JPH0360572B2 - - Google Patents

Info

Publication number
JPH0360572B2
JPH0360572B2 JP59274351A JP27435184A JPH0360572B2 JP H0360572 B2 JPH0360572 B2 JP H0360572B2 JP 59274351 A JP59274351 A JP 59274351A JP 27435184 A JP27435184 A JP 27435184A JP H0360572 B2 JPH0360572 B2 JP H0360572B2
Authority
JP
Japan
Prior art keywords
segregation
phase
weight
less
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59274351A
Other languages
Japanese (ja)
Other versions
JPS61157612A (en
Inventor
Yoshuki Uejima
Nobuyuki Komatsu
Shozo Mizoguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27435184A priority Critical patent/JPS61157612A/en
Priority to DE8585309473T priority patent/DE3579138D1/en
Priority to EP85309473A priority patent/EP0186512B1/en
Publication of JPS61157612A publication Critical patent/JPS61157612A/en
Priority to US07/201,370 priority patent/US4809765A/en
Publication of JPH0360572B2 publication Critical patent/JPH0360572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鋼の凝固偏析制御法に係り、更に詳
しくは連続鋳造によつて得られる炭素鋼成品鋼材
の材質欠陥の原因となる凝固偏析を軽減する方法
に関し、特に鋼の凝固時の樹間の重複偏析を効果
的に制御する方法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for controlling solidification segregation of steel, and more specifically, to reducing solidification segregation that causes material defects in carbon steel products obtained by continuous casting. The present invention relates to a method for effectively controlling the double segregation between trees during solidification of steel.

従来の技術 従来より連続鋳造や造塊においては、凝固時溶
質の偏析によつて、鋳片の表面疵や割れが生ずる
だけでなく、さらに、厚板等の製品板に加工した
際、低温靭性の劣化、溶接部の割れの増加など成
品の品質が悪化するため、その改善が望まれてい
た。
Conventional technology Traditionally, continuous casting and ingot making have not only caused surface flaws and cracks in slabs due to segregation of solutes during solidification, but also caused problems with low-temperature toughness when processed into product plates such as thick plates. Improvements have been desired since the quality of the product deteriorates, such as deterioration of the parts and increase of cracks in the welded parts.

これらの改善方法としては、溶鋼へCaを添加
する方法、精錬によつて、有害な偏析の原因とな
る溶質を予め低減させておく方法、連続鋳造機の
ロール間隙を短くしバルジングを抑え、又は電磁
撹拌によつて中心偏析を軽減する方法などが行わ
れている。
These improvement methods include adding Ca to molten steel, reducing solutes that cause harmful segregation through refining, shortening the gap between the rolls of a continuous casting machine to suppress bulging, and Methods such as electromagnetic stirring to reduce center segregation are being used.

又、省エネルギー、省力化の点から、連続鋳造
片を室温まで冷やすことなく、熱間圧延する直接
圧延ないしは加熱炉に装入した後圧延するホツト
チヤージ圧延において、圧延時の鋳片の表面割れ
を防止するため、溶融凝固に引き続く冷却過程
中、熱間圧延開始までの間を超緩冷却を施す鋳片
の表面割れ抑制法も提案されている(特開昭55−
84203)。
In addition, from the point of view of energy saving and labor saving, it is possible to prevent surface cracking of the continuously cast slab during rolling in direct rolling where the continuously cast slab is hot rolled without cooling it to room temperature or in hot charge rolling where the slab is charged into a heating furnace and then rolled. Therefore, a method for suppressing surface cracks in cast slabs has been proposed in which ultra-slow cooling is performed during the cooling process following melt solidification and before the start of hot rolling (Japanese Patent Laid-Open No. 1983-1999).
84203).

上記方法は、熱間加工性に有害なP、S、O、
N等の元素の偏析により、非金属介在物として析
出を生じる特定の温度域でシミユレーシヨン実験
を行い、1300〜900℃温度域で断面収縮率の最小
値が60%未満になると表面割れが多発することに
着目し、これらの元素の析出形態を制御すること
により鋳片の熱間割れ抑制を行うものである。
In the above method, P, S, O, which is harmful to hot workability,
Simulation experiments were conducted in a specific temperature range where elements such as N precipitate as nonmetallic inclusions due to segregation, and surface cracks occur frequently when the minimum cross-sectional shrinkage rate is less than 60% in the 1300-900℃ temperature range. Focusing on this, hot cracking of slabs is suppressed by controlling the precipitation form of these elements.

