JPH02155548A - Method for continuously casting free cutting steel - Google Patents

Method for continuously casting free cutting steel

Info

Publication number
JPH02155548A
JPH02155548A JP30790588A JP30790588A JPH02155548A JP H02155548 A JPH02155548 A JP H02155548A JP 30790588 A JP30790588 A JP 30790588A JP 30790588 A JP30790588 A JP 30790588A JP H02155548 A JPH02155548 A JP H02155548A
Authority
JP
Japan
Prior art keywords
slab
molten steel
tundish
heat
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30790588A
Other languages
Japanese (ja)
Other versions
JP2747708B2 (en
Inventor
Koichi Isobe
浩一 磯部
Hirofumi Maede
前出 弘文
Miwahito Noguchi
野口 三和人
Shuichi Miyabe
修一 宮部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17974583&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02155548(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30790588A priority Critical patent/JP2747708B2/en
Publication of JPH02155548A publication Critical patent/JPH02155548A/en
Application granted granted Critical
Publication of JP2747708B2 publication Critical patent/JP2747708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To stably manufacture a sulfur series free cutting steel having excellent machinability by making molten steel over-heat degree in a tundish higher than the specific temp. and making cooling velocity in the specific temp. range at lower than the specific temp. in the solidified process lower than the specific value at the specific intermediate point. CONSTITUTION:The molten steel over-heat degree in the tundish 2 arranging an induction heating device 1 is made to >=10 deg.C and the cooling velocity at <=1500 deg.C and at least in the temp. range of 1500-1400 deg.C at the intermediate point between cast slab surface and center in the cast slab cross section is made to <=30 deg.C/min. The cast slab passing through secondary cooling zone 5 is held to heat and heated in heat-holding zone 6 and heating zone 7 to restrain conduction of heat from the cast slab surface. By making the molten steel over-heat degree to >=10 deg.C, quantity of the hard inclusion is drastically reduced and the deterioration of the machinability is prevented. The lowering of the cooling velocity at between 1500-1400 deg.C makes MnS grain large and improves the machinability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は連続鋳造工程における硫黄系快削鋼連鋳材の被
削性改善を図る技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a technique for improving the machinability of continuously cast sulfur-based free-cutting steel in a continuous casting process.

従来の技術 従来、連続鋳造法で製造される硫黄系快削鋼の被削性改
善を連続pj造工程で行う方法は時開62−20754
7と時開62−207548に開示されている。L記い
ずれの方法も連続鋳造法により鋳片内の冷却速度を低減
し、その緩冷却により鋼中に形成されるMn3粒の大型
化を図り被削性の改善を行なおうとするものである。
Conventional technology A method of improving the machinability of sulfur-based free-cutting steel produced by continuous casting using a continuous PJ casting process is described in Jikai 62-20754.
7 and Jikai 62-207548. All of the methods described in L are intended to reduce the cooling rate within the slab by continuous casting, and to improve machinability by increasing the size of the Mn3 grains formed in the steel through slow cooling. .

前記の特開昭62−207547では2次冷却水の比水
量が0.5Jl/kg以下に制限されており、一方、特
開昭82−207548ではこの比水量の制限に加え、
連pI機の機内に保温帯、加熱帯を設け、鋳片を保温、
加熱することにより目的を達成する方法が記載されてい
る。しかしながら、それらの方法はあくまで緩冷却のみ
により、硫黄系快削鋼の被削性改善を図ろうとするもの
であり、また、目標とする緩冷却レベルについては明ら
かにされていない。
In the above-mentioned JP-A-62-207547, the specific water amount of the secondary cooling water is limited to 0.5 Jl/kg or less, while in JP-A-82-207548, in addition to this limitation on the specific water amount,
A heat insulation zone and a heating zone are installed inside the continuous pi machine to keep the slab warm.
A method is described that achieves this goal by heating. However, these methods only attempt to improve the machinability of sulfur-based free-cutting steel by slow cooling, and the target slow cooling level has not been clarified.

特開昭58−29Ei58には硫黄系快削鋼を連j$M
造法により製造する例が示されているが、この方法は品
質の均一性と気泡欠陥のない硫黄快削鋼を得ようとする
ものであり、被削性の向−ヒを意図するものではなかっ
た。
JP-A-58-29Ei58 contains sulfur-based free-cutting steel.
Although an example of manufacturing by a manufacturing method is shown, this method aims to obtain sulfur free-cutting steel with uniform quality and no bubble defects, and is not intended to improve machinability. There wasn't.

連PJ機内に加熱装置を設置し、鋳片表面を加熱する例
が特開昭52−50!333に示されているが、その目
的とするところは冷却時の表面疵を防止することにあり
、被削性の改善を意図するものではない。
An example of installing a heating device in a continuous PJ machine to heat the surface of a slab is shown in JP-A-52-50!333, but the purpose of this is to prevent surface flaws during cooling. , is not intended to improve machinability.

発明が解決しようとする課題 破竹系快削鋼の被削性はその鋼中に生成されるMr+S
粒の大きさに影響され、そのMn3粒が大きいはど被削
性が良好なことが知られている。一方、このMn3粒の
サイズは鋳片断面サイズが小さいほど減少する。従って
、硫黄系快削鋼をより成品サイズに近い、すなわち断面
サイズの小さい鋳片で製造しようとする場合、 Mn3
粒の小型化に伴い成品の被削性が劣化することになる。
Problems to be Solved by the Invention The machinability of bamboo-based free-cutting steel is determined by the Mr+S generated in the steel.
It is known that the machinability is influenced by the grain size, and the larger the Mn3 grains are, the better the machinability is. On the other hand, the size of these Mn3 grains decreases as the slab cross-sectional size becomes smaller. Therefore, when trying to manufacture sulfur-based free-cutting steel with slabs that are closer to the finished product size, that is, with a smaller cross-sectional size, Mn3
As the grains become smaller, the machinability of the finished product deteriorates.

