の圧延荷重Fnから下記の圧延荷重計算式 F=f2(H、DH、T、R、K) …… H:出側板厚 DH:圧下量 T:板の温度 R:ロール径 K:板の材質上の硬さを表わすパラメータ により最終パスの入側板厚すなわち(n−1)パ
スの出側板厚Ho-1を求める。なお、式は、
「塑性と加工」Vol.16 no 168(1975−1)p10〜
17の「厚板圧延における数式モデル」の(1)式及び
(26)式と同種のものである。良好な板形状を得
るためには形状制御パスでのクラウン率(CR/
H)がある一定の範囲に入つてなければならない
ので下記のクラウン率計算式 CRi/Hi=CRn/Hn+δ.(n−i) …… ただしδは後述するクラウン率減少割合 nは最終パスのパスナンバー iは形状制御パスのなかの任意のパスナンバ
ー(最終パス以外) により(n−1)パスでの狙いクラウンCRo-1
求める。こゝでクラウン率減少割合δとは、前記
第1表にて定めた回数の形状制御パス内で良好な
形状を維持しながら変えることのできるパス1回
当りのクラウン率変化量であり、圧延成品の寸法
別にあらかじめ定めたものである。 (n−1)パスでの狙いクラウンCRo-1が求ま
れば式から(n−1)パスでの圧延荷重Fo-1
求め、式から(n−2)パスの出側板厚Ho-2
を求める。以下同様にして必要形状制御パス回数
分くり返して、各形状制御パスでの出側板厚すな
わち圧下量を求めてパススケジユールを定め、そ
の後圧延機の負荷制限内で式により全負荷パス
のパススケジユールを定める。上記形状制御パス
のパススケジユールを定める際に、必要パス回数
に至る前に式にもとづいて求めた圧延荷重が圧
延機の負荷制限値を超える場合は、予め定めた狙
いクラウンあるいはクラウン率減少割合の定め方
が不適切であつたと考えて、狙いクラウンCRnま
たはクラウン率減少割合δもしくはその両方を適
当な量だけ小さく修正し、形状制御パスにおいて
必要パス回数がとれるように再度計算しなおす。
この狙いクラウン、クラウン率減少割合修正によ
る再計算のもようを第2図a,bに示す。 第2図aは形状制御パスの必要パス回数が5回
であるサイズの板について、最終パスでの狙いク
ラウンをCRnとし、形状制御パスでのクラウン率
減少割合をδとして、最終パスから順次上流パス
に向つてパススケジユールを定めていつた際、
(n−3)パスにおいて圧延荷重が負荷制限値を
超え、この条件(CRnおよびδ)では形状制御パ
スの回数が3回しかとれないことを示す。第2図
bは、上記の条件を修正し、すなわち最終パスで
の狙いクラウンをCRn′に、クラウン率減少割合
をδ′に修正し、必要パス回数を確保したことを示
す。両図において曲線イ,イ′は各パスにおける
圧延荷重、曲線ロ,ロ′は各パスにおけるクラウ
ン率、曲線ハは圧延機の負荷制限値を示す。 このようにして本発明方法においては、圧延成
品の材質、寸法に応じて形状制御パスの必要パス
回数を定めておき、この必要パス回数を必ず確保
するようにパススケジユールを定めるようにして
いるので、つねに良好な形状の圧延成品が得ら
れ、かつ無用にパス回数が増えることもなく圧延
能率を低下させることもない。
[Table] The required number of passes is determined empirically; if the product board thickness is large and the product board width is small, the number of passes required is small; if the product board thickness is small and the product board width is large, the required number of passes is many. The reason for this is that when the board thickness is small and the board width is large, the shape is likely to collapse, and vice versa, the shape is difficult to collapse. Next, the target crown of the rolled product, that is, the target crown (hereinafter referred to as target crown) CRn of the rolled material in the final pass (n pass) is determined, and the rolling load Fn at the final pass is determined from the above-mentioned formula. From the rolling load Fn during this final pass, the following rolling load calculation formula F=f 2 (H, DH, T, R, K)... H: Output plate thickness DH: Reduction amount T: Plate temperature R: Roll diameter K: The inlet side plate thickness of the final pass, that is, the outlet side plate thickness H o-1 of the (n-1) pass, is determined using a parameter representing the hardness of the plate material. In addition, the formula is
"Plasticity and Processing" Vol.16 no 168 (1975-1) p10~
This is similar to equations (1) and (26) in ``Mathematical model for thick plate rolling'' in Section 17. In order to obtain a good plate shape, the crown ratio (CR/
Since H) must be within a certain range, the following crown rate calculation formula is used: CRi/Hi=CRn/Hn+δ.(n-i)...where δ is the crown rate reduction rate described later, and n is the final pass. The number i is an arbitrary pass number (other than the final pass) among the shape control passes to determine the target crown CR o-1 in (n-1) passes. Here, the crown ratio reduction rate δ is the amount of change in crown ratio per pass that can be changed while maintaining a good shape within the number of shape control passes specified in Table 1 above, and These are predetermined according to the dimensions of the finished product. Once the target crown CR o-1 for the (n-1) pass is determined, the rolling load F o-1 for the (n-1) pass is determined from the formula, and the exit plate thickness H for the (n-2) pass is determined from the formula. o-2
seek. Thereafter, repeat the same process for the required number of shape control passes to determine the exit plate thickness, that is, the amount of reduction in each shape control pass, and determine the pass schedule. Then, within the load limit of the rolling mill, use the formula to determine the pass schedule for the full load pass. stipulate. When determining the pass schedule for the shape control pass above, if the rolling load calculated based on the formula before reaching the required number of passes exceeds the load limit value of the rolling mill, the predetermined target crown or crown ratio reduction rate may be Considering that the method of determination was inappropriate, the target crown CRn and/or the crown ratio reduction rate δ are modified to be smaller by an appropriate amount, and the calculation is recalculated so that the required number of passes can be obtained in the shape control pass.
This target crown and how the recalculation is performed by correcting the crown rate reduction rate are shown in Figures 2a and 2b. Figure 2a shows a plate whose size requires 5 passes for the shape control pass, where the target crown in the final pass is CRn, the crown rate reduction rate in the shape control pass is δ, and the number of passes is sequentially upstream from the final pass. When setting the pass schedule for the pass,
In the (n-3) pass, the rolling load exceeds the load limit value, indicating that under these conditions (CRn and δ), the number of shape control passes cannot be taken three times. FIG. 2b shows that the above conditions have been modified, that is, the target crown in the final pass has been modified to CRn', the crown rate reduction rate has been modified to δ', and the required number of passes has been secured. In both figures, curves A and A' indicate the rolling load in each pass, curves B and B' indicate the crown ratio in each pass, and curve C indicates the load limit value of the rolling mill. In this way, in the method of the present invention, the required number of shape control passes is determined according to the material and dimensions of the rolled product, and the pass schedule is determined to ensure the required number of passes. A rolled product with a good shape is always obtained, and the number of passes is not increased unnecessarily and rolling efficiency is not reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法によるパススケジユール決定方
法の説明図、第2図は本発明法によるパススケジ
ユール決定方法の説明図である。
FIG. 1 is an explanatory diagram of a path schedule determination method according to the conventional method, and FIG. 2 is an explanatory diagram of a path schedule determination method according to the present invention.