又、特開昭55−109503、同55−110724号公報に
おいても、同様に連続鋳造鋳片を熱間圧延前に徐
冷却し、直接圧延する方法が開示されている。
Further, Japanese Patent Laid-Open Nos. 55-109503 and 55-110724 also disclose a method in which continuous cast slabs are slowly cooled before hot rolling and then directly rolled.

一方、特公昭49−6074号公報においては連続鋳
造ストランドの処理において、表面と中心液体と
の温度差が大きくなりすぎないよう、冷却、加熱
を行い割れの防止を行う方法が開示されている。
On the other hand, Japanese Patent Publication No. 49-6074 discloses a method of preventing cracks by cooling and heating the continuously cast strand in order to prevent the temperature difference between the surface and the center liquid from becoming too large.

さらに、Mo添加による大型鋼塊の逆V偏析抑
制方法も開示されている(日本製鋼所枝報、40
(1980)p.1)。この方法は固液共存層においては、
密度の低い溶質が液相に富化しているため、バル
クの液相に比べてこの部分の液相の密度が低下
し、そのため上昇方向の対流が生じ、この上昇線
が凝固後もストリークとして残り、逆V偏析とな
つているため、Moを添加して上記液相の密度を
増加させ、上昇方向の対流を阻止することによつ
て逆V偏析を抑制しようとする方法である。
Furthermore, a method for suppressing inverted V segregation in large steel ingots by adding Mo is also disclosed (Japan Steel Works Newsletter, 40
(1980) p.1). In this method, in the solid-liquid coexistence layer,
Because low-density solutes are enriched in the liquid phase, the density of the liquid phase in this part is lower than that of the bulk liquid phase, resulting in upward convection, and this rising line remains as a streak even after solidification. , there is inverted V segregation, so this method attempts to suppress inverted V segregation by adding Mo to increase the density of the liquid phase and blocking convection in the upward direction.

発明が解決しようとする問題点 本発明者は、鋳片品質悪化が単なる凝固偏析の
量のみによるものではなく、α安定化元素(P、
Si、S、Cr、Nb、V、Mo等)とγ安定化元素
(C、Mn、Ni等)とが同一部分に濃化されるこ
とによつて偏析の重複による相乗的悪影響が一層
著しくなることに着目し、又、これらα安定化元
素とγ安定化元素とがδ相とγ相において溶解度
に差異のあることに着目し、これらの溶質分離に
有効な方法を提供しようとするものである。
Problems to be Solved by the Invention The present inventors have discovered that the deterioration of slab quality is not simply due to the amount of solidification segregation, but also that α stabilizing elements (P,
When γ-stabilizing elements (Si, S, Cr, Nb, V, Mo, etc.) and γ-stabilizing elements (C, Mn, Ni, etc.) are concentrated in the same area, the synergistic negative effects due to overlapping segregation become even more significant. This paper focuses on the difference in solubility between these α-stabilizing elements and γ-stabilizing elements in the δ and γ phases, and attempts to provide an effective method for separating these solutes. be.

特に本発明が対象とする連鋳材においては、 鋳片寸法が小さく凝固時間が短かいこと、 冷却速度が大きいため、凝固時間が短かいこ
と、 浸漬ノズルから吐出した溶鋼流により、凝固
中の溶鋼の撹拌が促進され、濃縮した液相は均
一化しやすいこと、 から逆V偏析は殆んど発生せず、むしろ樹間偏析
とその集積によつて生じる中心偏析が主たる問題
点となつているため、本発明は、連続鋳造を行な
う際に鋼の凝固偏析における樹間偏析および中心
偏析について特に有効な抑制法を提供しようとす
るものである。
In particular, the continuous casting materials targeted by the present invention have the following problems: the slab size is small and the solidification time is short; the cooling rate is high, so the solidification time is short; and the molten steel flow discharged from the immersion nozzle slows down the solidification process. Since stirring of molten steel is promoted and the concentrated liquid phase is easily homogenized, inverted V segregation hardly occurs, but rather center segregation caused by inter-tree segregation and its accumulation is the main problem. Therefore, the present invention aims to provide a particularly effective method for suppressing interdendritic segregation and center segregation in solidification segregation of steel during continuous casting.