そのような連続鋳造の鋳片サイズ減少に伴う被削性の劣
化を防止するには上記特開昭82−207547のよう
な2次冷却水の縫を減少し、緩冷却化するだけでは不十
分であると考えられる。
In order to prevent such deterioration in machinability due to the reduction in slab size in continuous casting, it is insufficient to reduce the flow of secondary cooling water and achieve gradual cooling as in the above-mentioned Japanese Patent Application Laid-Open No. 82-207547. It is thought that.

また、特開昭62−207548の方法のように比水量
の制限に加え、鋳片を保温、加熱することは緩冷却化を
図る上で一つの有効な手段と考えられるが、それらの緩
冷却が快削鋼内のMnSの大型化しいては被削性の改善
に最も有効な、温度域の冷却速度を十分低下させること
に寄与しなければ、期待する被削性の改善が不十分にな
ると考えられる。
In addition, in addition to limiting the specific water amount as in the method of JP-A-62-207548, insulating and heating the slab is considered to be an effective means for slow cooling; However, if MnS in free-cutting steel becomes larger, the expected improvement in machinability will be insufficient unless it contributes to sufficiently lowering the cooling rate in the temperature range that is most effective for improving machinability. Conceivable.

また、鋼中に含まれる硬質介在物は、工具の損傷等を引
起こし、工具寿命を短くすると共に被削材の仕上面の粗
さを低下し、被削性を劣化させる原因となる。しかしな
がら、前述したいずれの方法も、この硬質介在物にょる
被削性の劣化を防止する方法とはなっていない。
In addition, hard inclusions contained in steel cause damage to the tool, shorten the tool life, reduce the roughness of the finished surface of the workpiece, and cause deterioration of machinability. However, none of the methods described above is a method for preventing deterioration of machinability due to these hard inclusions.

課題を解決するための手段 本発明は上記課題を解決する手段を提供するものであり
、以下の発明である。
Means for Solving the Problems The present invention provides means for solving the above problems, and is the following invention.

なお、本発明の対象とする硫黄系快削鋼は、JISに規
定されている硫黄系快削鋼であり、S含有剤が0.08
〜0.40wt%の範囲にあるものを指している。
The sulfur-based free-cutting steel that is the object of the present invention is a sulfur-based free-cutting steel specified by JIS, and the S-containing agent is 0.08.
It refers to those in the range of ~0.40wt%.

(1)硫黄系快削鋼の連続鋳造工程において、タンディ
ツシュの溶鋼過熱度を10℃以りとし、鋳片幅中央の断
面内および鋳片厚み中央の断面内の鋳片表面と鋳片断面
中心の中間点において、1500℃以下の少なくとも1
500〜1400℃間の温度域における冷却速度を30
℃/分以下とすることを特徴とする快削鋼の連続鋳造方
法。
(1) In the continuous casting process of sulfur-based free-cutting steel, the degree of superheating of the molten steel in the tundish is set to 10°C or higher, and the slab surface and the slab cross-sectional center are At least 1 below 1500℃ at the midpoint of
The cooling rate in the temperature range between 500 and 1400℃ is 30
A continuous casting method for free-cutting steel, characterized in that the casting speed is less than ℃/min.

(2)タンディツシュの溶鋼過熱度を10℃以上に制御
するため誘導加熱装首をタンディツシュに設け、第1項
に記載の方法を適用する快削鋼の連続鋳造方法。
(2) A continuous casting method for free-cutting steel, in which the tundish is provided with an induction heating neck in order to control the degree of superheating of molten steel in the tundish to 10° C. or higher, and the method described in item 1 is applied.

(3)連鋳機の機内の2次冷却帯以降に加熱帯または保
温帯と加熱帯を設け、鋳片を加熱あるいは保温、加熱し
て鋳片内の冷却速度を低減する方法を組合せる第1項に
記載の方法。
(3) A method of combining a method of installing a heating zone or a heat-insulating zone and a heating zone after the secondary cooling zone inside the continuous casting machine to heat the slab, keep it warm, or heat the slab to reduce the cooling rate inside the slab. The method described in Section 1.

(4)タンディツシュの溶鋼過熱度(あるいは溶鋼温度
)、鋳型冷却水量および鋳型冷却水の温度変化、2次冷
却水!11等の1次、2次冷却操業条件。
(4) Temperature change of molten steel superheating degree (or molten steel temperature), mold cooling water amount and mold cooling water, secondary cooling water! 11 primary and secondary cooling operating conditions.

雰囲気温度、鋳片サイズおよび鋳造速度からなるプロセ
ス情報に基づき凝固計算を行ない、第1項記載の冷却速
度が30℃/分以下になるよう2次冷却水量およびn造
速度を制御する方法を組合せる第1項記載の方法。
Combining the method of performing solidification calculations based on process information consisting of ambient temperature, slab size, and casting speed, and controlling the amount of secondary cooling water and the casting speed so that the cooling rate described in item 1 is 30°C/min or less. The method according to paragraph 1.

(5)タンディツシュの溶鋼過熱度(あるいは溶鋼温度
)、鋳型冷却水量および鋳型冷却水の温度変化、2次冷
却水量等の1次、2次冷却操業条件、保温帯の保温能力
および加熱帯の操業条件、雰囲気温度、鋳片サイズおよ
び鋳造速度からなるプロセス情報に基づき凝固計算を行
ない、第1項記載の冷却速度が30℃/分以下になるよ
う2次冷却水融や鋳造速度および加熱帯操業条件を制御
する方法を組合せる第3項記載の方法。
(5) Primary and secondary cooling operation conditions such as the degree of superheating of molten steel (or molten steel temperature) in the tundish, the amount of mold cooling water and the temperature change of mold cooling water, the amount of secondary cooling water, the heat retention capacity of the heat insulation zone, and the operation of the heating zone Solidification calculations are performed based on process information including conditions, ambient temperature, slab size, and casting speed, and secondary cooling water melting, casting speed, and heating zone operation are performed so that the cooling rate described in Section 1 is 30°C/min or less. 4. The method according to paragraph 3, which combines methods of controlling conditions.

にある。It is in.