Claims (1)

【特許請求の範囲】 1 可逆圧延機による板材の圧延において、最終
パスを含んで最終パス寄りの複数回のパスを形状
制御パスとして、圧延材の材質および圧延成品寸
法に応じて該形状制御パスのパス回数を定めてお
き、最終パスでの圧延材の目標クラウンと形状制
御パスにおける圧延材のクラウン率(クラウン
量/板厚)の減少割合とをもとに圧延荷重を含む
クラウン計算式および出側板厚と圧下量を含む圧
延荷重計算式を用いて最終パスから順次遡つて各
形状制御パスの圧下量を求め、該形状制御パスよ
り上流の各パスは圧延機の負荷制限値に近い負荷
となる圧下量を求めて全パススケジユールを定
め、該スケジユールにもとづいて圧延することを
特徴とする板圧延における形状制御方法。 2 最終パスから順次遡つて各形状制御パスの圧
下量を求めるにあたり、形状制御パスの途中のパ
スで負荷が圧延機の負荷制限値を超えるときは、
前記最終パスでの目標クラウンおよび形状制御パ
スにおけるクラウン率の減少割合のいづれか一方
または両方を小さい値に修正したうえで各形状制
御パスの圧下量を求めることを特徴とする、特許
請求の範囲第1項に記載の板圧延における形状制
御方法。
[Claims] 1. In rolling a plate material using a reversible rolling mill, multiple passes including the final pass and closer to the final pass are defined as shape control passes, and the shape control passes are controlled according to the material of the rolled material and the dimensions of the rolled product. The number of passes is determined, and the crown calculation formula including the rolling load is calculated based on the target crown of the rolled material in the final pass and the reduction rate of the crown ratio (crown amount/plate thickness) of the rolled material in the shape control pass. Using a rolling load calculation formula that includes the exit plate thickness and the amount of reduction, calculate the amount of reduction for each shape control pass sequentially from the final pass, and each pass upstream from the shape control pass has a load close to the load limit value of the rolling mill. 1. A shape control method in plate rolling, characterized in that a total pass schedule is determined by determining the amount of rolling reduction, and rolling is performed based on the schedule. 2. When calculating the rolling reduction amount for each shape control pass sequentially from the final pass, if the load exceeds the load limit value of the rolling mill in an intermediate pass of the shape control pass,
Claim 1, characterized in that either or both of the target crown in the final pass and the reduction rate of the crown ratio in the shape control pass are corrected to a small value, and then the reduction amount of each shape control pass is determined. The shape control method in plate rolling according to item 1.
JP10448179A 1979-08-16 1979-08-16 Shape controlling method for sheet rolling work Granted JPS5630018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10448179A JPS5630018A (en) 1979-08-16 1979-08-16 Shape controlling method for sheet rolling work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10448179A JPS5630018A (en) 1979-08-16 1979-08-16 Shape controlling method for sheet rolling work