問題点を解決するための手段 本発明は、 (1) C濃度0.53重量%以下を含む炭素鋼の連続鋳
造において、溶鋼中に、Be、Cr、Nb、Sn、
Ti、又はVを少なくとも1種または2種以上、
Beについては1.4重量%以下、Snについては0.5
重量%以下、Be、Sn以外についてはそれぞれ
2重量%以下添加したのち、融点直下(δ相初
晶発生時)からAr4変態あるいは包晶反応の終
了温度まで(γ相になるまで)の温度範囲を40
℃/分以下の冷却速度で冷却することを特徴と
する連続鋳造における鋼の凝固偏析制御法、及
び (2) C濃度0.53重量%以下を含む炭素鋼の連続鋳
造において、溶鋼中に、Be、Cr、Nb、Sn、
Ti、又はVを少なくとも1種または2種以上、
Beについては1.4重量%以下、Snについては0.5
重量%以下、Be、Sn以外についてはそれぞれ
2重量%以下添加し、さらにMo2重量%以下
を添加したのち、融点直下(δ相初晶発生時)
からAr4変態あるいは包晶反応の終了温度まで
(γ相になるまで)の温度範囲を40℃/分以下
の冷却速度で冷却することを特徴とする連続鋳
造における鋼の凝固偏析制御法、である。
Means for Solving the Problems The present invention provides: (1) In continuous casting of carbon steel containing a C concentration of 0.53% by weight or less, Be, Cr, Nb, Sn,
At least one or two or more of Ti or V,
1.4% by weight or less for Be, 0.5% for Sn
After adding 2% by weight or less of each other than Be and Sn, the temperature is from just below the melting point (when δ phase primary crystals occur) to the end temperature of Ar 4 transformation or peritectic reaction (until it becomes γ phase). range to 40
A method for controlling the solidification segregation of steel in continuous casting characterized by cooling at a cooling rate of ℃/min or less, and (2) in continuous casting of carbon steel containing a C concentration of 0.53% by weight or less, Be, Cr, Nb, Sn,
At least one or two or more of Ti or V,
1.4% by weight or less for Be, 0.5% for Sn
After adding 2% by weight or less for each other than Be and Sn, and further adding 2% by weight or less of Mo2, just below the melting point (when δ phase primary crystals occur)
A method for controlling solidification segregation of steel in continuous casting, characterized by cooling at a cooling rate of 40 °C/min or less over the temperature range from be.

作 用 溶融状態にある鋼は冷却されて温度が低下する
に従つて固相が晶出するが、その状態変化と炭素
温度との関係を第1図に示した。炭素濃度が0.17
〜0.53%(重量%、以下同じ。)の間にある鋼は
冷却により液相(直線1より上の域)から(液相
+δ相)を経て1495℃(図の直線3)以下で(液
相+γ相)に変化し、さらに冷却が進んで直線6
以下の温度で全てγ相になる。変態温度1495℃を
境にして液相とδ相の界面において(液相+δ
相)→(γ相)に変化する反応、いわゆる包晶反
応を利用して、α安定化元素であるP、Si、S、
Cr等、特に問題となるPとSとを溶解度の高い
δ相中に取りこみ、γ安定化元素であるC、
Mn、Ni、特にMnを溶解度の高いγ相中に取り
こむ。さらに冷却が進んで全量がγ相に達したと
きに、最も遅れてγ相に変態した部分に、上記の
α安定化元素が偏在する。その結果例えばPの濃
度のピークの存在する部分は、Mnの濃度のピー
クの存在する部分と分離され、PとMnの重複偏
析が避けられる。
Effect Steel in a molten state is cooled and as the temperature decreases, a solid phase crystallizes out. Figure 1 shows the relationship between the change in state and the carbon temperature. Carbon concentration is 0.17
Steel with a concentration between ~0.53% (weight%, the same applies hereinafter) changes from the liquid phase (area above line 1) to (liquid phase + δ phase) by cooling to (liquid phase) below 1495℃ (line 3 in the figure). phase + γ phase), and further cooling progresses to form straight line 6.
All become γ phase at the following temperatures. At the interface between the liquid phase and the δ phase (liquid phase + δ
Using the so-called peritectic reaction, which changes from phase) to (γ phase), α-stabilizing elements P, Si, S,
By incorporating P and S, which are particularly problematic, such as Cr into the δ phase, which has high solubility, C, which is a γ stabilizing element,
Incorporate Mn, Ni, especially Mn into the highly soluble γ phase. When the cooling progresses further and the total amount reaches the γ phase, the above-mentioned α stabilizing element is unevenly distributed in the portion that is transformed into the γ phase the latest. As a result, for example, a portion where a peak concentration of P exists is separated from a portion where a peak concentration of Mn exists, and overlapping segregation of P and Mn is avoided.

