JPH02151354A - Method for improving segregation in continuously cast slab - Google Patents

Method for improving segregation in continuously cast slab

Info

Publication number
JPH02151354A
JPH02151354A JP30394288A JP30394288A JPH02151354A JP H02151354 A JPH02151354 A JP H02151354A JP 30394288 A JP30394288 A JP 30394288A JP 30394288 A JP30394288 A JP 30394288A JP H02151354 A JPH02151354 A JP H02151354A
Authority
JP
Japan
Prior art keywords
slab
zone
molten steel
segregation
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30394288A
Other languages
Japanese (ja)
Other versions
JP2727205B2 (en
Inventor
Koichi Isobe
浩一 磯部
Hirofumi Maede
前出 弘文
Miwahito Noguchi
野口 三和人
Ichiro Kudo
一郎 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30394288A priority Critical patent/JP2727205B2/en
Publication of JPH02151354A publication Critical patent/JPH02151354A/en
Application granted granted Critical
Publication of JP2727205B2 publication Critical patent/JP2727205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To make equi-axes crystal and fine crystal of the solidified structure and to disperse segregation by applying rolling reduction to a heated cast slab after secondary cooling zone under specific conditions. CONSTITUTION:In order to attain equi-axes crystal and the fine crystal of the solidified structure, over-heat temperature of molten steel in a tundish 3 is controlled to 5-50 deg.C to realize the low temp. casting and further by stirring the molten steel with an electromagnetic stirring devices 4, 5 the development of the crystal and the stabilization of the developed crystal are promoted. Further, operational troubles, such as deterioration of the quality in the continuously cast material caused by inclusion at the time of low temp. casting, nozzle clogging, are prevented. In order to realize slow cooling, temp. holding zone 7 and heating zone 8 are set, and in order to compensate solidified shrinkage quantity and heat shrinkage quantity, which are the main causes of the molten steel flowing and restrain the development of the segregation accompanied with the molten steel flowing at the end period of the solidification, the rolling reduction is executed to the cast slab at >=4mm in the range of 0.3-0.8 solid phase ratio in the center part of the sectional face in the cast slab 13.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、連続鋳造法により製造される鋳片内部に形成
されるミクロ、セミマクロ、マクロ偏析を低減し、偏析
に起因して成品に出現する異常組織の発生や成品の機械
的特性の劣化防止を図るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention reduces micro, semi-macro, and macro segregation formed inside slabs produced by continuous casting, and eliminates abnormalities that appear in finished products due to segregation. This is intended to prevent the formation of structures and the deterioration of the mechanical properties of finished products.

従来の技術 鋼を連続鋳造することは従来から実施されており、この
連続鋳造法により製造された鋳片のデンドライト樹間に
はミクロ偏析が、また、鋳片厚み中心部には粒状の偏析
がV状あるいは線、帯状に連なったV偏析や中心偏析が
形成され、これらの偏析に起因する品質の劣化が避けら
れなかった。
Conventional technology Continuous casting of steel has been carried out for a long time, and slabs produced by this continuous casting method have micro-segregation between dendrite trees and granular segregation in the center of the thickness of the slab. V-shaped, linear, or band-like V segregation or center segregation was formed, and quality deterioration due to these segregations was unavoidable.

ミクロ偏析は固液共存相を有する金属が凝固する際の固
液間の溶質分配に起因して生成され、V偏析や中心偏析
は溶鋼静圧による凝固シェルのバルジングやミスアライ
メント等の機械的要因や凝固収縮、熱収縮に起因するサ
クション(吸引)により樹間濃化溶鋼が鋳片中心部に集
積し生成される。
Micro-segregation is generated due to solute distribution between solid and liquid when a metal with a solid-liquid coexistence phase solidifies, while V-segregation and center segregation are caused by mechanical factors such as bulging and misalignment of the solidified shell due to static pressure of molten steel. Due to suction caused by solidification shrinkage, solidification shrinkage, and thermal contraction, molten steel enriched between trees accumulates in the center of the slab and is generated.

従来より、このような機構で生成される偏析に対し、種
々の対策が提案され実施されてきた。
Conventionally, various countermeasures against segregation generated by such a mechanism have been proposed and implemented.

偏析の改善方法としては有害な偏析元素(例えばP、S
等)を溶鋼段階で予め低減しておく方法、電磁攪拌によ
り凝固組織の等軸品化および微細化により偏析を分散さ
せる方法、連続鋳造機のロール間隔を短縮しバルジング
を抑制する方法等が一般に行なわれている。
As a method to improve segregation, harmful segregated elements (e.g. P, S
etc.), methods to reduce segregation in advance at the molten steel stage, methods to disperse segregation by making the solidified structure equiaxed and finer using electromagnetic stirring, and methods to suppress bulging by shortening the roll interval of a continuous casting machine. It is being done.

また、凝固末期の鋳片をロールや面状、バー状の圧下端
子により圧下して凝固収縮や熱収縮を補償し、濃化溶鋼
の流動を抑制し、偏析を改善する方法(特公昭59−1
8882、特公昭59−18541.特公昭59−39
225、特開昭58−45258)が行なわれつつある
In addition, a method of compensating for solidification shrinkage and thermal shrinkage by rolling down slabs at the final stage of solidification using rolls, flat or bar-shaped rolling terminals, suppressing the flow of concentrated molten steel, and improving segregation (Japanese Patent Publication No. 59-1983) 1
8882, Special Publication No. 59-18541. Special Public Service 1986-39
225, Japanese Unexamined Patent Publication No. 58-45258) is being carried out.

特公昭82−344EiOでは電磁攪拌と凝固末期の圧
下により、マクロな中心偏析とV偏析を形成するセミマ
クロ偏析を防止する方法が開示されている。
Japanese Patent Publication No. 82-344 EiO discloses a method of preventing semi-macro segregation, which forms macro central segregation and V segregation, by electromagnetic stirring and reduction at the final stage of solidification.

一方、連鋳鋳片内の冷却速度を低下し、δ→γ変態時の
溶質再分配および固相内の拡散を促進し、偏析の分離や
分散を図る方法(特開昭80−188150、特開昭8
2−8744)が、さらに、特開昭81−154748
ではδ→γ変態時の溶質再分配による偏析分離効果を高
める方法としてNoの添加する偏析改善方法が提案され
ている。
On the other hand, a method for separating and dispersing segregation by reducing the cooling rate in continuously cast slabs and promoting solute redistribution and diffusion within the solid phase during δ→γ transformation (Japanese Patent Laid-Open No. 80-188150, Kaisho 8
2-8744) is further disclosed in Japanese Patent Application Laid-open No. 81-154748.
proposed a segregation improvement method by adding No as a method of increasing the segregation effect due to solute redistribution during δ→γ transformation.

しかしながら、偏析厳格材である高級鋼の連鋳化や、従
来材の高品質化および工程省略等により、鋳片に許容さ
れる偏析レベルが益々厳しくなり、以上述べたような偏
析対策では不十分となる場合がある。
However, due to the continuous casting of high-grade steel, which is a material with severe segregation, as well as improvements in the quality of conventional materials and process omissions, the allowable segregation level for slabs has become increasingly strict, and the segregation countermeasures described above are insufficient. In some cases,

発明が解決しようとする課題 本発明は、従来の偏析対策ではその達成が困難であった
偏析レベルを満足し、従来対策で発生していた偏析起因
の異常組織や機械的特性の劣化を防止する偏析改善技術
を提供するものであり、この偏析改善技術により、従来
偏析が主因で達成できなかった高級鋼の連鋳化や、従来
材の高品質化、および工程省略等を可能とする方法を提
供しようとするものである。
Problems to be Solved by the Invention The present invention satisfies the segregation level that has been difficult to achieve with conventional segregation countermeasures, and prevents abnormal structures and deterioration of mechanical properties caused by segregation that occur with conventional countermeasures. This technology provides a segregation improvement technology that enables continuous casting of high-grade steel, higher quality of conventional materials, and process omissions, which were previously unachievable due to segregation. This is what we are trying to provide.

課題を解決するための手段 上記課題を解決するための本発明は、以下の7項である
Means for Solving the Problems The present invention for solving the above problems has the following seven items.

(1) l統鋳造法により鋳片を製造するに際し、タン
ディツシュにおける溶鋼過熱度を5〜50℃に制御し、
鋳型または鋳型とそれに引続く2次冷却帯〜凝固完了位
置間に設けた電磁攪拌装置により溶鋼を攪拌しながら鋳
造を行ない、2次冷却帯以降の少なくとも2軟冷却帯出
側〜圧下帯入側の間に加熱帯または保温帯と加8帯を設
けて鋳片を加熱あるいは保温、加熱すると共に、鋳片断
面中心部の固相率が0.3〜0.8の範囲において鋳片
に41層以上の圧下を加えることを特徴とする連鋳鋳片
の偏析改善方法。
(1) When manufacturing slabs by the single casting method, the degree of superheating of molten steel in the tundish is controlled to 5 to 50°C,
Casting is carried out while stirring the molten steel using a mold or an electromagnetic stirrer installed between the mold and the subsequent secondary cooling zone and the solidification completion position, and at least two of the secondary cooling zone and subsequent soft cooling zone exit side to the rolling zone entry side are cast. A heating zone or a heat insulation zone and a heating zone are provided in between to heat or insulate and heat the slab, and to apply 41 layers to the slab where the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8. A method for improving segregation of continuously cast slabs, characterized by applying a reduction of the above amount.