以上の発明は、連続鋳造法により低度硫黄系快削鋼を製
造するにあたり、硬質介在物による被削性の劣化を防止
すると共に、凝固過程の特定温度域における冷却速度を
十分低下し、効果的にしかも確実にMr+S粒の大型化
を図ることにより、被削性の優れた硫黄系快削鋼の製造
を可能にする方法を提供しようとするものである。ここ
で言う硫黄系快削鋼とは、C濃度0.2%以下の低次硫
黄快削鋼およびこの低次硫黄快削鋼にPb、 Bi、 
Te、Ca等の被削性を改善する元素を添加した複合快
削鋼を包合する。
The invention described above prevents the deterioration of machinability due to hard inclusions and sufficiently reduces the cooling rate in a specific temperature range during the solidification process when manufacturing low-sulfur free-cutting steel using the continuous casting method. The present invention aims to provide a method that makes it possible to manufacture sulfur-based free-cutting steel with excellent machinability by effectively and reliably increasing the size of Mr+S grains. The sulfur-based free-cutting steel mentioned here refers to low-order sulfur free-cutting steel with a C concentration of 0.2% or less, and this low-order sulfur free-cutting steel containing Pb, Bi,
Contains composite free-cutting steel to which elements such as Te and Ca that improve machinability are added.

第1図は本発明の実施態様を示す説明図であり、1は誘
導加熱装置、2はタンディツシュ、3は鋳型、4は″r
rL磁纜拌装置、5は2次冷却帯、6は保温帯、7は加
熱帯、8はビンチロール帯、9は鋳片を示す。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, in which 1 is an induction heating device, 2 is a tundish, 3 is a mold, and 4 is an "r"
rL magnetic wire stirrer, 5 is a secondary cooling zone, 6 is a heat insulating zone, 7 is a heating zone, 8 is a vinyl roll zone, and 9 is a slab.

特許請求の範囲の第1項記載の発明は、タンディツシュ
の溶鋼過熱度を10℃以上とし、低温鋳造による硬質介
在物の巻き込みを防止すると共に、第6図に示すように
鋳片幅中央の断面内および鋳片厚み中央の断面内の鋳片
表面と鋳片断面中心の中間点(・印およびO印)におい
て、1500℃以下の少なくとも1500〜1400℃
間の温度域における冷却速度を30℃/分以下とする緩
冷却により、Mn5粒を大型化して快削鋼連鋳材の被削
性改善を図ろうとするものである。
The invention as set forth in claim 1 makes the degree of superheating of the molten steel in the tundish 10°C or higher, prevents the entrainment of hard inclusions due to low-temperature casting, and improves the cross-section at the center of the slab width as shown in Fig. 6. At least 1,500 to 1,400°C below 1,500°C at the midpoint between the slab surface and the center of the slab's cross section (marked ・ and O) within the cross section at the center of the thickness of the slab.
The aim is to improve the machinability of continuously cast free-cutting steel by increasing the size of the Mn5 grains by slow cooling at a cooling rate of 30° C./min or less in the temperature range between 1 and 2.

より確実に硬質介在物績を低減するには、後述するよう
にタンディツシュの溶鋼過熱度を鋳造全般にわたって1
0℃以上にする必要があるが、i!li鋳以前の工程に
おける温度調整のバラツキや、鋳造中の溶鋼温度の低下
によりタンディツシュの溶鋼過熱度が10℃を下回るこ
とがある。このような問題を解決する対策として創案さ
れたのが第2項記、戒の発明である。
In order to more reliably reduce the occurrence of hard inclusions, the degree of superheating of the molten steel in the tundish should be set to 1 throughout the entire casting process, as described below.
It is necessary to keep the temperature above 0℃, but i! The degree of superheating of the molten steel in the tundish may fall below 10° C. due to variations in temperature control in the process before li casting or a decrease in the molten steel temperature during casting. The invention of the second precept, the precept, was devised as a measure to solve these problems.

第2項記載の発明はタンディツシュに誘導加熱装置を設
置し、溶鋼の加熱機能を付加することによりタンディツ
シュにおける溶鋼の温度低下を防止する、あるいはより
積極的に昇温し、溶鋼過熱度を鋳造全般にわたって10
℃以上を保証しようとするものであり、より確実に硬質
介在物の巻き込みを防止した上で、さらに緩冷却により
被削性の改善を図ろうとするものである。
The invention described in item 2 installs an induction heating device in the tundish and adds a molten steel heating function to prevent the temperature of the molten steel in the tundish from decreasing, or more actively raises the temperature, thereby controlling the degree of superheating of the molten steel throughout casting. over 10
℃ or more, and after more reliably preventing the entrainment of hard inclusions, it is intended to further improve machinability by slow cooling.

一方、連鋳工程において鋳片内の1500℃以下の、少
なくとも1500〜1400℃間の温度域における冷却
速度を30℃/分以下に低減して、MnSの大型化を達
成するには、鋳片表面の冷却を抑制し、鋳片表面をより
高温に保持することが好ましい、特許請求の範囲の第3
項の発明は、2次冷却帯以降に加熱帯あるいは保温帯と
加熱帯を設け、鋳片を加熱あるいは保温、加熱する方法
を組合せることにより、MnSの大型化に有効な緩冷却
の実現を図る方法を提供するものである。
On the other hand, in the continuous casting process, in order to reduce the cooling rate in the temperature range of at least 1500 to 1400°C within the slab to 30°C/min or less, it is necessary to increase the size of MnS. The third aspect of claim 3, wherein it is preferable to suppress surface cooling and maintain the slab surface at a higher temperature.
The invention described in section 1 provides a heating zone or a heat-insulating zone and a heating zone after the secondary cooling zone, and by combining methods of heating, keeping warm, and heating the slab, it is possible to realize gradual cooling that is effective for increasing the size of MnS. This provides a method for achieving this goal.