炭素含量が0〜0.08%の鋼においては、冷却に
より液相→(液相+δ相)→δ相→γ相になる。
この場合δ相からγ相への変態はAr4変態と呼ば
れ、第1図の直線4の温度ではじまり、直線5の
温度まで続く。この間Ar4変態域において、δ相
とγ相が共存することを利用して前記α安定化元
素とγ安定化元素を、溶解度の差を利用して分離
させる。例えばδ相にPを、γ相にMnを移行さ
せる。さらに冷却が進んで全量がγ相に変化した
ときにも最も遅れてγ相に変態した部分に前記の
α安定化元素が偏在する。その結果、例えばP濃
度のピークの存在する部分は、Mn濃度のピーク
の存在する部分と分離され、PとMnの重複偏析
が避けられる。
In steel with a carbon content of 0 to 0.08%, cooling changes the phase from liquid phase to (liquid phase + δ phase) to δ phase to γ phase.
In this case, the transformation from the δ phase to the γ phase is called Ar 4 transformation, which begins at the temperature of line 4 in FIG. 1 and continues up to the temperature of line 5. During this time, in the Ar 4 transformation region, the α-stabilizing element and the γ-stabilizing element are separated by utilizing the difference in solubility by utilizing the coexistence of the δ phase and the γ phase. For example, P is transferred to the δ phase and Mn is transferred to the γ phase. Even when the cooling progresses further and the entire amount changes to the γ phase, the α stabilizing element is unevenly distributed in the portion that transformed to the γ phase most late. As a result, for example, a portion where a P concentration peak exists is separated from a portion where a Mn concentration peak exists, and overlapping segregation of P and Mn can be avoided.

炭素濃度が0.08%〜0.17%の鋼については、前
述の包晶反応とAr4変態における分離を共に利用
することができる。
For steels with a carbon concentration of 0.08% to 0.17%, both the aforementioned peritectic reaction and the separation in Ar4 transformation can be utilized.

ここで、本発明者はα安定化元素であるBe、
Cr、Mo、Nb、Sn、Ti又はVの1種又は2種以
上を溶鋼中に添加すると、第1図の状態図におけ
るδ相(=α相)領域が拡大することを見出し
た。
Here, the inventors believe that Be, which is an α-stabilizing element,
It has been found that when one or more of Cr, Mo, Nb, Sn, Ti, or V is added to molten steel, the δ phase (=α phase) region in the phase diagram of FIG. 1 expands.

一般に、固体鉄中の不純物あるいは添加元素の
拡散速度は、δ相内においては、γ相内における
よりも10〜100倍も大である(及川 洪;鉄と鋼
Vol.68(1982)、p.1489)。そのため、鋼の凝固過
程においてδ相の量と存在時間が増すと、それだ
け高濃度の偏析部から周辺の低濃度部への拡散速
度が増し偏析を軽減できる。
Generally, the diffusion rate of impurities or additive elements in solid iron is 10 to 100 times higher in the δ phase than in the γ phase (Hiroshi Oikawa; Iron and Steel
Vol. 68 (1982), p. 1489). Therefore, as the amount and presence time of the δ phase increases during the solidification process of steel, the rate of diffusion from the high concentration segregation area to the surrounding low concentration area increases accordingly, making it possible to reduce segregation.