(2)第1項記載の方法において、圧下帯長さを2m以
上とし、ロールピッチ500m層以下に設定された複数
対のロールにより鋳片を圧下する方法。
(2) In the method described in item 1, the slab is rolled down by a plurality of pairs of rolls with a rolling zone length of 2 m or more and a roll pitch of 500 m or less.

(3)第1項記載の方法において、鋳片搬送機構を有す
る圧下装置を設け、面状またはパー状の圧下端子により
鋳片を圧下する方法。
(3) In the method described in item 1, a rolling down device having a slab conveying mechanism is provided, and the slab is rolled down using a planar or par-shaped rolling terminal.

(4)タンディツシュの溶鋼過熱度を5〜50℃に制御
するために誘導加熱装置または冷材添加装置あるいは再
装置をタンディツシュに設(す、第1項記載の方法を適
用する連続鋳造方法。
(4) A continuous casting method in which the method described in item 1 is applied, in which the tundish is provided with an induction heating device, a cold material addition device, or a re-device in order to control the degree of superheating of molten steel in the tundish to 5 to 50°C.

(5)タンディツシュの溶鋼過熱度(あるいは溶鋼温度
)、鋳型冷却水量および鋳型冷却水の温度変化、2次冷
却水量等の1次、2次冷却操業条件、保温帯の保温能力
および加熱帯の操業条件、雰囲気温度、鋳片サイズおよ
び鋳造速度からなるプロセス情報に基づき凝固計算を行
ない、圧下帯における鋳片断面中心部の固相率が0.3
〜0.8の範囲になるよう、あるいは圧下帯が鋳片断面
中心部の固相率が0.3〜0.8の範囲を含むよう2次
冷却水量や加熱帯操業条件および鋳造速度を制御する方
法を組合せる、第1項記載の方法。
(5) Primary and secondary cooling operation conditions such as the degree of superheating of molten steel (or molten steel temperature) in the tundish, the amount of mold cooling water and the temperature change of mold cooling water, the amount of secondary cooling water, the heat retention capacity of the heat insulation zone, and the operation of the heating zone Solidification calculations were performed based on process information including conditions, ambient temperature, slab size, and casting speed, and the solid fraction at the center of the slab cross section in the rolling zone was 0.3.
The amount of secondary cooling water, heating zone operating conditions, and casting speed are controlled so that the solid phase ratio at the center of the slab cross section is within the range of 0.8 to 0.8, or the rolling zone includes a solid phase ratio of 0.3 to 0.8 at the center of the slab cross section. 2. The method according to item 1, which combines the methods of:

(6)タンディツシュの溶鋼過熱度(あるいは溶鋼温度
)、鋳型冷却水量および鋳型冷却水の温度変化、2次冷
却水量等の1次、2次冷却操業条件、保温帯の保温能力
および加熱帯の操業条件、雰囲気温度、鋳片サイズおよ
び鋳造速度からなるプロセス情報に基づき凝固計算を行
ない、圧下帯が鋳片断面中心部の固相率が0.3〜0.
8の範囲に来るよう、あるいは圧下帯が鋳片断面中心部
の固相率が0.3〜0.8の範囲を含むよう圧下帯装置
を制御する方法を組合せる、第1項記載の方法。
(6) Primary and secondary cooling operation conditions such as the degree of superheating of molten steel (or molten steel temperature) in the tundish, the amount of mold cooling water and the temperature change of mold cooling water, the amount of secondary cooling water, the heat retention capacity of the heat insulation zone, and the operation of the heating zone Solidification calculations are performed based on process information including conditions, ambient temperature, slab size, and casting speed, and the reduction zone has a solid phase ratio of 0.3 to 0.0 at the center of the slab cross section.
The method according to item 1, which combines the method of controlling the rolling band device so that the solid phase ratio at the center of the slab cross section is in the range of 0.8 to 0.8, or so that the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8. .

(7)上記第5項および第6項記載の両制御方法を組合
せる、第1項記載の方法。
(7) The method described in item 1, which combines both the control methods described in items 5 and 6 above.

以下、本発明について更に詳述する。The present invention will be described in further detail below.

本発明の第1項の基本構成は、連鋳鋳片の中心偏析やV
偏析の主因である濃化溶鋼の流動、集積を抑制する方法
と、凝固組織の等軸重化、微細化による偏析の分散を図
る方法、さらに、緩冷却により鋳片を高温に保持して鋳
片に形成されつつあるまた形成された偏析を拡散させる
あるいは分離する方法よりなり、これらを適切に組合せ
ることにより大幅な改善効果を有する偏析改善技術を提
供するものである。
The basic structure of the first aspect of the present invention is to prevent center segregation of continuously cast slabs and
There is a method to suppress the flow and accumulation of concentrated molten steel, which is the main cause of segregation, and a method to disperse segregation by making the solidified structure equiaxed and finer. This method consists of a method of diffusing or separating segregation that is forming on a piece, and provides a segregation improvement technique that can have a significant improvement effect by appropriately combining these methods.

S1項の発明では凝固組織の等軸重化、微細化を図るた
めに、タンディツシュにおける溶鋼過熱度を50℃以下
に制御し低温鋳造を実現し、さらに電磁攪拌装置により
溶鋼を攪拌することにより、結晶生成と生成した結晶の
安定化を促す、タンディツシュにおける溶鋼過熱度を5
℃以上に制御する理由は、低温鋳造時の介在物による連
鋳材の品質劣化やノズル詰り等の操業トラブルを防止す
るためである。
In the invention of Section S1, in order to make the solidified structure equiaxed and refined, the degree of superheating of the molten steel in the tundish is controlled to 50°C or less to achieve low-temperature casting, and the molten steel is further stirred by an electromagnetic stirring device. The degree of superheating of molten steel in the tundish is set to 5 to promote crystal formation and stabilization of the formed crystals.
The reason for controlling the temperature above 0.degree. C. is to prevent operational troubles such as deterioration of the quality of continuously cast materials and nozzle clogging due to inclusions during low-temperature casting.

保温帯や加熱帯の設置は緩冷却を実現するためであり、
鋳片断面中心部の固相率が0.3〜0.8の範囲におけ
る41履以上の鋳片圧下は、圧下により溶鋼流動の主原
因である凝固収縮量、熱収縮量を補償し、凝固末期の溶
鋼流動に伴う偏析の生成を抑制するためである。
The purpose of installing heat insulation zones and heating zones is to achieve gradual cooling.
A slab reduction of 41 mm or more when the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8 compensates for the amount of solidification shrinkage and heat shrinkage, which are the main causes of molten steel flow, and improves solidification. This is to suppress the generation of segregation that accompanies the flow of molten steel at the final stage.

第2項、第3項に記載の発明は、凝固末期の溶鋼流動を
効果的に防止する凝固末期の鋳片の圧下方法であり、第
4項の方法はタンディツシュに溶鋼温度の調整at艶を
もたせ、タンディツシュに溶鋼過熱度の制御を容易にし
、且つ、その精度を向上する方法に関わる発明である。
The invention described in Items 2 and 3 is a method for rolling down a slab at the final stage of solidification, which effectively prevents the flow of molten steel at the final stage of solidification, and the method described in Item 4 is a method for controlling the temperature of molten steel in the tundish and applying gloss. This invention relates to a method for easily controlling the degree of superheating of molten steel in a tundish manner and improving its accuracy.

第5項、第6項および第7項の発明は、溶鋼流動の抑制
を図る凝固末期の圧下を適用する第1項記載の方法にお
いて、圧下帯が偏析改善に有効な固相率範囲に来るよう
制御する方法を提供するものである。
The inventions set forth in Items 5, 6, and 7 provide the method described in Item 1, which applies rolling at the final stage of solidification to suppress the flow of molten steel, in which the rolled zone falls within a solid phase ratio range effective for improving segregation. The present invention provides a method for controlling this.

以下に具体的な実施例を図面を用いて説明する。Specific examples will be described below with reference to the drawings.

第1図は本発明の実施態様を示す説明図であり、以下の
実施例で用いた弯曲型の試験連鋳機の概要も示している
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and also shows an outline of a curved test continuous casting machine used in the following examples.

lは誘導加熱装置、2は冷材添加装と、3はタンディツ
シュ、4は鋳型と鋳型内電磁攪拌装置、5は2次冷却帯
に設置された電磁攪拌装置、6は2次冷却帯、7は保温
帯、8は加熱帯、9は圧下帯、10は圧下ロール、11
および12はそれぞれ固相率0.3と0.8の等固相率
線を示し、13は鋳片である。
1 is an induction heating device, 2 is a cold material addition device, 3 is a tundish, 4 is a mold and an electromagnetic stirring device in the mold, 5 is an electromagnetic stirring device installed in a secondary cooling zone, 6 is a secondary cooling zone, 7 8 is a heating zone, 9 is a rolling zone, 10 is a rolling roll, 11
and 12 indicate equal solid fraction lines with a solid fraction of 0.3 and 0.8, respectively, and 13 is a slab.

まず最初に本発明の第1項記載の方法において、濃化溶
鋼の流動、集積を抑制する方法と凝固組織の等軸重化、
微細化による偏析の分散を図る方法、さらに、緩冷却に
より偏析の分散と分離を図る方法を組合せる理由につい
て説明する。
First of all, in the method described in item 1 of the present invention, a method for suppressing flow and accumulation of concentrated molten steel, and equiaxed weighting of a solidified structure,
The reason for combining the method of dispersing segregation by miniaturization and the method of dispersing and separating segregation by slow cooling will be explained.