また、緩冷却による被削性改善を確実に行なう上で、鋳
造中にMnSの大型化に有効な緩冷却が実現されている
かを常にチエツクし、その緩冷却が実現されていない場
合は、2次冷却条件および鋳造速度、加熱帯を設けた場
合は、さらに加熱帯操業条件の調整により目標とするレ
ベルまで冷却速度を速やかに低下することが好ましい。
In addition, in order to reliably improve machinability through slow cooling, we always check whether slow cooling that is effective for increasing the size of MnS is achieved during casting, and if slow cooling is not achieved, 2. When a heating zone is provided, it is preferable to quickly reduce the cooling rate to a target level by adjusting the secondary cooling conditions, casting speed, and heating zone operating conditions.

特許請求の範囲第4項および第5項に記載の方法は第1
項記載の方法や第1項記載の方法の適用において保温帯
あるいは保温帯と加熱帯を設置する第3項記載の方法を
適用する場合に、鋳片の冷却に関わるプロセス情報に基
づき凝固計算を行ない、常に鋳片内の特定位置の冷却速
度を推定し、その冷却速度が目標とする30℃/分以下
になるよう、2次冷却水量および鋳造速度、加熱帯を設
けた場合はさらに加熱帯操業条件を制御することにより
、緩冷却による被削性改善効果を安定させ、しかも確実
にしようとするものである。
The method according to claims 4 and 5 is the first method.
When applying the method described in Section 3 or the method described in Section 1, in which a heat insulation zone or a heat insulation zone and a heating zone are installed, solidification calculations are performed based on process information related to cooling of slabs. The cooling rate at a specific location within the slab is always estimated, and the amount of secondary cooling water and casting speed, if a heating zone is provided, is further adjusted so that the cooling rate is below the target of 30°C/min. The aim is to stabilize and ensure the machinability improvement effect of slow cooling by controlling operating conditions.

以下に本発明における各限定条件について説明する。Each limiting condition in the present invention will be explained below.

まず、タンディツシュの溶鋼過熱度を10℃以上とする
理由について説明する。前述したように硬質介在物は快
削鋼の被削性を劣化させる原因となり、快削鋼の鋳造に
おいては硬質介在物の混入を防止することがfII’W
どなる。
First, the reason why the degree of superheating of molten steel in the tundish is set to 10° C. or higher will be explained. As mentioned above, hard inclusions cause deterioration of the machinability of free-cutting steel, and it is important to prevent the inclusion of hard inclusions when casting free-cutting steel.
bawl.

タンディツシュの溶鋼過熱度が低いほど、連鋳材の介在
物レベルが悪化することは当業者において一般に良く知
られた事項である。そこで、本発明者らは低炭の硫黄系
快削鋼を連続鋳造法で製造する際のタンディツシュの溶
鋼過熱度と硬質介在物レベルの関係について調査した。
It is generally well known to those skilled in the art that the lower the degree of superheating of the molten steel in the tundish, the worse the level of inclusions in the continuously cast material. Therefore, the present inventors investigated the relationship between the degree of superheating of molten steel in a tundish and the level of hard inclusions when producing low-coal sulfur-based free-cutting steel by a continuous casting method.

快削鋼で問題となる硬質介在物はM、03系に代表され
る高融点の酸化物系介在物であり、成分調整用に添加さ
れた各種合金中に含まれるM等の脱酸元素の酸化や各種
耐火物の溶損等により混入する酸化物が主体である。
The hard inclusions that cause problems in free-cutting steel are high-melting-point oxide-based inclusions represented by M and 03 series, and are caused by deoxidizing elements such as M contained in various alloys added for composition adjustment. The main components are oxides that are mixed in due to oxidation or erosion of various refractories.

上記調査結果を第4図に示す0本図より明らかなように
、快削鋼の硬質介在物レベルはタンディツシュの溶鋼過
熱度が高いほど良好となる傾向が認められ、特にその溶
鋼過熱度が10℃未満の低温鋳造では著しく硬質介在物
レベルが悪化している。従って、快削鋼の連続鋳造では
タンディツシュの溶鋼過熱度が10℃未満となるような
操業は避けるべきであり、できればブレークアウト等の
操業上のトラブルの無い範囲で、より高い溶鋼過熱度で
操業することが好ましい。
As is clear from the graph of the above investigation results shown in Figure 4, it is recognized that the level of hard inclusions in free-cutting steel tends to improve as the degree of superheating of the molten steel in the tundish increases, especially when the degree of superheating of the molten steel is 10 Low-temperature casting below ℃ significantly deteriorates the level of hard inclusions. Therefore, in continuous casting of free-cutting steel, operations where the molten steel superheat in the tundish is less than 10°C should be avoided, and if possible, operations at higher molten steel superheats without operational problems such as breakouts should be avoided. It is preferable to do so.

特許請求の範囲第2項に記載したようなタンディツシュ
に加熱機能を付加する方法を採用すれば、単にタンディ
ツシュの溶鋼過熱度が10℃以下に低下するのを防止す
るだけでなく、より高い過熱度に保持しながら鋳造する
ことが可能となり。
By adopting the method of adding a heating function to the tundish as described in claim 2, it is possible to not only prevent the degree of superheating of molten steel in the tundish from dropping below 10°C, but also to increase the degree of superheating to a higher degree. This makes it possible to cast while holding it in place.

被削性に対し有害な硬質介在物量を大幅に減少できる。The amount of hard inclusions that are harmful to machinability can be significantly reduced.

次に第1項記載の発明で、鋳片幅中央の断面内および鋳
片厚み中央の断面内の鋳片表面と鋳片断面中心の中間点
において、1500℃以下の少なくとも1500〜14
00℃間の温度域における冷却速度を30℃/分以下に
する緩冷却を採用する理由について説明する0本発明者
等が低炭ftM系快削鋼の被削性改善を図る目的で、5
UN23相当の低度硫黄快削鋼において、一方向凝固実
験により凝固中のMn3粒サイズの変化について調査す
ると共に鋳片内のMn3粒サイズに及ぼす鋳片内冷却速
度の影響について調査し以下の知見を得た。
Next, in the invention described in item 1, at a midpoint between the surface of the slab and the center of the slab cross section in the cross section at the center of the slab width and at the center of the slab thickness, at least 1,500 to 14
Explain the reason for adopting slow cooling in which the cooling rate is 30°C/min or less in the temperature range between 00°C and 0°C.
In a low-sulfur free-cutting steel equivalent to UN23, we conducted a unidirectional solidification experiment to investigate the change in Mn3 grain size during solidification, and investigated the effect of the cooling rate inside the slab on the Mn3 grain size in the slab, and found the following findings. I got it.