さらに、第2図に示すごとくα安定化元素を添
加すると、無添加の場合に比し、樹枝状晶部分に
おけるδ相領域が増加する結果、δ相とγ相とが
共存する領域が拡がり、包晶反応率あるいはAr4
変態率(あわせてδ→γ変態率と呼ぶ)が増大
し、δ相とγ相への溶解度の差によつて生じるα
安定化元素(例、P)とγ安定化元素(例、
Mn)の分離が促進されるため、樹間21におけ
る重複偏析を軽減することができる。
Furthermore, as shown in Figure 2, when an α-stabilizing element is added, the δ-phase region in the dendrite portion increases compared to the case without addition, and as a result, the region where the δ-phase and γ-phase coexist expands. Peritectal reaction rate or Ar 4
The transformation rate (together referred to as δ → γ transformation rate) increases, and α occurs due to the difference in solubility between the δ and γ phases.
Stabilizing elements (e.g., P) and γ-stabilizing elements (e.g.,
Since the separation of Mn) is promoted, overlapping segregation in the tree 21 can be reduced.

すなわち第2図1,2は溶鋼の凝固中の樹枝状
晶内のδ相とγ相の存在領域を示す模式図で、1
はα安定化元素無添加の場合、2はα安定化元素
を添加した場合である。図においてδ→γ変態率
は式 f〓=(B/A)2 で表わされ、α安定化元素添加においてδ→γ変
態率が増大することが明らかである。
In other words, Figures 1 and 2 are schematic diagrams showing the regions in which δ and γ phases exist in dendrites during solidification of molten steel.
2 is the case where no α-stabilizing element is added, and 2 is the case where the α-stabilizing element is added. In the figure, the δ→γ transformation rate is expressed by the formula f = (B/A) 2 , and it is clear that the δ→γ transformation rate increases with the addition of the α stabilizing element.

本発明において、Be、Cr、Nb、Sn、Ti、V、
又はMoの1種又は2種以上を溶鋼中に、Beにつ
いては1.4重量%以下、Snについては0.5重量%以
下、Be、Sn以外については2重量%以下添加す
る。Be及びSnの場合の限定理由は実施例で説明
する。Be、Sn以外については2重量%を超えた
場合でも偏析軽減には有効であるが、コスト高に
なる。又、下限は特に限定するものではないが、
0.005%ですでに有効なことを本発明者は確認し
ている。
In the present invention, Be, Cr, Nb, Sn, Ti, V,
Alternatively, one or more types of Mo are added to the molten steel, with Be at most 1.4% by weight, Sn at most 0.5% by weight, and elements other than Be and Sn at most 2% by weight. The reason for the limitation in the case of Be and Sn will be explained in Examples. For other than Be and Sn, even if the content exceeds 2% by weight, it is effective in reducing segregation, but it increases the cost. Also, the lower limit is not particularly limited, but
The inventor has confirmed that it is already effective at 0.005%.

又、本発明はC濃度が0、又は限りなく0に近
い場合、たとえば0.001%程度においても有効で
ある。
Further, the present invention is effective even when the C concentration is 0 or extremely close to 0, for example, about 0.001%.

添加方法は特に限定するものではなく、従来の
合金元素添加の方法、たとえば合金鉄投下法、イ
ンジエクシヨン法、弾発射法、ワイヤー添加法な
どが使用可能である。
The method of addition is not particularly limited, and conventional methods for adding alloy elements, such as the ferroalloy dropping method, injection method, bullet firing method, wire addition method, etc., can be used.

本発明方法では融点直下(δ相初晶発生時)か
らAr4変態あるいは包晶反応の終了温度まで(γ
相になるまで)の温度範囲での冷却速度を40℃/
分以下とすることにより、偏析軽減および重複偏
析の分離促進の面でさらに優れた効果が得られ
る。γ相になれば直ちに30℃/分以上で約1000℃
まで冷却すると、δ→γ変態時に生じた偏析ピー
クの分離状態を常温まで保持できる(特願昭59−
21940号)。
In the method of the present invention, from just below the melting point (when δ phase primary crystals occur) to the end temperature of Ar 4 transformation or peritectic reaction (γ
cooling rate in the temperature range of 40℃/
By making it less than 1 minute, even better effects can be obtained in terms of reducing segregation and promoting separation of double segregation. Immediately after entering the γ phase, heat to approximately 1000°C at a rate of 30°C/min or more.
By cooling to
No. 21940).