Publications (2)

Publication Number Publication Date
JPS5630018A JPS5630018A (en) 1981-03-26
JPS63123B2 true JPS63123B2 (en) 1988-01-05

Family

ID=14381745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10448179A Granted JPS5630018A (en) 1979-08-16 1979-08-16 Shape controlling method for sheet rolling work

Country Status (1)

Country Link
JP (1) JPS5630018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034053A (en) * 2012-08-09 2014-02-24 Kobe Steel Ltd Method of determining roll pass schedule

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615082B2 (en) * 1984-08-17 1994-03-02 三菱電機株式会社 Shape control manipulated variable set value determination device
US5187458A (en) * 1989-09-21 1993-02-16 Nihon Musen Kabushiki Kaisha Composite longitudinal vibration mechanical filter having central frequency deviation elimination means and method of manufacturing same
KR0148612B1 (en) * 1992-11-10 1998-11-02 다나까 미노루 Reverse rolling control system of pair cross rolling mill
JPH07284406A (en) * 1994-02-14 1995-10-31 Hiroyoshi Yamaura Ornament using jewel
CN112964579B (en) * 2021-02-09 2022-05-20 鞍钢股份有限公司 Method for judging stamping forming performance of automobile steel plate by using limit rupture thickness reduction rate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034053A (en) * 2012-08-09 2014-02-24 Kobe Steel Ltd Method of determining roll pass schedule

Also Published As

Publication number Publication date
JPS5630018A (en) 1981-03-26

Similar Documents

Publication Publication Date Title
JPS63123B2 (en)
TWI323197B (en) Method for increasing the process stability, especially the absolute thickness accuracy and the plant safety-during hot rolling of steel or nonferrous materials
JP3300208B2 (en) Learning control method in process line
KR20040056284A (en) Method for controlling shape of rolling plate
JPS58224014A (en) Automatic controlling method of quality of material to be rolled in hot rolling
JPH0236321B2 (en) KINZOKUSEIMUZENBERUTONOSEIZOHOHO
JP2576916B2 (en) Thick plate rolling method in pair cloth rolling mill
JP3280833B2 (en) Straightening method of steel plate by roller leveler
JPH0261844B2 (en)
JPS61269923A (en) Method for controlling sheet thickness with rolling mill
JP3396774B2 (en) Shape control method
JPH03138013A (en) Control method for work roll bending in rolling of metal plate
JPS6054216A (en) Rolling controlling method
JPS63260615A (en) Method for deciding work roll shift amount
JP2002282915A (en) Reverse rolling mill and rolling method
JPS61189810A (en) Shape-controlling method in finish rolling
JPS63149315A (en) Cooling method for steel plate
JPS60184412A (en) Control method of sheet crown
JPH11319922A (en) Pass schedule deciding method of rolling mill
JPH084823B2 (en) Control method of strip crown in hot rolling
JPH05293516A (en) Method for estimating rolling load of rolling mill
JPH05269516A (en) Method for controlling shape in rolling of thick plate
JPH0516922B2 (en)
JPH02155501A (en) Method for rolling cold rolled steel strip
JP3406726B2 (en) How to adjust the surface gloss of pure titanium sheet