一方向凝固実験で調査した凝固中のMnSサイズの変化
を第2図に示す、第2図から凝固中特に1500〜14
00℃の温度域でMnSが生成、成長していることは明
らかであり、冷却速度が小さいはどMn3粒サイズは増
大する。また、本結果は硫黄快削鋼のMn3粒の大きさ
がこの1500〜14QQ℃間の冷却速度により規定さ
れることを示している。
Figure 2 shows the change in MnS size during solidification investigated in the unidirectional solidification experiment.
It is clear that MnS is generated and grows in the temperature range of 00°C, and the smaller the cooling rate, the larger the Mn3 grain size. Moreover, this result shows that the size of Mn3 grains of sulfur free-cutting steel is determined by the cooling rate between 1500 and 14QQ°C.

実鋳片における冷却速度の影響に関する調査は3種類の
断面サイズの鋳片について行ない、鋳片幅中央の断面内
の1部8厚部(5部)、 1部4厚部(Q部)と 1部
2厚部(0部)の3カ所について両者の関係について調
べた。その調査結果を第3図に示す。
Investigations on the effect of cooling rate on actual slabs were conducted on slabs with three different cross-sectional sizes: 1 part 8 thick part (5 parts), 1 part 4 thick part (Q part) and 1 part 8 thick part (part 5) in the cross section at the center of the slab width. The relationship between the two was investigated at three locations: part 1, part 2, and thick part (part 0). The survey results are shown in Figure 3.

第3図より低炭の硫菟快削鋼鋳片内のMnSサイズは、
鋳片の断面サイズや鋳片内の位置によらず、凝固中の1
500〜!400℃間の冷却速度(R′)にほぼ依存し
、この冷却速度(R′)が小さいほどMnSは大型化す
ることが判る。
From Figure 3, the MnS size in the low carbon sulfur free-cutting steel slab is:
1 during solidification, regardless of the cross-sectional size of the slab or its position within the slab.
500~! It can be seen that it depends almost on the cooling rate (R') between 400° C., and the smaller the cooling rate (R'), the larger the MnS becomes.

また、低次硫黄系快削鋼のMnSの生成、成長機構につ
いて調査した結果より、木鋼種のHnSは凝固中、特に
1500℃以下の温度域で液相および固相内でl1ln
とSの濃度積が溶解度植を超え、液相内に晶出、または
固相内に析出して生成することとそれらの晶出および析
出が固相内のMnの拡散で律速されていることが明らか
になった。
In addition, from the results of investigating the formation and growth mechanism of MnS in low-sulfur free-cutting steel, it was found that HnS in wooden steel forms l1ln during solidification, especially in the liquid and solid phases at temperatures below 1500°C.
The concentration product of has become clear.

よって、低炭のi黄快削鋼に1500〜1400℃間の
冷却速度(R′)の低下によりNnSが大型化するのは
R′の低下でMnの拡散に有利な高温状態により長く保
持され、その結果、MnS近傍のMnの拡散が促進され
るためと考えられる。
Therefore, NnS becomes larger in low-coal i-yellow free-cutting steel due to a decrease in the cooling rate (R') between 1500 and 1400°C. This is considered to be because, as a result, the diffusion of Mn in the vicinity of MnS is promoted.

以」二述べた理由によりMnSの大型化を図るには、M
nSが生成する1500℃以下の特に1500〜140
0℃間の冷却速度(R゛)を減少することが重要と考え
られる。
For the reasons mentioned above, in order to increase the size of MnS, it is necessary to
Especially at 1500 to 140 below 1500℃ where nS is generated.
It is considered important to reduce the cooling rate (R') between 0°C.

また、鋳片幅中央の断面内および鋳片厚み中央の断面内
の鋳片表面と鋳片断面中心の中間点において、上記冷却
速度(R′)を30℃/分以下にする理由は以下の通り
である。低置硫黄快削鋼の成品に要求される被削性を満
足する成品1/4厚み部のMnSの大きさは、50舊m
l程度以上であることが判明しており、圧延によりMn
Sは圧延方向に引延ばされるもののサイズは変化しない
ので、鋳片段階で50鉢ゴ程度以上の大きさのMnSを
得る必要がある。
In addition, the reason why the above cooling rate (R') is set to 30°C/min or less at the midpoint between the slab surface and the slab cross-sectional center in the cross section at the center of the slab width and the center of the slab thickness is as follows. That's right. The size of MnS in the 1/4 thickness part of the product that satisfies the machinability required for low-sulfur free-cutting steel products is 50 mm.
It has been found that the Mn
Although S is stretched in the rolling direction, its size does not change, so it is necessary to obtain MnS with a size of about 50 pieces or more at the slab stage.

そのためには第3図に示した冷却速度(R′)とMnS
サイズの関係より、成品1/4厚部位とにほぼ該当する
鋳片幅中央の断面内および鋳片厚み中央の断面内の鋳片
表面と鋳片断面中心の中間点において、 1500〜1
400℃間の温度域における冷却速度(R゛)を30℃
/分程度以下にする必要がある。
For this purpose, the cooling rate (R') shown in Figure 3 and the MnS
Due to the size, at the midpoint between the slab surface and the center of the slab cross section in the cross section at the center of the slab width and the cross section at the center of the slab thickness, which approximately corresponds to the 1/4 thickness part of the finished product, 1500 to 1
Cooling rate (R゛) in the temperature range between 400℃ and 30℃
/minute or less.