実施例 次に、本発明の実施例を第3〜4図により説明
する。第3図は合金元素濃度(重量%)と1300℃
まで冷却したときの樹間のMn偏析度のグラフで
あり、第4図は合金元素濃度(重量%)と1300℃
まで冷却したときの樹間のP偏析度のグラフであ
る。
Embodiment Next, an embodiment of the present invention will be described with reference to FIGS. 3 and 4. Figure 3 shows alloying element concentration (weight%) and 1300℃
Figure 4 is a graph of the degree of Mn segregation between trees when cooled to 1300°C.
It is a graph of the degree of P segregation between trees when cooled to .

鋼の成分はC0.15%、Si0.2%、Mn1.0%、
P0.012%であり、連続鋳造における凝固偏析をシ
ミユレートするため、27℃/分の冷却速度で一方
向凝固実験を行い、EPMAで二次元(面)分析
を行つた結果を示したものである。
The composition of steel is C0.15%, Si0.2%, Mn1.0%,
P0.012%, in order to simulate solidification segregation in continuous casting, a unidirectional solidification experiment was conducted at a cooling rate of 27°C/min, and two-dimensional (area) analysis was performed using EPMA. .

Mn0及びP0は夫々MnとPの平均濃度を示し、
樹間偏析度は樹間におけるMnとPの濃度をMN0
及びP0で割つた値である。
Mn 0 and P 0 indicate the average concentrations of Mn and P, respectively;
The degree of inter-tree segregation is defined as the concentration of Mn and P between trees .
and P divided by 0 .

ここで、Beは他の合金元素と異なつた傾向を
示す。すなわち、その添加とともにMn及びPの
樹間における偏析は低下するが、濃度0.2重量%
でMn、Pともに偏析度が最少となり、Pの場合
は負偏析となる。さらに添加すると、MnもPも
また樹間に偏析する傾向が強くなる。最初溶鋼に
添加したときの平均濃度を偏析度1とすると、偏
析度が1を越えることは特にPの場合好ましくな
い。Pと比べてMnの樹間偏析による悪影響は許
容し得るが、それでも樹間偏析度1.05以下が許容
範囲である。第3図よりMn偏析度1.05に対する
Be濃度が1.7重量%、第4図よりP偏析度1.0に対
するBe濃度が1.4重量%であることから、Be添加
量は1.4%以下とするのが好ましい。
Here, Be exhibits a tendency different from other alloying elements. In other words, the segregation of Mn and P in trees decreases with the addition of Mn and P, but at a concentration of 0.2% by weight,
In this case, both Mn and P have the lowest degree of segregation, and in the case of P, the degree of segregation is negative. If further added, both Mn and P have a strong tendency to segregate between trees. If the average concentration when initially added to molten steel is defined as a degree of segregation of 1, it is not preferable for the degree of segregation to exceed 1, especially in the case of P. Although the adverse effects of Mn due to inter-tree segregation can be tolerated compared to P, an inter-dendrome segregation degree of 1.05 or less is still within the acceptable range. From Figure 3, for Mn segregation degree 1.05
Since the Be concentration is 1.7% by weight, and as shown in FIG. 4, the Be concentration for a P segregation degree of 1.0 is 1.4% by weight, the amount of Be added is preferably 1.4% or less.

一方、Snは、第3図及び第4図からもわかる
ように、その添加とともに炭素鋼の凝固偏析が軽
減され、この点では十分な効果が期待できる。し
かし、その濃度が0.5%を越えると、一般によく
知られたSn自身の粒界偏析によるマイナス効果
の方が優勢となり、逆に材質が損なわれて、割れ
等が発生しやすくなる。従つて、Snの濃度を0.5
%以下に限定する必要がある。
On the other hand, as can be seen from FIGS. 3 and 4, the addition of Sn reduces the solidification segregation of carbon steel, and a sufficient effect can be expected in this respect. However, when its concentration exceeds 0.5%, the generally well-known negative effects of Sn's own grain boundary segregation become dominant, and the material quality is adversely affected, making cracks more likely to occur. Therefore, the Sn concentration is 0.5
% or less.