本発明者等は、連続鋳造法により製造される鋳片内部に
形成されるミクロ、セミマクロ、マクロ偏析を低減する
偏析改善方法を確立するために種々の研究を重ね、以下
のような知見を得た。
The present inventors have conducted various studies in order to establish a segregation improvement method that reduces micro, semi-macro, and macro segregation formed inside slabs produced by continuous casting, and have obtained the following knowledge. Ta.

第2図は、凝固組織の等軸重化による偏析改善効果と、
a固末期に鋳片を圧下し流動を抑制することによる偏析
改善効果について、木発明者らが調査した結果を示す図
である。第2図の横軸の上面側等軸重率は弯曲型連鋳機
により鋳造した鋳片の上面側の等軸重化の程度を表す指
標であり、縦軸の中心偏析評点は中心偏析の程度を示す
指標である0本調査は945C−548Gを第1図に示
した試験連鋳機(弯曲部の半径12m)で保温帯、加熱
帯を設置しない状態で鋳造した鋳片(鋳片サイズ:16
2mm厚X lB2mm幅)について行なった。
Figure 2 shows the segregation improvement effect due to equiaxed loading of the solidified structure,
a A diagram showing the results of a study conducted by the inventors on the segregation improvement effect of suppressing flow by reducing the slab in the final stage of solidification. The equiaxed weight ratio on the top side of the horizontal axis in Figure 2 is an index showing the degree of equiaxed weight on the top side of the slab cast by the curved continuous caster, and the center segregation score on the vertical axis is an index of the degree of equiaxed weight on the top side of the slab cast by the curved continuous caster. 0 This survey is an indicator of the degree of the cast slab (slab size :16
The test was carried out for 2 mm thick x lB 2 mm wide).

本サイズの鋳片を鋳造する場合、鋳片の偏平比(鋳片厚
みに対する鋳片幅の比)が1と小さく、偏平比が大きい
スラブ等のようにバルジングにょる残溶鋼の流動はほと
んど起きない、第2図からも明らかなように?l!Ti
IW&拌等による凝固組織の等軸重化および微細化によ
り中心偏析は改善されるが、その改善程度には限界があ
る。
When casting slabs of this size, the slab's aspect ratio (ratio of slab width to slab thickness) is as small as 1, and flow of residual molten steel due to bulging rarely occurs, such as in slabs with a large aspect ratio. No, as is clear from Figure 2? l! Ti
Center segregation can be improved by making the solidified structure equiaxed and finer by IW and stirring, but there is a limit to the degree of improvement.

一方、凝固収縮、熱収縮に伴う濃化溶鋼の流動を防止す
るため、凝固末期に圧下した鋳片の中心偏析は等軸重化
が同程度の場合、流動を抑制しなかった場合に比べ大幅
に改善されている。また、鋳片を圧下し流動を抑制した
場合においても、圧下しない場合程ではないが上面側等
軸晶率の増加につれ中心偏析は軽減される傾向がある。
On the other hand, in order to prevent the flow of concentrated molten steel due to solidification shrinkage and thermal contraction, the center segregation of slabs rolled down at the final stage of solidification is significantly greater than when the flow is not suppressed when equiaxed loading is the same. has been improved. Furthermore, even when the slab is rolled to suppress flow, center segregation tends to be reduced as the upper surface side equiaxed crystallinity increases, although not as much as when it is not rolled.

従って、凝固組織を十分等軸重化すると共に、凝固末期
の圧下やバルジングの防止等により残溶鋼の流動を抑制
することでより良好な中心偏析レベルが達成される。原
理的には凝固末期の流動が完全に防止されれば、濃化溶
鋼の鋳片中心部への集積は阻止され、中心偏析が生成し
ないはずであるが、現実には操業条件の変動や鋳片凝固
状況のバラツキ等により、溶鋼の流動を完全に防止でき
る理想的な条件を常に精度良く再現することは困難であ
る。
Therefore, a better center segregation level can be achieved by making the solidified structure sufficiently equiaxed and suppressing the flow of the remaining molten steel by reducing the steel at the final stage of solidification and preventing bulging. In principle, if the flow at the final stage of solidification is completely prevented, the accumulation of concentrated molten steel in the center of the slab should be prevented and center segregation will not occur, but in reality, fluctuations in operating conditions and casting Due to variations in the state of piece solidification, etc., it is difficult to always precisely reproduce ideal conditions that can completely prevent the flow of molten steel.

第2図において凝固末期に鋳片を圧下し、溶鋼の流動抑
制を図った場合にも、等軸重の増加に連れ偏析が改善さ
れた理由は、完全に防止されなかった溶鋼流動に対し、
等軸重の偏析分散効果が有効に寄与したためと推察され
る。従って、流動を完全に停止できなかった場合に生じ
る偏析に対する対策の意味からも、可能な限り凝固組織
の等軸重化、微細化を図る必要がある。
In Fig. 2, even when the slab was rolled down at the end of solidification to suppress the flow of molten steel, the reason why segregation improved as the equiaxed load increased was because the flow of molten steel was not completely prevented.
This is thought to be due to the effective contribution of the segregation and dispersion effect of equiaxed loads. Therefore, it is necessary to make the solidified structure as equiaxed and fine as possible, also from the perspective of countermeasures against segregation that occurs when the flow cannot be completely stopped.

本発明者らが実験した範囲では、濃化溶鋼の流動を抑制
する方法と凝固組織の等軸重化、微細化による偏析改善
方法を組合せた場合においても、鋳片厚み中心部には数
■■オーダーの偏析粒が存在し、デンドライト樹間のミ
クロ偏析が数10〜数100#Lmオーダーのサイズで
あることを考えると、中心偏析の生成を完全に防止する
に至っていない。
In the range of experiments conducted by the present inventors, even when combining the method of suppressing the flow of concentrated molten steel and the method of improving segregation by equiaxed weighting and refinement of the solidified structure, there are several Considering that there are segregated grains on the order of 2 and the micro-segregation between dendrite trees is on the order of several tens to hundreds of #Lm, the generation of central segregation has not been completely prevented.

上記のような偏析を更に改善する方法としては、溶鋼流
動の防止を図る凝固末期の圧下条件をより理想的な条件
に精度良く制御することもあるが、それにも限界があり
、以上述べた以外の機構で偏析を改善する方法を、適用
することが必要と考えられる。その一つとして鋳片内の
冷却速度を低下し、鋳片をより高温状態に保持すること
により、偏析の拡散促進と固相変態時の溶質再分配を利
用した偏析元素の分離を促進することが有効と考えられ
、それらによる偏析改善効果について検討を行なった。
One way to further improve the above-mentioned segregation is to precisely control the rolling conditions at the final stage of solidification to more ideal conditions to prevent molten steel flow, but there are limits to this, and there are no other methods other than those described above. It is considered necessary to apply a method that improves segregation through this mechanism. One of these is to reduce the cooling rate inside the slab and maintain the slab at a higher temperature, thereby promoting the diffusion of segregation and the separation of segregated elements using solute redistribution during solid phase transformation. were considered to be effective, and we investigated their effects on improving segregation.

第3図は鋳片中心部における中心偏析評点とPの高濃度
部の面積率の関係と鋳片を保温、加熱し緩冷却すること
によるスボレト状偏析の改善効果を示す図である。
FIG. 3 is a diagram showing the relationship between the central segregation score at the center of the slab and the area ratio of the P-high concentration area, and the improvement effect on the grain-like segregation by keeping the slab warm, heating it, and slowly cooling it.

上記緩冷却化による偏析改善効果について本発明者等が
検討した結果によれば、鋳片の緩冷却を単独で適用した
場合も、デンドライト樹間のミクロ偏析や、鋳片中心部
に存在するスポット状偏析(セミマクロ偏析)は、緩冷
却化の効果により改善されるが、特に、鋳片中心部のス
ポット状偏析については緩冷却化により溶質の拡散促進
を図ったとしても、最終的な到達レベルはその偏析が形
成された直後の状態、つまり、その後の拡散により分散
される以前の偏析生成状況に強く依存することが明らか
になった。
According to the results of the study conducted by the present inventors on the segregation improvement effect of the above-mentioned slow cooling, even when slow cooling of the slab is applied alone, micro-segregation between dendrite trees and spots existing in the center of the slab Shape segregation (semi-macro segregation) can be improved by the effect of slow cooling, but especially for spot segregation in the center of the slab, even if we try to promote solute diffusion by slow cooling, the final level will not reach the final level. It has become clear that this depends strongly on the conditions immediately after the segregation is formed, that is, on the conditions in which the segregation is formed before it is dispersed by subsequent diffusion.

即ち、鋳片中止部に顕著なマクロ偏析が生成し、粗大な
スポット状偏析が鋳片中心部に多数存在するような中心
偏析評点が悪い場合には、第3図に示すように緩冷却に
よりそのような偏析の拡散を図ったとしても、Pの高濃
度部(P/Pa≧8、Po:溶鋼P濃度)の面積率を十
分減少させることはできない。
In other words, if the center segregation rating is poor, such as when remarkable macro segregation is generated in the stopped part of the slab and there are many coarse spot segregations in the center of the slab, slow cooling is performed as shown in Fig. 3. Even if such segregation is attempted to be diffused, the area ratio of the high P concentration portion (P/Pa≧8, Po: molten steel P concentration) cannot be sufficiently reduced.