作用 第1図に本発明の概念図および後述する実施例に用いた
弯曲型の試験連鋳機の概要を示す0図中の1はタンディ
ツシュの溶鋼過熱度の低下を防止あるいは溶鋼過熱度を
上昇させるための誘導加熱装置であり、6および7はそ
れぞれ鋳片内の冷却速度を低下するために設置された保
温帯および加熱帯である。2次冷却帯5を通過した鋳片
は保温帯6と加熱帯7で保温、加熱され、その範囲にお
いて鋳片表面からの抜熱が抑制される。
Function Figure 1 shows a conceptual diagram of the present invention and an outline of the curved continuous test casting machine used in the examples described below. 6 and 7 are a heat-retaining zone and a heating zone, respectively, which are installed to reduce the cooling rate in the slab. The slab that has passed through the secondary cooling zone 5 is kept warm and heated in the heat insulation zone 6 and the heating zone 7, and heat loss from the surface of the slab is suppressed in these areas.

第4図に示した低次硫黄系快削鋼におけるタンディツシ
ュの溶鋼過熱度と硬質介在物評点の関係より明らかなよ
うに、タンディツシュの溶鋼過熱度を10℃以」;とす
ることにより、凝固シェルに捕捉される硬質介在物の量
を大幅に減少でき、硬質介在物による被削性の劣化が防
止可能となる。
As is clear from the relationship between the molten steel superheating degree of the tundish and the hard inclusion rating in low-sulfur free-cutting steel shown in Figure 4, by setting the molten steel superheating degree of the tundish to 10°C or higher, the solidified shell The amount of hard inclusions trapped in the steel can be significantly reduced, and deterioration of machinability due to hard inclusions can be prevented.

低次硫黄系快削鋼で被削性に対し有効に作用するMnS
の生成、成長を律速しているMnの固相内拡故速度は高
温になるほど急激に増大する。従って、低次硫黄系快削
鋼の連鋳凝固過程において1500℃以下の特に150
0〜1400℃間の冷却速度低下は、MnS近傍のNn
の拡散を促進し、MnSの大型化を図ることにより被削
性の改善に寄与する。
MnS has an effective effect on machinability in low-sulfur free-cutting steel
The diffusion rate of Mn in the solid phase, which controls the production and growth of Mn, increases rapidly as the temperature increases. Therefore, in the continuous casting solidification process of low-order sulfur-based free-cutting steel,
The cooling rate decrease between 0 and 1400°C is caused by Nn near MnS.
This contributes to improving machinability by promoting the diffusion of MnS and increasing the size of MnS.

タンディツシュに誘導加熱装置を設置し、溶鋼の加熱機
能を付加することは、前工程での温度調整のバラツキを
吸収し、鋳造中のタンディツシュ溶鋼温度の低下を防止
して、鋳造全般にわたって溶鋼加熱度10℃以上を保証
することを可能とする。
Installing an induction heating device in the tundish and adding a molten steel heating function absorbs variations in temperature adjustment in the previous process, prevents the tundish molten steel temperature from decreasing during casting, and maintains the molten steel heating level throughout casting. It is possible to guarantee a temperature of 10°C or higher.

2次冷却帯以降での鋳片の加熱あるいは保温、加熱は鋳
片表面での抜熱を抑制し、鋳片内部の1500℃以下、
特に1500〜1400℃間温度域における冷却速度の
大幅な減少を可能とする。
Heating or heat retention of the slab after the secondary cooling zone suppresses heat loss on the slab surface and cools the inside of the slab to below 1500℃,
In particular, it is possible to significantly reduce the cooling rate in the temperature range of 1500 to 1400°C.

第1項記載の方法や第1項記載の方法の適用において、
保温帯あるいは保温帯と加熱帯を設置する第3項記載の
方法を適用する場合に、鋳片の冷却に関わるプロセス情
報に基づき凝固計算を行ない、常に第1項記載の冷却速
度を推定し、その冷却速度が目標とする30℃/分以下
になるよう、2次冷却水量や鋳造速度、加熱帯を設置し
た場合はさらに加熱帯操業条件を制御する方法を組合せ
ることにより、先にも述べたように安定で確実な緩冷却
を実現し、被削性が高位安定した低次硫黄系快削鋼の製
造が可能となる。
In applying the method described in paragraph 1 or the method described in paragraph 1,
When applying the method described in Section 3 of installing a heat insulation zone or a heat insulation zone and a heating zone, perform solidification calculations based on process information related to cooling of the slab, and always estimate the cooling rate described in Section 1. In order to keep the cooling rate below the target of 30°C/min, as mentioned above, by combining methods to control the amount of secondary cooling water, casting speed, and if a heating zone is installed, the operating conditions of the heating zone. As described above, stable and reliable slow cooling can be achieved, making it possible to manufacture low-order sulfur-based free-cutting steel with highly stable machinability.

実施例 以下に実施例を挙げて説明する。第1図に示す弯曲型試
験?!!鋳機を用いて、2次冷却帯以降に設けた保温帯
、加熱帯により鋳片を保温、加熱する緩冷却試験を低置
硫黄快削鋼(90M23相当鋼)で行なった。鋳片サイ
ズは182m■厚・ 162厘層幅とし、タンディツシ
ュ誘導加熱装ごを用いて、タンディツシュ溶鋼過熱度を
30〜40℃の範囲に制御した0本試験材の硬質介在物
評点を拳で第4図中に示す。
Examples Examples will be given and explained below. Curved test shown in Figure 1? ! ! Using a casting machine, a slow cooling test was conducted on low-lying sulfur free-cutting steel (steel equivalent to 90M23), in which the slab was kept warm and heated using a heat insulation zone and a heating zone provided after the secondary cooling zone. The slab size was 182 m thick and 162 mm layer width, and the hard inclusions rating of the test material was measured using a tanditsu induction heating device and the degree of superheating of the molten steel was controlled within the range of 30 to 40°C. Shown in Figure 4.

本試験材の硬質介在物評点は従来のタンディツシュ溶鋼
過熱度と硬質介在物評点の関係を示す範囲にあり、溶鋼
過熱度が10℃未満の場合に比べ、硬質介在物評点は大
幅に改善されている。
The hard inclusion score of this test material is within the range that shows the relationship between the conventional tandish molten steel superheat degree and the hard inclusion score, and the hard inclusion score is significantly improved compared to when the molten steel superheat degree is less than 10°C. There is.

また、本綴冷却試験で製造された鋳片1/4厚部におけ
るにnSのサイズ測定結果を第3図に拳で示す、第3図
より明らかなように、2次冷却帯以降の保温、加熱によ
り1500〜1400℃間の冷却速度(Ro)が30℃
/分以下に低下した本試験材では、MnSサイズが65
鉢ml程度まで増大し、Oで示した緩冷却をしなかった
場合の平均サイズ45ルゴに比べ大幅に増大している。
In addition, the size measurement results of nS in the 1/4 thick part of the slab produced in the Honzumi cooling test are shown in Figure 3 as a fist.As is clear from Figure 3, the heat retention after the secondary cooling zone, Cooling rate (Ro) between 1500 and 1400℃ by heating is 30℃
In this test material, the MnS size decreased to less than 65 min.
The size has increased to about 1 ml per pot, which is significantly larger than the average size of 45 rugs without slow cooling, as indicated by O.

さらに1本試験材を80φに圧延し調査した成品の被削
性調査結果を、タンディツシュ溶鋼加熱度が5℃と40
℃で鋳造された非緩冷却材の被削性と比較して第5図に
示す、第5図よりタンディツシュ溶鋼加熱度30〜40
℃の範囲に制御し、緩冷却を行なった本試験材で最も良
好な被削性が得られており、特にタンディツシュ溶鋼加
熱度が5℃の非緩冷却材と比較すると、本発明により大
幅な被削性の改善が可能なことが判る。
Furthermore, one test material was rolled to 80φ, and the results of the machinability investigation of the finished product were shown as follows:
Fig. 5 shows a comparison with the machinability of non-slow cooling material cast at ℃.
The best machinability was obtained with this test material, which was cooled slowly and controlled within the temperature range of It is clear that machinability can be improved.

発明の効果 以上詳述したように、本発明により連続鋳造法による低
次硫黄系快削鋼の製造において、被削性に有害な硬質介
在物の低減と、凝固過程の特定温度域における冷却速度
を十分低下し、効果的にMJIS粒の大型化を確実に行
なうことにより、被削性の優れた硫黄系快削鋼を安定し
て製造することが可能となる。
Effects of the Invention As detailed above, the present invention reduces hard inclusions harmful to machinability and improves the cooling rate in a specific temperature range during the solidification process in the production of low-order sulfur free-cutting steel by continuous casting. By sufficiently reducing the MJIS grain size and effectively increasing the size of the MJIS grains, it becomes possible to stably produce sulfur-based free-cutting steel with excellent machinability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念図および実施例に用いた弯曲型の
試験連Pj機の概要図である。第2図は冷却中のMn3
粒サイズの変化とMnSサイズの関係図である。第3図
は種々の断面サイズの鋳片における鋳片内の1500〜
1400℃間の冷却速度(Ro)とMJISサイズの関
係を示し、実施例で確認した本発明によるMnS粒の大
型化効果を示す図である。第4図はタンディツシュ溶鋼
過熱度と硬質介在物評点の関係を示す図であり、図中に
は本発明実施例の硬質介在物レベルが示されている。第
5図は本発明による被削性改善効果を示す図である。第
6図は請求項1の冷却速度を規定する鋳片自位置を示す
説明図である。 1φ・・誘導加熱装置、2−拳・タンディツシュ、3・
−・鋳型、4・・・電磁攪拌装置、5・・・2次冷却帯
、6・・・保温帯、7参φ・加熱帯、8−・・ビンチロ
ール帯、9・・−鋳片。
FIG. 1 is a conceptual diagram of the present invention and a schematic diagram of a curved test series PJ machine used in an example. Figure 2 shows Mn3 during cooling.
FIG. 3 is a diagram showing the relationship between changes in grain size and MnS size. Figure 3 shows the 1,500~
FIG. 3 is a diagram showing the relationship between the cooling rate (Ro) at 1400° C. and the MJIS size, and showing the effect of increasing the size of MnS grains according to the present invention, which was confirmed in Examples. FIG. 4 is a diagram showing the relationship between the degree of superheating of molten steel and the hard inclusion rating, and the hard inclusion level in the example of the present invention is shown in the diagram. FIG. 5 is a diagram showing the machinability improvement effect of the present invention. FIG. 6 is an explanatory diagram showing the position of the slab that defines the cooling rate of claim 1. 1φ...induction heating device, 2-fist/tandish, 3-
-Mold, 4...Electromagnetic stirrer, 5...Secondary cooling zone, 6...Heating zone, 7. φ/heating zone, 8--Vinch roll zone, 9...-Slab.

Claims (5)

【特許請求の範囲】[Claims] (1)硫黄系快削鋼の連続鋳造工程において、タンディ
ッシュの溶鋼過熱度を10℃以上とし、鋳片幅中央の断
面内および鋳片厚み中央の断面内の鋳片表面と鋳片断面
中心の中間点において、1500℃以下の少なくとも1
500〜1400℃間の温度域における冷却速度を30
℃/分以下とすることを特徴とする快削鋼の連続鋳造方
法。
(1) In the continuous casting process of sulfur-based free-cutting steel, the degree of superheating of the molten steel in the tundish is set to 10℃ or higher, and the slab surface and the slab cross-sectional center within the cross section at the center of the slab width and the cross section at the center of the slab thickness. At least 1 below 1500℃ at the midpoint of
The cooling rate in the temperature range between 500 and 1400℃ is 30
A continuous casting method for free-cutting steel, characterized in that the casting speed is less than ℃/min.
(2)タンディッシュの溶鋼過熱度を10℃以上に制御
するため誘導加熱装置をタンディッシュに設けた請求項
1記載の快削鋼の連続鋳造方法。
(2) The continuous casting method for free-cutting steel according to claim 1, wherein the tundish is provided with an induction heating device for controlling the degree of superheating of the molten steel in the tundish to 10° C. or higher.
(3)連鋳機の機内の2次冷却帯以降に加熱帯または保
温帯と加熱帯を設け、鋳片を加熱あるいは保温、加熱し
て鋳片内の冷却速度を低減する方法を組合せる請求項1
記載の方法。
(3) A request for combining a method of installing a heating zone or a heat-retaining zone and a heating zone after the secondary cooling zone inside the continuous casting machine to heat the slab, keep it warm, or heat the slab to reduce the cooling rate inside the slab. Item 1
Method described.
(4)タンディッシュの溶鋼過熱度(あるいは溶鋼温度
)、鋳型冷却水量および鋳型冷却水の温度変化、2次冷
却水量等の1次、2次冷却操業条件、雰囲気温度、鋳片
サイズおよび鋳造速度からなるプロセス情報に基づき凝
固計算を行ない、冷却速度が30℃/分以下になるよう
2次冷却水量および鋳造速度を制御する方法を組合せる
請求項1記載の方法。
(4) Primary and secondary cooling operating conditions such as tundish molten steel superheating degree (or molten steel temperature), mold cooling water amount and mold cooling water temperature change, secondary cooling water amount, ambient temperature, slab size, and casting speed 2. The method according to claim 1, further comprising performing a solidification calculation based on process information consisting of the following: and controlling the amount of secondary cooling water and the casting speed so that the cooling rate is 30° C./min or less.
(5)タンディッシュの溶鋼過熱度(あるいほ溶鋼温度
)、鋳型冷却水量および鋳型冷却水の温度変化、2次冷
却水量等の1次、2次冷却操業条件、保温帯の保温能力
および加熱帯の操業条件、雰囲気温度、鋳片サイズおよ
び鋳造速度からなるプロセス情報に基づき凝固計算を行
ない、冷却速度が30℃/分以下になるよう2次冷却水
量、鋳造速度および加熱帯操業条件を制御する方法を組
合せる請求項1記載の方法。
(5) Degree of superheating of the molten steel in the tundish (in other words, molten steel temperature), the amount of mold cooling water and temperature changes in the mold cooling water, the primary and secondary cooling operating conditions such as the amount of secondary cooling water, the heat retention capacity of the heat insulation zone, and the temperature change of the mold cooling water. Solidification calculations are performed based on process information consisting of tropical operating conditions, ambient temperature, slab size, and casting speed, and secondary cooling water volume, casting speed, and heating zone operating conditions are controlled so that the cooling rate is 30°C/min or less. The method according to claim 1, which combines the methods of:
JP30790588A 1988-12-07 1988-12-07 Continuous casting of free-cutting steel Expired - Lifetime JP2747708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30790588A JP2747708B2 (en) 1988-12-07 1988-12-07 Continuous casting of free-cutting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30790588A JP2747708B2 (en) 1988-12-07 1988-12-07 Continuous casting of free-cutting steel

Publications (2)

Publication Number Publication Date
JPH02155548A true JPH02155548A (en) 1990-06-14
JP2747708B2 JP2747708B2 (en) 1998-05-06

Family

ID=17974583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30790588A Expired - Lifetime JP2747708B2 (en) 1988-12-07 1988-12-07 Continuous casting of free-cutting steel

Country Status (1)

Country Link
JP (1) JP2747708B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103010A (en) * 2000-10-03 2002-04-09 Kawasaki Steel Corp Method for producing cast billet having good machinability in center part
KR100489021B1 (en) * 2000-06-28 2005-05-11 주식회사 포스코 A method for manufacturing high tensile high toughness steel having superior internal quality
JP2009120955A (en) * 2008-12-19 2009-06-04 Nippon Steel Corp Steel excellent in machinability and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489021B1 (en) * 2000-06-28 2005-05-11 주식회사 포스코 A method for manufacturing high tensile high toughness steel having superior internal quality
JP2002103010A (en) * 2000-10-03 2002-04-09 Kawasaki Steel Corp Method for producing cast billet having good machinability in center part
JP4631145B2 (en) * 2000-10-03 2011-02-16 Jfeスチール株式会社 Method for producing a slab with good machinability at the center
JP2009120955A (en) * 2008-12-19 2009-06-04 Nippon Steel Corp Steel excellent in machinability and production method therefor

Also Published As

Publication number Publication date
JP2747708B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP3058079B2 (en) Steel continuous casting method
JP2018503741A (en) Lean duplex stainless steel and manufacturing method thereof
JP2016028827A (en) Steel continuous casting method
US4255187A (en) Bismuth-containing steel
JPH02155548A (en) Method for continuously casting free cutting steel
US4738301A (en) Method for mitigating solidification segregation of steel
KR101412537B1 (en) Reducing method of crack for addition of boron high-carbon steel
JPH04313454A (en) Continuous casting method
JP2593385B2 (en) Continuous casting method
KR100969806B1 (en) A method for controling ?-ferrite distribution in slab of stainless 304
JPH04313453A (en) Continuous casting method
KR101344896B1 (en) Device for predicting edge defect of hot-rolled steel sheet coil and method therefor
JPS61193756A (en) Production of continuously cast ingot having good surface characteristic
JPH0577012A (en) Production of sulfur-based free cutting steel excellent in machinability
KR100544430B1 (en) A method for manufacturing continuous casting slab of high nickel containing alloy
JPH02141561A (en) Continuously cast billet of steel
KR20010073236A (en) Method for continuously casting duplex stainless steel
JPH04279264A (en) Continuous casting method
KR20010040438A (en) A continuous casting method of austenitic stainless steel containing high si content
JPH0360572B2 (en)
JPH05220554A (en) Continuous casting method
JPH06246404A (en) Tundish for continuous casting
KR20020040435A (en) continuous casting method of stainless steel for decresing surface defect
KR20120072497A (en) Twin roll strip caster for manufacturing martensitic stainless strip with excellent edge quality and strip casting process
JPS61193757A (en) Production of continuously cast slab having good surface characteristic

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11