発明の効果 実施例から、炭素鋼にBeを約1.4重量%以下、
Snを約0.5重量%以下、Cr、Nb、Ti、V、Moの
各元素を約2重量%以下添加したのち、この溶鋼
を融点直下(δ相初晶発生時)からAr4変態ある
いは包晶反応の終了温度まで(γ相になるまで)
の温度範囲を40℃/分以下の冷却速度で冷却する
ことにより、有害元素であるPの偏析度は大巾に
低下することが明らかである。一方、Mnは偏析
度の低下はPに比べて少ないが、その有効性は明
らかである。また、樹間のP偏析度が1以下で樹
間のMn偏析度が1以上である場合は、PとMn
の偏析ピークが完全に分離していることを表わし
ている。このように、α安定化元素を添加し、冷
却速度を規制することによつてPとMnの拡散と
分離を促進し、重複偏析を軽減すると共に偏析ピ
ーク値を減少させることができる。
Effects of the Invention From the examples, it was found that Be of about 1.4% by weight or less was added to carbon steel.
After adding approximately 0.5% by weight or less of Sn and approximately 2% by weight or less of each element of Cr, Nb, Ti, V, and Mo, the molten steel undergoes Ar 4 transformation or peritectic from just below the melting point (when δ phase primary crystals occur). Until the end temperature of the reaction (until it becomes γ phase)
It is clear that the degree of segregation of P, which is a harmful element, is significantly reduced by cooling at a cooling rate of 40°C/min or less in the temperature range of . On the other hand, although the degree of segregation of Mn decreases less than that of P, its effectiveness is clear. In addition, if the degree of P segregation between trees is 1 or less and the degree of Mn segregation between trees is 1 or more, P and Mn
This shows that the segregation peaks are completely separated. In this way, by adding the α stabilizing element and regulating the cooling rate, it is possible to promote the diffusion and separation of P and Mn, reduce double segregation, and reduce the segregation peak value.

以上、合金添加による樹間偏析の低下について
述べたが、合金添加によつて同時に中心偏析も軽
減する。
As mentioned above, the reduction in interdensity segregation due to the addition of alloys has been described, but the addition of alloys also reduces center segregation at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素鋼の状態図、第2図1及び第2図
2はα安定化元素添加による樹枝状晶内δ相安定
化の原理図、第3〜4図は本発明の実施例として
合金元素添加による偏析度変化を示すグラフであ
る。 20…樹芯、21…樹間。
Figure 1 is a phase diagram of carbon steel, Figures 2 1 and 2 are principle diagrams of stabilizing the δ phase in dendrites by the addition of α stabilizing elements, and Figures 3 and 4 are examples of the present invention. It is a graph showing a change in degree of segregation due to addition of alloying elements. 20...Tree core, 21...Tree space.

Claims (1)

【特許請求の範囲】 1 C濃度0.53重量%以下を含む炭素鋼の連続鋳
造において、溶鋼中に、Be、Cr、Nb、Sn、Ti、
又はVを少なくとも1種または2種以上、Beに
ついては1.4重量%以下、Snについては0.5重量%
以下、Be、Sn以外についてはそれぞれ2重量%
以下添加したのち、融点直下(δ相初晶発生時)
からAr4変態あるいは包晶反応の終了温度まで
(γ相になるまで)の温度範囲を40℃/分以下の
冷却速度で冷却することを特徴とする連続鋳造に
おける鋼の凝固偏析制御法。 2 C濃度0.53重量%以下を含む炭素鋼の連続鋳
造において、溶鋼中に、Be、Cr、Nb、Sn、Ti、
又はVを少なくとも1種または2種以上、Beに
ついては1.4重量%以下、Snについては0.5重量%
以下、Be、Sn以外についてはそれぞれ2重量%
以下添加し、さらにMo2重量%以下を添加した
のち、融点直下(δ相初晶発生時)からAr4変態
あるいは包晶反応の終了温度まで(γ相になるま
で)の温度範囲を40℃/分以下の冷却速度で冷却
することを特徴とする連続鋳造における鋼の凝固
偏析制御法。
[Claims] 1. In continuous casting of carbon steel containing a C concentration of 0.53% by weight or less, Be, Cr, Nb, Sn, Ti,
or at least one or more types of V, 1.4% by weight or less for Be, and 0.5% by weight for Sn
Below, other than Be and Sn are each 2% by weight.
After adding the following, just below the melting point (when δ phase primary crystals occur)
A method for controlling solidification segregation of steel in continuous casting, which is characterized by cooling at a cooling rate of 40°C/min or less over a temperature range from 4 to the end temperature of Ar 4 transformation or peritectic reaction (until it becomes γ phase). 2 In continuous casting of carbon steel containing a C concentration of 0.53% by weight or less, Be, Cr, Nb, Sn, Ti,
or at least one or more types of V, 1.4% by weight or less for Be, and 0.5% by weight for Sn
Below, other than Be and Sn are each 2% by weight.
After adding the following and further adding Mo2 wt% or less, the temperature range from just below the melting point (when δ phase primary crystals occur) to the end temperature of Ar 4 transformation or peritectic reaction (until it becomes γ phase) is increased by 40℃/ A method for controlling solidification segregation of steel in continuous casting, characterized by cooling at a cooling rate of less than 1 minute.
JP27435184A 1984-12-28 1984-12-28 Controlling method of solidification segregation of steel Granted JPS61157612A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27435184A JPS61157612A (en) 1984-12-28 1984-12-28 Controlling method of solidification segregation of steel
DE8585309473T DE3579138D1 (en) 1984-12-28 1985-12-24 METHOD FOR REGULATING STEEL SETTING AGAINST STEEL.
EP85309473A EP0186512B1 (en) 1984-12-28 1985-12-24 Method for controlling solidification segregation of steel
US07/201,370 US4809765A (en) 1984-12-28 1988-05-27 Method for controlling solidification segregation of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27435184A JPS61157612A (en) 1984-12-28 1984-12-28 Controlling method of solidification segregation of steel