一方、凝固末期の鋳片に圧下を加えて流動を抑制し、鋳
片中心部に形成されるマクロ偏析(中心偏析)の生成を
改善した場合は、第3図に示したように、緩冷却による
偏析拡散効果とあいまって、Pの高濃度部の面積率は大
幅に低下し、良好な偏析レベルを達成することが可能と
なる。
On the other hand, if the slab at the final stage of solidification is rolled down to suppress its flow and improve the formation of macro segregation (center segregation) that forms at the center of the slab, slow cooling is possible, as shown in Figure 3. Coupled with the segregation and diffusion effect caused by P, the area ratio of the high concentration portion of P is significantly reduced, making it possible to achieve a good segregation level.

次に凝固組織の等軸重化、微細化を促進する条件につい
て検討した結果について次に述べる。
Next, we will discuss the results of examining the conditions that promote equiaxed weighting and refinement of the solidified structure.

第4図は等軸重が生成するタンディツシュ溶鋼過熱度の
範囲を示す図である。普通鋼の連続鋳造において製造さ
れた鋳片の凝固組織は、鋳造する鋼種やタンディツシュ
における溶鋼過熱度や電磁攪拌等での溶鋼の撹拌により
変化することは良く知られており、タンディツシュにお
ける溶鋼過熱度を低下するほど、また電磁攪拌等により
溶鋼を攪拌することにより安定して等軸晶を生成させる
ことができる。
FIG. 4 is a diagram showing the range of the degree of superheating of tundish molten steel in which equiaxed loads are generated. It is well known that the solidification structure of slabs produced in continuous casting of ordinary steel changes depending on the type of steel being cast, the degree of superheating of the molten steel in the tundish, and the stirring of the molten steel by electromagnetic stirring, etc. The lower the molten steel is, the more stable equiaxed crystals can be produced by stirring the molten steel using electromagnetic stirring or the like.

そこで鋳片の凝固組織とタンディツシュにおける溶鋼過
熱度の関係について3鋼種について調査した結果、第4
図に示すような結果が得られた。
Therefore, as a result of investigating the relationship between the solidification structure of the slab and the degree of superheating of molten steel in the tundish, we found that
The results shown in the figure were obtained.

調査対象とした鋼種は、普通鋼の中で最も等軸重化しに
くい348G、等軸重化が容易な935Gと等軸重化の
しやすさが上記2鋼種の中間程度である5IOCとした
The steel types investigated were 348G, which is the most difficult to equiaxed load among ordinary steels, 935G, which is easier to equiaxed load, and 5IOC, which is intermediate in the ease of equiaxed load between the above two steel types.

14図より判るように凝固組織等軸重化のタンディツシ
ュにおける溶鋼過熱度に対する依存性は、鋼種によって
異なるが、凝固組織を等軸重化するには電磁攪拌を適用
した場合においても、タンディツシュにおける溶鋼過熱
度を50℃以下に制限する必要が、いずれの鋼種につい
ても有る。それ以上の過熱度では、鋳片中心部まで柱状
晶が発達する可能性がかなり高くなる。
As can be seen from Figure 14, the dependence of equiaxed solidification structure on the degree of superheating of molten steel in the tundish differs depending on the steel type, but even when electromagnetic stirring is applied to equiaxed the solidification structure, the dependence of the molten steel in the tundish For all steel types, it is necessary to limit the degree of superheating to 50°C or less. If the degree of superheating is higher than that, there is a considerable possibility that columnar crystals will develop to the center of the slab.

タンディツシュにおける溶鋼過熱度を5℃以上に制限す
る理由は、溶鋼過熱度が5℃未満で操業すると、溶鋼の
粘性増加等による介在物の巻き込みが多くなり、連鋳材
の表面性状や内部性状を劣化させる原因となり、また、
ノズル詰り等のトラブルにより、安定な鋳造が困難とな
る。従って。
The reason why the degree of superheating of molten steel in tanditshu is limited to 5℃ or more is that if the operation is carried out at a degree of superheating of molten steel of less than 5℃, inclusions will increase due to increased viscosity of the molten steel, which will affect the surface and internal properties of the continuously cast material. It may cause deterioration, and
Problems such as nozzle clogging make stable casting difficult. Therefore.

そのような低温鋳造は品質上また操業上からも避けるの
が好ましい。
It is preferable to avoid such low-temperature casting from the viewpoint of quality and operation.

71!磁攪拌を付与するストランド方向の位置について
は、凝固シェルの厚みが増加するほど溶鋼に作用する電
磁力は減衰するため、凝固シェルが最も薄い鋳型位置に
おいて攪拌するのが最も効率的な方法であり、更に鋳型
とそれに引続く2次冷却帯〜凝固完了位置間に設けた電
磁攪拌装置により、多段攪拌することで結晶生成の促進
と結晶の安定化が図られ、より多くの等軸重を安定して
生成させることが可能となる。
71! Regarding the position in the strand direction where magnetic stirring is applied, the electromagnetic force acting on the molten steel decreases as the thickness of the solidified shell increases, so the most efficient method is to stir at the position of the mold where the solidified shell is the thinnest. Furthermore, an electromagnetic stirring device installed between the mold and the subsequent secondary cooling zone to the solidification completion position promotes crystal formation and stabilizes the crystals through multi-stage stirring, thereby stabilizing more equiaxed loads. It becomes possible to generate the

次に凝固末期の溶鋼流動を抑制するために、鋳片断面中
心部の固相率が0.3〜0.8の範囲において、鋳片に
41■以上の圧下を加える理由について以下に説明する
0本発明者等は第1図に示す弯曲型の連鋳機を用い、凝
固末期の鋳片をロールにより圧下する場合について溶鋼
流動を抑制し、偏析改善効果か得られる適正な固相率範
囲と、圧下量について検討するため、鋳造速度と圧下量
を変えた試験を行なった。
Next, in order to suppress the flow of molten steel at the final stage of solidification, the reason why a reduction of 41 cm or more is applied to the slab when the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8 will be explained below. 0 The present inventors used a curved continuous casting machine shown in Fig. 1 to suppress the flow of molten steel when rolling down slabs at the final stage of solidification with rolls, and found an appropriate solid phase ratio range in which a segregation improvement effect can be obtained. In order to examine the amount of reduction, tests were conducted by varying the casting speed and amount of reduction.

本試験でも保温帯、加熱帯のない状態で鋼種は548G
を用い、鋳片サイズは182mm厚X lB2mm幅で
実施した。ロールによる圧下方法を採用し、最終凝固部
附近に500mmピッチで配した5木のロールにより圧
下を加えた。尚、この場合の圧下帯の長さは圧下帯入側
ロールから出側ロール間の距離で2mとなる0本試験に
おいて適正固相率範囲について検討した結果を第5図に
示す。
In this test, the steel type was 548G without a heat insulation zone or heating zone.
The slab size was 182 mm thick and 2 mm wide. A roll reduction method was adopted, and the reduction was applied using five wooden rolls arranged at a pitch of 500 mm near the final solidification part. In this case, the length of the rolling zone is 2 m from the rolling zone inlet roll to the outlet roll. The results of examining the appropriate solid fraction range in this test are shown in FIG.

図中の実線は本試験での鋳片を保温、加熱しない場合の
、圧下帯入側ロール位置での鋳片中心部の固相率と中心
偏析の関係と、圧下帯出側ロール位置での鋳片中心部の
固相率と中心偏析の関係を示している0図中の破線は後
述する鋳片を保温、加熱した場合の、関係を示している
The solid line in the figure shows the relationship between the solid fraction and center segregation at the center of the slab at the rolling zone entry roll position and the relationship between the solid phase ratio and center segregation at the rolling zone exit roll position when the slab is not kept warm or heated in this test. The broken line in Figure 0, which shows the relationship between the solid fraction at the center of the piece and the center segregation, shows the relationship when the slab is kept warm and heated, which will be described later.

本図より明らかなように圧下帯入側ロール位置での鋳片
中心部の固相率が0.3以上で、圧下帯出側ロール位置
での鋳片中心部の固相率が0.8以下において、中心偏
析はほぼ最も良好なレベルとなっており、凝固末期の圧
下により偏析改善を図る場合に適正な圧下範囲は鋳片中
心部の固相率で0.3〜0.8の範囲にあることがわか
る。
As is clear from this figure, the solid fraction at the center of the slab at the rolling zone entry roll position is 0.3 or more, and the solid fraction at the slab center at the rolling zone exit roll position is 0.8 or less. In this case, center segregation is almost at the best level, and when aiming to improve segregation by reduction at the end of solidification, the appropriate reduction range is a solid phase ratio of 0.3 to 0.8 at the center of the slab. I understand that there is something.

第6図には圧下帯における、上記固相率を適正範囲(0
,3〜0.8)に制御し、偏析改善に必要な圧下量につ
いて検討した結果を示す、第6@で明らかなように圧下
量の増加に伴い中心偏析評点は改善され、特に圧下量が
4mm以上において偏析の改善代が大きい。
Figure 6 shows the above-mentioned solid phase ratio in the rolling zone in the appropriate range (0
, 3 to 0.8), and shows the results of examining the amount of reduction required to improve segregation.As is clear from Part 6@, the center segregation score improves as the amount of reduction increases, especially when the amount of reduction increases. The improvement margin for segregation is large at 4 mm or more.

以上述べたように凝固末期の圧下により中心偏析の改善
を図る場合、鋳片中心部の固相率が0.3〜0.8の範
囲において41■以上の圧下量を確保する必要があるこ
とが判明した。
As mentioned above, when aiming to improve center segregation by reduction at the final stage of solidification, it is necessary to ensure a reduction amount of 41 cm or more when the solid phase ratio at the center of the slab is in the range of 0.3 to 0.8. There was found.

次に上記試験と同一の連鋳機の第1図に示す2次冷却帯
出側〜圧下帯入側の間に保温帯、加熱帯を設置し、鋳片
の保温、加熱する緩冷却による偏析改善効果の確認と、
その緩冷却と組合せた場合の適正な凝固末期の圧下条件
について調査するために行なった試験の結果について説
明する。尚、本試験に先立ち凝固計算により、鋳片内の
冷却速度を低下させるのに適正な保温帯、加熱帯設置位
置について検討を行なった。その結果、特に鋳片中心部
の冷却速度を低減し、偏析を拡散により分散するために
は、凝固が完了する位置附近を保温、加熱するだけでは
不十分であり、十分に冷却速度を低下するには、より上
流側から鋳片を保温、加熱しなければならないことが判
明した。
Next, a heat insulating zone and a heating zone were installed between the outlet side of the secondary cooling zone and the inlet side of the rolling zone as shown in Figure 1 of the same continuous caster as in the above test, to keep the slab warm and to improve segregation by heating and slow cooling. Confirming the effect and
The results of a test conducted to investigate the appropriate rolling reduction conditions at the final stage of solidification when combined with slow cooling will be explained. In addition, prior to this test, we conducted a solidification calculation to examine the appropriate location of the heat insulating zone and heating zone to reduce the cooling rate within the slab. As a result, in order to reduce the cooling rate especially in the center of the slab and disperse segregation through diffusion, it is not enough to simply insulate and heat the area near the point where solidification is completed; the cooling rate must be sufficiently reduced. It was discovered that the slab must be kept warm and heated from the upstream side.

この理由の一つは保温、加熱により鋳片表面を昇温して
、凝固シェル内の温度勾配を低下するのに、ある程度の
時間を要するためであり、もう一つの理由は未凝固相が
中心部から消失すると、未凝固相の凝固に伴う潜熱の放
出が行なわれず、急激に鋳片内の温度が低下するためで
ある。
One of the reasons for this is that it takes a certain amount of time to raise the temperature of the slab surface through heat retention and heating and reduce the temperature gradient inside the solidified shell, and another reason is that the unsolidified phase This is because, if the unsolidified phase disappears from the surface, the latent heat that accompanies solidification of the unsolidified phase will not be released, and the temperature within the slab will drop rapidly.

従って、緩冷却により偏析、を改善するには、より上流
側から鋳片を保温、加熱し、鋳片表面温度を上昇させ、
鋳片中心部に未凝固相をできるだけ長く存在させること
が好ましい0以上が特許請求の範囲第1項において「2
次冷却帯以降少なくとも2次冷却帯出側〜圧下帯入側の
間に加熱帯または加熱帯と保温帯を設けて鋳片を加熱あ
るいは保温、加熱する」理由である。
Therefore, in order to improve segregation by slow cooling, the slab should be kept warm and heated from the upstream side to raise the slab surface temperature.
It is preferable that the unsolidified phase exists in the center of the slab for as long as possible.
This is the reason that a heating zone or a heating zone and a heat insulating zone are provided after the next cooling zone and at least between the exit side of the secondary cooling zone and the inlet side of the rolling zone to heat or heat the slab.

鋳片を保温、加熱した場合の適正固相率範囲について検
討した結果を前述の第5図中に破線で示した。第5図よ
り判るように、鋳片を保温、加熱した場合の適正固相率
範囲は保温、加熱しない場合に比較し、若干拡大してい
るようであるが、やはり鋳片断面中心部の固相率が0,
3〜0.8の範囲で、偏析は最も良好となっている。
The results of a study on the appropriate solid phase ratio range when the slab is kept warm and heated are shown by the broken line in the above-mentioned FIG. 5. As can be seen from Figure 5, the appropriate solid phase ratio range when the slab is kept warm and heated seems to be slightly expanded compared to when it is not kept warm or heated, but the solidity at the center of the slab cross section still remains. The phase ratio is 0,
Segregation is best in the range of 3 to 0.8.

本試験における鋳片圧下量と中心偏析の関係について検
討した結果を第6図に示す、圧下ロール5来会てを用い
ロールピッチ500層厘で行なった本試験の結果では、
保温、加熱した場合としない場合では、あまり差が認め
られなかった。従って。
The results of examining the relationship between slab reduction and center segregation in this test are shown in Figure 6.The results of this test, which was conducted using five reduction rolls and a roll pitch of 500 layers, are as follows:
There was no significant difference between the cases of heat retention and heating and those without heating. Therefore.

緩冷却により偏析を改善する方法を組合せる場合も、鋳
片断面中心部の固相率が0.3〜0.8の範囲で、4m
m以上の圧下量を加えることが、凝固末期の溶鋼流動を
抑制するための適正な条件である。
Even when combining the method of improving segregation by slow cooling, if the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8,
Applying a reduction amount of m or more is an appropriate condition for suppressing the flow of molten steel at the final stage of solidification.

さらに鋳片を鋳片の保温、加熱により緩冷却し、しかも
上記適正条件で圧下を付加した鋳片デンドライト部のミ
クロ偏析について調査した結果を第7図に示す0本図に
は緩冷却対策を採らず、通常冷却した鋳片の同一位置の
ミクロ偏析について調査した結果も合せて示す。
Furthermore, the results of investigating the micro-segregation of the dendrite part of the slab after cooling the slab slowly by keeping it warm and heating it and applying pressure under the above-mentioned appropriate conditions are shown in Figure 7. Also shown are the results of investigating micro-segregation at the same location in slabs that were normally cooled.

緩冷却された鋳片のミクロ偏析部のPの高濃度部(P/
Pa≧8)の面積率は、通常冷却材のミクロ偏析部の面
積率に比べ大幅に低下しており、従って、請求項第1項
に記載の方法は、鋳片内のミクロ偏析の改善にも有効で
あることが判る。
High concentration of P (P/
The area ratio of Pa≧8) is significantly lower than the area ratio of the micro-segregation portion of the coolant. Therefore, the method according to claim 1 is effective in improving the micro-segregation in the slab. is also found to be effective.

上記試験に引続き試験連鋳機を用いて、請求項第1項に
記載の方法でしかもロールにより圧下を加える際の必要
な圧下帯長さと、適正なロールピッチについて検討を行
なった0本検討は鋳造速度を、鋳片中心部の固相率が0
.3〜0.8の範囲に来る速度1水準において実施した
。圧下帯長さの検討では圧下帯中央部のロール3木で圧
下する試験と、1水増やし4本で圧下する試験を行ない
、5水金部で圧下した場合と比較検討した。ロールピッ
チに関する検討では5木の圧下ロールのうち1段おきに
3本で圧下する試験と、圧下帯入り側と出側ロールの2
木のみを用いて圧下する試験を実施し、ロールピッチ5
00履■(5本圧下)の場合と比較した。いずれの試験
でも圧下量については圧下帯でのトータルの圧下量が同
一になるように各ロールの圧下量を設定した。
Following the above test, a test continuous casting machine was used to investigate the necessary roll length and appropriate roll pitch when rolling is applied by the method described in claim 1. The casting speed is adjusted so that the solid phase ratio at the center of the slab is 0.
.. It was carried out at one level of speed ranging from 3 to 0.8. In examining the length of the rolling zone, tests were conducted in which rolls were rolled down with 3 rolls at the center of the rolling zone, and tests were rolled with 4 rolls with 1 water added, and compared with the case where rolls were rolled down with 5 rolls. In the examination of the roll pitch, a test was conducted in which three of the five rolling rolls were used at every other stage, and two rolls were used at the entrance and exit sides of the rolling zone.
A rolling test was conducted using only wood, and the roll pitch was 5.
A comparison was made with the case of 00 shoes (5 rolls). In all tests, the amount of reduction of each roll was set so that the total amount of reduction in the reduction zone was the same.

第8図に圧下帯長さについて検討した結果を、第9図に
ロールピッチについて検討した結果を示す、これらの図
より、圧下帯長さが2mの範囲では、圧下帯長さの増加
に連れ中心偏析は改善され、圧下ロールピッチも、試験
を行なった500■まではロールピッチが減少するにと
もない偏析は改善される傾向にある。
Figure 8 shows the result of examining the roll length, and Figure 9 shows the result of examining the roll pitch.From these figures, it can be seen that in the range of roll length of 2 m, as the roll length increases, The center segregation is improved, and the reduction roll pitch also tends to improve as the roll pitch decreases up to 500 square meters, which was the value tested.

第9図中には保温、加熱をしない場合について、上記と
同様な検討を行なった結果を示す、圧下ロールピッチが
500mmの時はそれ程でもないが、 1000層層、
2000厘諺と太さい場合は保温、加熱した方がしない
場合に比べ、圧下による偏析改善程度が低下している。
Figure 9 shows the results of the same study as above for the case where no insulation or heating is performed.When the rolling roll pitch is 500 mm, it is not so great, but 1000 layers,
When the thickness is as large as 2,000 mm, the degree of segregation improvement due to rolling reduction is lower when thermal insulation or heating is performed than when not.

これは保温、加熱による凝固シェルの温度上昇に伴い、
凝固シェルの剛性が低下し、鋳片表面で加えた変形が、
鋳片の厚み方向や長手方向に及ぶ範囲が縮小し、溶鋼の
流動を抑制する効果が減少するためと考えられる。この
ことを考慮すると圧下ロールピッチはある程度小さくす
る必要がある。
This is due to the increase in temperature of the solidified shell due to heat retention and heating.
The rigidity of the solidified shell decreases, and the deformation applied on the slab surface
This is thought to be because the range extending in the thickness direction and longitudinal direction of the slab is reduced, and the effect of suppressing the flow of molten steel is reduced. Taking this into consideration, it is necessary to reduce the rolling roll pitch to some extent.

以上説明した理由より請求項第2項に記載したように「
圧下帯長さを短くとも2m以上とし、ロールピッチ50
0mm以下に設定」する必要がある。
For the reasons explained above, as stated in claim 2, “
The rolling strip length should be at least 2 m or more, and the roll pitch should be 50.
It is necessary to set it to 0 mm or less.

さらに本技術をスラブ等の偏平比が大きい鋳片に適用す
る場合は、凝固シェルの剛性の低下はバルジング現象を
助長し、このバルジングによる溶鋼流動が偏析を悪化さ
せる原因となるため、それを避けるためにもロールピッ
チはより小さくするのが望ましい。
Furthermore, when applying this technology to slabs with a large aspect ratio, such as slabs, the decrease in rigidity of the solidified shell promotes the bulging phenomenon, and the flow of molten steel due to this bulging causes aggravation of segregation, so this should be avoided. For this reason, it is desirable to make the roll pitch smaller.

先に述べたような保温、加熱することによる圧下時の局
部的変形を回避する方法として、鋳片と圧下端子の接触
する範囲を拡大し、形状比即ち(鋳片と圧下端子の接触
長)/(板厚)の比を確保しやすい、特許請求の範囲第
3項に記載した面状またはバー状の圧下端子で圧下する
方法が有効である。
As a method to avoid local deformation during rolling due to heat retention and heating as described above, the range of contact between the slab and the rolled terminal is expanded, and the shape ratio (contact length between the slab and rolled terminal) is increased. The method of rolling down using a planar or bar-shaped rolling terminal described in claim 3, which facilitates securing the ratio of /(plate thickness), is effective.

塑性加工特に圧延や鍛造の分野で良く知られているよう
に、形状比を大きくすることにより被加工材のより均一
な変形を実現できる。従って、第1項の記載の方法を実
施するに当り、面状またはバー状の圧下端子で凝固末期
の鋳片を圧下する方法を採用することによりロール等で
圧下する場合に比べより均一で効率的な圧下が可能とな
る。
As is well known in the fields of plastic working, particularly rolling and forging, increasing the shape ratio can achieve more uniform deformation of the workpiece. Therefore, when carrying out the method described in item 1, by adopting a method of rolling down the slab at the final stage of solidification with a flat or bar-shaped rolling terminal, it is more uniform and efficient compared to rolling down with rolls etc. It is possible to reduce the pressure.

その場合にも鋳片を圧下する位置は、溶鋼流動を効果的
に抑制が可能な範囲とすべきであり、その位置はロール
圧下の場合と同様鋳片断面中心部の固相率で0.3〜0
.8の間にある。尚、面状またはバー状の圧下端子で圧
下する場合には、圧下装置に鋳片搬送機構を付加するこ
とにより連続的に引抜かれる鋳片を連続して圧下するこ
とが可能となる。
In that case as well, the position where the slab is rolled should be in a range where the flow of molten steel can be effectively suppressed, and the position should be set at a solid phase ratio of 0 at the center of the slab cross section, as in the case of roll rolling. 3-0
.. It is between 8. In addition, in the case of rolling down with a planar or bar-shaped rolling terminal, by adding a slab conveying mechanism to the rolling device, it becomes possible to roll down continuously drawn slabs.

次に特許請求の範囲第4項に記載した発明について説明
する。既に説明したように溶鋼流動を抑制し偏析改善す
る方法と、緩冷却により偏析を改善する方法を組合せる
場合においても、より良好な偏析レベルを達成するには
極力凝固組織を等軸重化、微細化しておく必要がある。
Next, the invention described in claim 4 will be explained. As already explained, even when combining the method of suppressing molten steel flow to improve segregation and the method of improving segregation by slow cooling, in order to achieve a better segregation level, it is necessary to make the solidification structure as equiaxed as possible, It is necessary to miniaturize it.

そのために、また、介在物による品質の劣化等を防止す
るために、第1項ではタンディツシュにおける溶鋼過熱
度に5〜50℃という制限を設けた。現実の操業では前
工程での溶鋼温度調整のバラツキや第1O図に示すよう
なタンディツシュの溶鋼過熱度の推移(経時変化)によ
っては、鋳造全般にわたって溶鋼過熱度を目標とする5
〜50℃に制御できない場合がある。
For this reason, and in order to prevent deterioration of quality due to inclusions, the degree of superheating of molten steel in the tundish is limited to 5 to 50°C in the first item. In actual operations, depending on the variation in the molten steel temperature adjustment in the previous process and the transition (change over time) of the molten steel superheating degree in the tundish as shown in Figure 1O, the molten steel superheating degree may be set as the target value throughout casting.
It may not be possible to control the temperature to ~50°C.

この問題を解決するには溶鋼過熱度を低下させる手段や
、溶鋼過熱度を上昇、維持する手段あるいは両方の手段
を有することが望ましい、タンディツシュに冷材を添加
する添加装置や誘導過熱装置あるいは両装置を付加する
ことにより、タンディツシュにおいて溶鋼の温度調整が
可能となり、鋳造全般にわたって溶鋼過熱度を目標とす
る範囲に精度良く制御できるようになる。
To solve this problem, it is desirable to have a means to reduce the degree of superheating of molten steel, a means to increase and maintain the degree of superheating of molten steel, or both. By adding this device, it becomes possible to adjust the temperature of the molten steel in the tundish, and the degree of superheating of the molten steel can be precisely controlled within the target range throughout casting.

特許請求の範囲第5項、第6項および第7項に記載の発
明について以下に説明する。凝固末期の溶鋼流動を抑制
するには、鋳片断面中心部の固相率が0.3〜0.8の
範囲で、適正な圧下量を付加することが必要な条件とな
る。この固相率が0.3〜0.8の範囲になるストラン
ド内の位置は、鋳造速度や2次冷却水量等の冷却条件、
さらに鋳片を保温、加熱する場合は保温帯の保温能力や
加熱帯の加熱条件に依存して変化する。
The inventions set forth in claims 5, 6, and 7 will be described below. In order to suppress the flow of molten steel at the final stage of solidification, it is necessary to apply an appropriate rolling reduction amount so that the solid fraction at the center of the cross section of the slab is in the range of 0.3 to 0.8. The position within the strand where this solid phase ratio is in the range of 0.3 to 0.8 is determined by cooling conditions such as casting speed and amount of secondary cooling water.
Furthermore, when insulating or heating the slab, it changes depending on the heat retaining ability of the heat insulating zone and the heating conditions of the heating zone.

従って、第1項記載の方法を適用する場合に、第5項に
記載したように鋳造速度、鋳片の冷却に関わる条件およ
び保温、加熱に関わる条件を考慮して凝固計算を行ない
、圧下を加えるに適正な固相率範囲がストランド内のど
こに位置するかを常に把握し、圧下帯の固相率が適正な
範囲に来るよう、あるいは圧下帯がその適正範囲を含む
よう鋳造速度、冷却条件、加熱条件を調整することによ
り、良好な偏析レベルを安定して達成することができる
Therefore, when applying the method described in Section 1, solidification calculations should be performed taking into account the casting speed, conditions related to cooling of the slab, and conditions related to heat retention and heating, as described in Section 5, to reduce the reduction. In addition, always know where the appropriate solid fraction range is located within the strand, and adjust the casting speed and cooling conditions so that the solid fraction in the rolling zone is within the appropriate range, or the rolling zone is within the appropriate range. By adjusting the heating conditions, a good segregation level can be stably achieved.

しかし、実際の鋳造作業では、鋳造末期や鋳造初期には
不可避的に鋳造速度を大幅に低下あるいは増加する場合
があり、鋳造中期においても鋳造速度を大幅に変化しな
ければならない事態が発生する。そのような場合には冷
却条件や加熱条件を調整するだけでは圧下帯の固相率を
適正範囲に制御できない場合がある。そのような事態に
対する対策として創案されたのが特許請求の範囲第6項
に記載の発明である。
However, in actual casting operations, there are cases where the casting speed is unavoidably significantly reduced or increased at the end of casting or at the beginning of casting, and there also occur situations in which the casting speed must be changed significantly even in the middle of casting. In such cases, it may not be possible to control the solid fraction in the rolling zone within an appropriate range simply by adjusting the cooling conditions and heating conditions. The invention set forth in claim 6 was devised as a countermeasure against such a situation.

予め鋳造速度の大幅な変化に対応できるよう圧下機構を
有するロールを配しておき、あるいは圧下装置にストラ
ンド方向に移動できる機構を付加しておき、凝固計算に
よって推定された適正固相率範囲にあるロールを圧下ロ
ールとして使用する、あるいはさらに広範囲にあるロー
ル群を圧下ロールと使用したり、またはその範囲へ圧下
装置を移動させることにより圧下帯装置を制御して溶鋼
流動を効果的に抑制し、偏析の改善を図ることが可能と
なる。また、第5項と第6項記載の制御方法を組合せる
第7項の方法においても同様な効果が期待できる。
In order to cope with large changes in casting speed, rolls with a rolling down mechanism are installed in advance, or a mechanism that can move in the strand direction is added to the rolling down device, so that the solid fraction can be kept within the appropriate solid fraction range estimated by solidification calculations. The rolling band device can be controlled to effectively suppress the flow of molten steel by using a certain roll as a rolling roll, or by using a wider group of rolls as rolling rolls, or by moving the rolling device to that area. , it becomes possible to improve segregation. Furthermore, similar effects can be expected from the method described in Item 7, which combines the control methods described in Items 5 and 6.

発明の詳細 な説明したように、連続鋳造法により鋳片を製造するに
際し、本発明を適用することにより、凝固組織の等軸重
化、微細化による偏析の分散効果、凝固末期の溶鋼流動
抑制による濃化溶鋼の集積防止効果、さらに鋳片凝固時
の緩冷却による偏析拡散および分離効果をより効果的に
作用せしめ、鋳片内部に形成されるミクロ、セミマクロ
、マクロ偏析を低減して、従来の偏析対策で得ることが
困難であった良好な偏析レベルの達成を可能とする。
As described in detail of the invention, when manufacturing slabs by continuous casting, the present invention can be applied to make the solidified structure equiaxed, have a dispersion effect on segregation due to refinement, and suppress the flow of molten steel at the final stage of solidification. This prevents the accumulation of concentrated molten steel, and also makes the segregation diffusion and separation effect caused by slow cooling during solidification of the slab more effective, reducing micro, semi-macro, and macro segregation formed inside the slab. This makes it possible to achieve a good segregation level, which has been difficult to achieve with conventional segregation countermeasures.

それにより従来対策で発生していた偏析起因の異常組織
の発生や、機械的特性の劣化が防止できると共に、従来
偏析が主因で達成できなかった高級鋼の連鋳化や、従来
材の高品質化および工程省略等を可能とする。
This makes it possible to prevent the generation of abnormal structures caused by segregation and deterioration of mechanical properties that occur with conventional countermeasures, as well as to enable continuous casting of high-grade steel, which was previously impossible to achieve mainly due to segregation, and to achieve high quality of conventional materials. This makes it possible to simplify processes and omit processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示す説明図、第2図は上面
側等軸晶率と中心偏析評点の関係と凝固末期の圧下によ
る偏析改善効果を示す図、第3図は鋳片中心部における
中心偏析評点とPの高濃度部の面積率の関係と鋳片を保
温、加熱し緩冷却することによるスポット状偏析の改善
効果を示す図、第4図は等軸重が生成するタンプイー7
シユ溶鋼過熱度の範囲を示す図、第5図は第1項記載の
発明において鋳片を圧下する際の適正固相率範囲に関す
る検討結果を示す図、第6図は同適正圧下量に関する検
討結果を示す図、第7図は第1項記載の方法を適用した
場合の緩冷却による鋳片デンドライト部のミクロ偏析改
善効果を示す図、第8図は第1項記載の発明において鋳
片を圧下する際の必要圧下帯長さに関する検討結果を示
す図、第9図は同適正圧下ロールピッチに関する検討結
果を示す図、第1O図は冷材添加や誘導加熱で制御しな
い場合のタンディツシュ溶鋼過熱度の推移の例(4例)
を示す図である。 1・・・誘導加熱装置、2・・・冷材添加装置、3・・
・タンディツシュ、4.5・・・鋳型及び鋳型内電磁攪
拌装置、6・・・2次冷却帯、7・・・保温帯、8φ・
・加熱帯、911会・圧下帯、10・・φ圧下ロール、
11.12・・・固相率線、13・・・鋳片。
Figure 1 is an explanatory diagram showing an embodiment of the present invention, Figure 2 is a diagram showing the relationship between the upper surface side equiaxed crystallinity and center segregation score, and the segregation improvement effect due to rolling reduction at the end of solidification, and Figure 3 is a diagram showing the center of the slab. Figure 4 shows the relationship between the center segregation score and the area ratio of the high concentration area of P in the area and the improvement effect of spot segregation by keeping the slab warm, heating it and slowly cooling it. 7
Figure 5 is a diagram showing the range of superheating degree of molten steel, Figure 5 is a diagram showing the study results regarding the appropriate solid phase ratio range when rolling down the slab in the invention described in item 1, and Figure 6 is the study regarding the appropriate reduction amount. Figure 7 is a diagram showing the results, and Figure 7 is a diagram showing the effect of improving the micro-segregation of the dendrite part of the slab by slow cooling when the method described in Item 1 is applied. Figure 9 shows the results of the study on the required rolling strip length during rolling down, Figure 9 shows the results of the study on the appropriate roll pitch for rolling down, and Figure 1O shows the overheating of tanditsu molten steel when it is not controlled by cold material addition or induction heating. Example of degree transition (4 examples)
FIG. 1... Induction heating device, 2... Cold material addition device, 3...
・Tandish, 4.5...Mold and electromagnetic stirring device in the mold, 6...Secondary cooling zone, 7...Heat insulation zone, 8φ・
・Heating zone, 911 meeting・Reduction zone, 10...φ reduction roll,
11.12...Solid fraction line, 13...Slab.

Claims (7)

【特許請求の範囲】[Claims] (1)タンディッシュ、鋳型、2次冷却帯、加熱帯また
は保温帯と加熱帯、および圧下帯を設けた連鋳機を用い
て連続鋳造法により鋳片を製造するに際し、タンディッ
シュにおける溶鋼過熱度を5〜50℃に制御し、鋳型ま
たは鋳型とそれに引続く2次冷却帯から凝固完了位置間
に設けた電磁攪拌装置により溶鋼を攪拌しながら鋳造を
行ない、2次冷却帯以降の少なくとも2次冷却帯出側か
ら圧下帯入側の間に加熱帯または保温帯と加熱帯を設け
て鋳片を加熱あるいは保温、加熱すると共に、圧下帯に
おける鋳片断面中心部の固相率が0.3〜0.8の範囲
において鋳片に4mm以上の圧下を加えることを特徴と
する連鋳鋳片の偏析改善方法。
(1) Molten steel is overheated in the tundish when producing slabs by the continuous casting method using a continuous casting machine equipped with a tundish, a mold, a secondary cooling zone, a heating zone or a heat insulation zone, a heating zone, and a reduction zone. Casting is carried out while stirring the molten steel using a mold or an electromagnetic stirrer installed between the secondary cooling zone and the solidification completion position. A heating zone or an insulating zone and a heating zone are provided between the exit side of the next cooling zone and the input side of the rolling zone to heat the slab, keep it warm, and heat it, and the solid fraction at the center of the slab cross section in the rolling zone is 0.3. A method for improving segregation of continuously cast slabs, characterized by applying a reduction of 4 mm or more to the slabs in the range of -0.8.
(2)圧下帯長さを2m以上とし、ロールピッチ500
mm以下に設定された複数対のロールにより鋳片を圧下
する請求項1記載の方法。
(2) Roll length is 2m or more, roll pitch is 500
2. The method according to claim 1, wherein the slab is rolled down by a plurality of pairs of rolls set to a diameter of 1 mm or less.
(3)鋳片搬送機構を有する圧下装置を設け、面状また
はバー状の圧下端子により鋳片を圧下する請求項1記載
の方法。
(3) The method according to claim 1, wherein a rolling down device having a slab conveying mechanism is provided, and the slab is rolled down by a flat or bar-shaped rolling terminal.
(4)タンディッシュの溶鋼過熱度を5〜50℃に制御
するために誘導加熱装置または冷材添加装置あるいは両
装置をタンディッシュに設けた請求項1記載の方法。
(4) The method according to claim 1, wherein the tundish is provided with an induction heating device, a cold material addition device, or both devices in order to control the degree of superheating of the molten steel in the tundish to 5 to 50°C.
(5)タンディッシュの溶鋼過熱度(あるいは溶鋼温度
)、鋳型冷却水量および鋳型冷却水の温度変化、2次冷
却水量等の1次、2次冷却操業条件、保温帯の保温能力
および加熱帯の操業条件、雰囲気温度、鋳片サイズおよ
び鋳造速度からなるプロセス情報に基づき凝固計算を行
ない、圧下帯における鋳片断面中心部の固相率が0.3
〜0.8の範囲になるよう、あるいは圧下帯が鋳片断面
中心部の固相率が0.3〜0.8の範囲を含むよう、2
次冷却水量、加熱帯操業条件および鋳造速度を制御する
方法を組合せる請求項1記載の方法。
(5) Primary and secondary cooling operation conditions such as the degree of superheating of molten steel (or molten steel temperature) in the tundish, the amount of mold cooling water and the temperature change of mold cooling water, the amount of secondary cooling water, the heat retention capacity of the heat insulation zone, and the temperature of the heating zone. Solidification calculations were performed based on process information consisting of operating conditions, ambient temperature, slab size, and casting speed, and the solid fraction at the center of the slab cross section in the rolling zone was 0.3.
2 so that the solid phase ratio at the center of the slab cross section is in the range of 0.8 to 0.8, or so that the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8.
2. The method of claim 1, further comprising controlling the amount of secondary cooling water, heating zone operating conditions, and casting speed.
(6)タンディッシュの溶鋼過熱度(あるいは溶鋼温度
)、鋳型冷却水量および鋳型冷却水の温度変化、2次冷
却水量等の1次、2次冷却操業条件、保温帯の保温能力
および加熱帯の操業条件、雰囲気温度、鋳片サイズおよ
び鋳造速度からなるプロセス情報に基づき凝固計算を行
ない、圧下帯が鋳片断面中心部の固相率が0.3〜0.
8の範囲に来るよう、あるいは圧下帯が鋳片断面中心部
の固相率が0.3〜0.8の範囲を含むよう、圧下帯装
置を制御する方法を組合せる請求項1記載の方法。
(6) Primary and secondary cooling operation conditions such as the degree of superheating of molten steel (or molten steel temperature) in the tundish, the amount of mold cooling water and the temperature change of mold cooling water, the amount of secondary cooling water, the heat retention capacity of the heat insulation zone, and the temperature of the heating zone. Solidification calculations are performed based on process information consisting of operating conditions, ambient temperature, slab size, and casting speed, and the reduction zone has a solid phase ratio of 0.3 to 0.0 at the center of the slab cross section.
8. The method according to claim 1, further comprising a method of controlling a rolling band device so that the solid phase ratio at the center of the slab cross section is in the range of 0.3 to 0.8. .
(7)請求項5および6記載の両制御方法を組合せる請
求項1記載の方法。
(7) The method according to claim 1, which combines both the control methods according to claims 5 and 6.
JP30394288A 1988-12-02 1988-12-02 Method for improving segregation of continuous cast slab Expired - Lifetime JP2727205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30394288A JP2727205B2 (en) 1988-12-02 1988-12-02 Method for improving segregation of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30394288A JP2727205B2 (en) 1988-12-02 1988-12-02 Method for improving segregation of continuous cast slab

Publications (2)

Publication Number Publication Date
JPH02151354A true JPH02151354A (en) 1990-06-11
JP2727205B2 JP2727205B2 (en) 1998-03-11

Family

ID=17927146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30394288A Expired - Lifetime JP2727205B2 (en) 1988-12-02 1988-12-02 Method for improving segregation of continuous cast slab

Country Status (1)

Country Link
JP (1) JP2727205B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231156A (en) * 1990-12-28 1992-08-20 Nippon Steel Corp Continuous casting
JPH04309446A (en) * 1991-04-09 1992-11-02 Nippon Steel Corp Continuous casting method
US5871040A (en) * 1995-06-21 1999-02-16 Sumitomo Metal Industries, Ltd. Process for continuously casting thin slabs
US6585799B1 (en) 1999-04-08 2003-07-01 Nippon Steel Corporation Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
KR100402020B1 (en) * 1999-12-09 2003-10-17 주식회사 포스코 Method for controlling equiaxed crystals in slab of the ferritic stainless steel
JP2007290035A (en) * 2006-03-28 2007-11-08 Kobe Steel Ltd Method for producing steel material
JP2008260056A (en) * 2007-04-16 2008-10-30 Kobe Steel Ltd Continuous casting method for slab steel less in central segregation
CN108672668A (en) * 2018-03-29 2018-10-19 马鞍山钢铁股份有限公司 The method and its control device of casting blank solidification institutional framework in a kind of control casting process
CN110494235A (en) * 2017-03-29 2019-11-22 杰富意钢铁株式会社 The continuous casing of steel
JP2020069483A (en) * 2018-10-29 2020-05-07 日本製鉄株式会社 Continuous casting method and continuous casting machine
JP2021121439A (en) * 2020-01-31 2021-08-26 日鉄エンジニアリング株式会社 Slab heating device and continuous casting facility
CN113857451A (en) * 2021-10-27 2021-12-31 江西理工大学 Continuous casting method for controlling distribution of manganese sulfide inclusions in medium carbon steel in thickness direction of continuous casting slab
CN114082913A (en) * 2021-11-15 2022-02-25 包头钢铁(集团)有限责任公司 Control method for improving center carbon segregation of hypereutectoid steel produced by small square billet section
CN114653912A (en) * 2022-02-14 2022-06-24 江阴兴澄特种钢铁有限公司 Method for producing large-diameter high-purity compact special steel continuous casting round billet
CN115430812A (en) * 2022-08-15 2022-12-06 中天钢铁集团有限公司 Control method for medium-high carbon steel uniform structure for automobile constant-speed transmission shaft

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231156A (en) * 1990-12-28 1992-08-20 Nippon Steel Corp Continuous casting
JPH04309446A (en) * 1991-04-09 1992-11-02 Nippon Steel Corp Continuous casting method
US5871040A (en) * 1995-06-21 1999-02-16 Sumitomo Metal Industries, Ltd. Process for continuously casting thin slabs
EP1803512A3 (en) * 1999-04-08 2007-10-31 Nippon Steel Corporation Cast steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
US6918969B2 (en) 1999-04-08 2005-07-19 Nippon Steel Corporation Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
EP2292352A1 (en) 1999-04-08 2011-03-09 Nippon Steel Corporation Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
EP2308617A2 (en) 1999-04-08 2011-04-13 Nippon Steel Corporation Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
EP2308616A1 (en) 1999-04-08 2011-04-13 Nippon Steel Corporation Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
US6585799B1 (en) 1999-04-08 2003-07-01 Nippon Steel Corporation Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
KR100402020B1 (en) * 1999-12-09 2003-10-17 주식회사 포스코 Method for controlling equiaxed crystals in slab of the ferritic stainless steel
JP2007290035A (en) * 2006-03-28 2007-11-08 Kobe Steel Ltd Method for producing steel material
JP2008260056A (en) * 2007-04-16 2008-10-30 Kobe Steel Ltd Continuous casting method for slab steel less in central segregation
US10967425B2 (en) 2017-03-29 2021-04-06 Jfe Steel Corporation Continuous steel casting method
CN110494235A (en) * 2017-03-29 2019-11-22 杰富意钢铁株式会社 The continuous casing of steel
CN110494235B (en) * 2017-03-29 2021-11-16 杰富意钢铁株式会社 Method for continuously casting steel
CN108672668A (en) * 2018-03-29 2018-10-19 马鞍山钢铁股份有限公司 The method and its control device of casting blank solidification institutional framework in a kind of control casting process
JP2020069483A (en) * 2018-10-29 2020-05-07 日本製鉄株式会社 Continuous casting method and continuous casting machine
JP2021121439A (en) * 2020-01-31 2021-08-26 日鉄エンジニアリング株式会社 Slab heating device and continuous casting facility
CN113857451A (en) * 2021-10-27 2021-12-31 江西理工大学 Continuous casting method for controlling distribution of manganese sulfide inclusions in medium carbon steel in thickness direction of continuous casting slab
CN114082913A (en) * 2021-11-15 2022-02-25 包头钢铁(集团)有限责任公司 Control method for improving center carbon segregation of hypereutectoid steel produced by small square billet section
CN114082913B (en) * 2021-11-15 2022-11-22 包头钢铁(集团)有限责任公司 Control method for improving center carbon segregation of hypereutectoid steel produced by small square billet section
CN114653912A (en) * 2022-02-14 2022-06-24 江阴兴澄特种钢铁有限公司 Method for producing large-diameter high-purity compact special steel continuous casting round billet
CN115430812A (en) * 2022-08-15 2022-12-06 中天钢铁集团有限公司 Control method for medium-high carbon steel uniform structure for automobile constant-speed transmission shaft
CN115430812B (en) * 2022-08-15 2024-01-23 中天钢铁集团有限公司 Control method for uniform structure of medium-high carbon steel for automobile constant-speed transmission shaft

Also Published As

Publication number Publication date
JP2727205B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JPH02151354A (en) Method for improving segregation in continuously cast slab
EP2209574B1 (en) Continuous cast slab and method for manufacturing the same
US6841010B2 (en) Cold rolled steel
JP3043075B2 (en) Method and apparatus for operating continuous casting apparatus
US4331196A (en) Process for producing non-directional electrical steel sheets free from ridging
US6896034B2 (en) Method for controlling a continuous strip steel casting process based on customer-specified requirements
JP2809186B2 (en) Continuous casting method
JPH06126405A (en) Light rolling reduction method for continuous casting strand
EP3572163A1 (en) Steel continuous casting method
JPH038864B2 (en)
JPH0420696B2 (en)
EP0211422B1 (en) Continuous casting method
KR101230117B1 (en) Method for manufacturing austenitic stainless steel
US7591917B2 (en) Method of producing steel strip
CN108435793B (en) Rolling production process with liquid core for steel for wear-resistant balls
JPS6363561A (en) Continuous casting method
JPH038863B2 (en)
JP4132653B2 (en) Steel
JPS58218353A (en) Stationary side plate of continuous casting device of thin steel plate
JPH08252652A (en) Manufacture of thin slab of austenitic stainless steel containing small amount of residual delta ferrite
JPH08257714A (en) Continuous casting apparatus
JPH06262325A (en) Continuous casting method
JP3294987B2 (en) Continuous casting to prevent segregation and internal cracking
JP3101785B2 (en) Continuous casting method
JPH02155548A (en) Method for continuously casting free cutting steel