Publications (2)

Publication Number Publication Date
JPS61157612A JPS61157612A (en) 1986-07-17
JPH0360572B2 true JPH0360572B2 (en) 1991-09-17

Family

ID=17540443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27435184A Granted JPS61157612A (en) 1984-12-28 1984-12-28 Controlling method of solidification segregation of steel

Country Status (1)

Country Link
JP (1) JPS61157612A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761537B2 (en) * 1986-12-15 1995-07-05 忠義 高橋 Refining method of metal solidification structure
JP5408585B2 (en) * 2009-07-03 2014-02-05 国立大学法人大阪大学 Grain refinement method for steel products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859018A (en) * 1971-11-29 1973-08-18
JPS53100121A (en) * 1977-02-14 1978-09-01 Kawasaki Steel Co Low alloy steel providing electric resistance welding part with good groove corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859018A (en) * 1971-11-29 1973-08-18
JPS53100121A (en) * 1977-02-14 1978-09-01 Kawasaki Steel Co Low alloy steel providing electric resistance welding part with good groove corrosion resistance

Also Published As

Publication number Publication date
JPS61157612A (en) 1986-07-17

Similar Documents

Publication Publication Date Title
JPS61103654A (en) Method of controlling condition of continuous casting
EP0027510B1 (en) Bismuth containing steel
JPH11504266A (en) Steel strip casting
US4247326A (en) Free machining steel with bismuth
US4738301A (en) Method for mitigating solidification segregation of steel
JPH0360572B2 (en)
JPS61154748A (en) Method for controlling solidification segregation of continuous casting steel ingot
EP0186512B1 (en) Method for controlling solidification segregation of steel
JPH01262048A (en) Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation
JPS59226117A (en) Production of fe-high ni alloy slab
JP2747708B2 (en) Continuous casting of free-cutting steel
JPH03210950A (en) Powder for continuous casting
JPS5911381B2 (en) Continuous casting method for Al and Al alloys
JPH04313454A (en) Continuous casting method
JPH10211546A (en) Hot-top casting method
JP3158233B2 (en) Steel continuous casting method
RU2077969C1 (en) Silicon ingot manufacture method
JPH0624832A (en) Insulting material for molten steel surface
KR100544430B1 (en) A method for manufacturing continuous casting slab of high nickel containing alloy
Van der Eijk et al. Development of Grain Refiner Alloys for Steels
JPH0245536B2 (en)
JP3030596B2 (en) Continuous casting method
KR20010073236A (en) Method for continuously casting duplex stainless steel
KR100397298B1 (en) Method for cooling a continuously cast non-magnetic austenite stainiless steel slab
JPH0114967B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees