KR100489021B1 - A method for manufacturing high tensile high toughness steel having superior internal quality - Google Patents

A method for manufacturing high tensile high toughness steel having superior internal quality Download PDF

Info

Publication number
KR100489021B1
KR100489021B1 KR10-2000-0036191A KR20000036191A KR100489021B1 KR 100489021 B1 KR100489021 B1 KR 100489021B1 KR 20000036191 A KR20000036191 A KR 20000036191A KR 100489021 B1 KR100489021 B1 KR 100489021B1
Authority
KR
South Korea
Prior art keywords
steel
casting
internal quality
less
continuous casting
Prior art date
Application number
KR10-2000-0036191A
Other languages
Korean (ko)
Other versions
KR20020000700A (en
Inventor
김장갑
정현석
송원용
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2000-0036191A priority Critical patent/KR100489021B1/en
Publication of KR20020000700A publication Critical patent/KR20020000700A/en
Application granted granted Critical
Publication of KR100489021B1 publication Critical patent/KR100489021B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명은 방탄용 강재 등에 사용되는 고강도 고인성 강의 제조에 관한 것으로서, 그 목적은 제강조건과 연속주조 조건 등을 적절히 제어하므로써 내부품질이 우수하면서도 고강도 고인성을 갖는 강의 제조방법을 제공하고자 함에 있다.The present invention relates to the production of high strength high toughness steel used in bulletproof steels, etc. The purpose of the present invention is to provide a method of manufacturing steel having high strength and high toughness while having excellent internal quality by appropriately controlling steelmaking conditions and continuous casting conditions. .

상기 목적 달성을 위한 본 발명은 고강도 고인성 강의 제조방법에 있어서, 중량%로, C: 0.13~0.18%, Si: 0.20~0.40%, Mn: 0.50~0.80%, P: 0.05%이하, S: 0.005%이하, 가용성 Al: 0.025%이하, Ni: 3.5~4.5%, Cr: 0.8~1.2%, Mo: 0.4~0.6%, Nb: 0.03~0.06%, Ti: 0.005~0.020%, 및 잔부 Fe로 조성되도록 정련을 한 후, 턴디쉬에서 상기 정련된 용강의 과열도를 18~23℃의 범위로 유지하고, 상기 용강을 0.95~1.0m/분의 주조속도로 연속주조하면서 2차 냉각대에서 비수량을 0.4~0.45ℓ/Kg의 범위로 하여 연속주조하고, 상기 연속주조 말기에는 정속으로 주조함을 포함하여 구성되는 내부품질이 우수한 고강도 고인성 강의 제조방법에 관한 것을 그 기술적 요지로 한다.The present invention for achieving the above object in the method for producing high strength high toughness steel, in weight%, C: 0.13 ~ 0.18%, Si: 0.20 ~ 0.40%, Mn: 0.50 ~ 0.80%, P: 0.05% or less, S: 0.005% or less, Soluble Al: 0.025% or less, Ni: 3.5-4.5%, Cr: 0.8-1.2%, Mo: 0.4-0.6%, Nb: 0.03-0.06%, Ti: 0.005-0.020%, and the balance Fe After refining, the superheat of the refined molten steel in the tundish is maintained in the range of 18 ~ 23 ℃, while continuously casting the molten steel at a casting speed of 0.95 ~ 1.0m / min in the secondary cooling zone The technical gist of the present invention relates to a method for producing a high strength, high toughness steel having excellent internal quality, including continuous casting with a yield in the range of 0.4 to 0.45 l / Kg, and casting at a constant speed at the end of the continuous casting.

Description

내부품질이 우수한 고강도 고인성 강의 제조방법{A METHOD FOR MANUFACTURING HIGH TENSILE HIGH TOUGHNESS STEEL HAVING SUPERIOR INTERNAL QUALITY}Manufacturing method of high strength high toughness steel with excellent internal quality {A METHOD FOR MANUFACTURING HIGH TENSILE HIGH TOUGHNESS STEEL HAVING SUPERIOR INTERNAL QUALITY}

본 발명은 방탄용 강재 등에 사용되는 고강도 고인성 강의 제조에 관한 것으로서, 보다 상세하게는 제강조건과 연속주조 조건 등을 적절히 제어하므로써 내부품질이 우수하면서도 고강도 고인성을 갖는 강의 제조방법에 관한 것이다.The present invention relates to the production of high strength, high toughness steel used for bulletproof steel, and more particularly, to a method of manufacturing steel having high strength and high toughness while having excellent internal quality by appropriately controlling steelmaking conditions and continuous casting conditions.

통상 전자외판, 자주포 외판 등의 방탄재에 사용되는 고장력 강판은 고강도 고인성이 요구되고 있다. 구체적으로 미해군 규격에 제시된 MIL-A-12560H와 MIL-A-12560D를 기준으로 할 때, 두께 65mm 정도의 후판의 경우 적어도 인장강도 90-110kgf/㎟, 저온인성(-40℃) 3.9Kg·m 이상을 만족하면 바람직한 특성을 갖는 것으로 평가되었다.Normally, high strength steel sheets used for bulletproof materials such as electronic shell plates and self-propelled shell plates are required to have high strength and high toughness. Specifically, based on MIL-A-12560H and MIL-A-12560D presented in the US Navy standard, at least tensile strength 90-110kgf / mm2, low temperature toughness (-40 ℃) 3.9Kg When m or more was satisfied, it was evaluated to have desirable properties.

이러한 조건을 만족하는 강으로서 대표적인 종래의 기술을 살펴보면, 대한민국 공개특허 98-45927호에 의하면 연속주조법에 의해 내부품질이 우수한 100Kg급 초고장력 후판을 제조할 수 있는 방법이 제시되어 있다. 즉, 상기 공개특허에 제시된 바에 의하면, 중량%로, C: 0.10~0.19%, Si: 0.15~0.35%, Mn: 0.10~0.40%, P: 0.012%이하, S: 0.005%이하, Ni: 2.75~3.50%, Cr: 1.30~1.80%, Mo: 0.35~0.45%, V: 0.010~0.025%, 잔부 Fe로 이루어진 용강을 연속주조시 2차 냉각대의 비수량을 0.32~0.40ℓ/Kg 범위로 하는 조건으로 연속주조하여 슬라브를 제조한 다음, 상기 슬라브를 다단 적치하여 상온까지 공랭하고, 통상의 압연후 두께에 따라 냉각속도를 달리하여 냉각한 후, 상기 후판재를 900~920℃의 온도범위에서 소려하고 있다. 상기 공개특허에 따르면 내부품질이 우수한 방탄용 초고장력 후판이 제공된다. 그러나, 상기 강은 Ni, Cr, Mo 성분이외에 V을 첨가한 강으로서, V 함유로 인해 소재의 강도가 증대되지만, 내부품질이 극히 우수하지는 못하며, 특히 연속주조에 있어 공정제어가 매우 까다로운 문제가 있다.Looking at a typical conventional technology as a steel that satisfies these conditions, according to the Republic of Korea Patent Publication No. 98-45927 has proposed a method for producing a 100Kg class high-tension thick plate having excellent internal quality by the continuous casting method. That is, according to the present disclosure, in weight percent, C: 0.10 to 0.19%, Si: 0.15 to 0.35%, Mn: 0.10 to 0.40%, P: 0.012% or less, S: 0.005% or less, Ni: 2.75 ~ 3.50%, Cr: 1.30 ~ 1.80%, Mo: 0.35 ~ 0.45%, V: 0.010 ~ 0.025%, When continuously casting molten steel consisting of balance Fe, the specific quantity of secondary cooling zone is 0.32 ~ 0.40ℓ / Kg. After the slab is manufactured by continuous casting under the conditions, the slab is multi-stacked and air-cooled to room temperature, and after cooling by varying the cooling rate according to the thickness after the usual rolling, the thick plate material in the temperature range of 900 ~ 920 ℃ It is thoughtful. According to the published patent, an ultra high tensile plate for bulletproof having excellent internal quality is provided. However, the steel is a steel added with V in addition to Ni, Cr, Mo components, but the strength of the material is increased due to the V content, but the internal quality is not very excellent, especially the process control is very difficult for continuous casting have.

따라서, 본 발명은 상기한 종래의 문제점을 해결하고자 제안된 것으로서, 그 목적은 제강공정에서는 V대신 Ti, Nb을 첨가하는 한편 Ti, Al 성분을 낮게 관리하면서 Ni, Cr, Mo, Nb 등의 합금원소 함유강을 충분히 탈가스 처리하고, 연속주조공정에서는 저속주조, 중간정도의 냉각을 하므로써, 연속주조시 노즐 막힘과 주편 굽힘(bending)과 같은 조업상의 문제없이 주편의 표면과 내부품질이 우수한 고강도 고인성 강을 제공하고자 함에 있다.Therefore, the present invention has been proposed to solve the above-mentioned conventional problems, and its object is to add Ti, Nb instead of V in the steelmaking process, while maintaining a low Ti and Al component, such as Ni, Cr, Mo, Nb, etc. By degassing the element-containing steel sufficiently and in the continuous casting process, low-speed casting and intermediate cooling, high strength with excellent surface and internal quality of the cast steel without problems such as nozzle clogging and bending of the casting during continuous casting To provide toughness steel.

상기 목적 달성을 위한 본 발명은 고강도 고인성 강의 제조방법에 있어서,The present invention for achieving the above object in the method of manufacturing high strength high toughness steel,

중량%로, C: 0.13~0.18%, Si: 0.20~0.40%, Mn: 0.50~0.80%, P: 0.05%이하, S: 0.005%이하, 가용성 Al: 0.025%이하, Ni: 3.5~4.5%, Cr: 0.8~1.2%, Mo: 0.4~0.6%, Nb: 0.03~0.06%, Ti: 0.005~0.020%, 및 잔부 Fe로 조성되도록 정련을 한 후, 턴디쉬에서 상기 정련된 용강의 과열도를 18~23℃의 범위로 유지하고, 상기 용강을 0.95~1.0m/분의 주조속도로 연속주조하면서 2차 냉각대에서 비수량을 0.4~0.45ℓ/Kg의 범위로 하여 연속주조하고, 상기 연속주조 말기에는 정속으로 주조함을 포함하여 구성되는 내부품질이 우수한 고강도 고인성 강의 제조방법에 관한 것이다.By weight%, C: 0.13 to 0.18%, Si: 0.20 to 0.40%, Mn: 0.50 to 0.80%, P: 0.05% or less, S: 0.005% or less, Soluble Al: 0.025% or less, Ni: 3.5 to 4.5% , Cr: 0.8 ~ 1.2%, Mo: 0.4 ~ 0.6%, Nb: 0.03 ~ 0.06%, Ti: 0.005 ~ 0.020%, and after refining to make up the balance Fe, the superheat degree of the refined molten steel in tundish In the range of 18 ~ 23 ℃, continuously casting the molten steel at a casting speed of 0.95 ~ 1.0m / min in the secondary cooling zone in a continuous casting in the range of 0.4 ~ 0.45L / Kg, At the end of continuous casting, the present invention relates to a method for producing high strength high toughness steel having excellent internal quality, including casting at a constant speed.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 강중에 함유되는 탄소는 강의 열처리시 소입성을 증가시켜 강의 경도 및 강도를 증가시키는 성분이다. 탄소의 함량이 0.18% 보다 많으면 강의 인성과 용접성을 해치며, 0.13% 미만이면 소입성이 낮아 원하는 경도를 확보하기 곤란하다.Carbon contained in the steel of the present invention is a component that increases the hardness and strength of the steel by increasing the hardenability during the heat treatment of the steel. If the carbon content is more than 0.18%, the toughness and weldability of the steel may be impaired. If the carbon content is less than 0.13%, the hardenability may be difficult to secure desired hardness.

상기 Si는 탄화물을 형성하여 Fe중에 고용되어 탄성한계 인장력을 높이는 원소이다. 그러나, Si 함량이 0.20% 미만에서는 그 효과가 미흡하고, 0.4%를 초과하면 강의 페라이트 조직을 저하시키고 SiO2와 같은 비금속개재물을 형성하여 인성을 해지므로 바람직하지 않다.Si is an element that forms carbide to form a solid solution in Fe to increase the elastic limit tensile force. However, if the Si content is less than 0.20%, the effect is insufficient. If the Si content is more than 0.4%, the ferrite structure of the steel is lowered and toughness is formed by forming a non-metallic inclusion such as SiO 2 .

상기 Mn은 소입성을 향상시키는 원소로서, 최종 강의 열처리시 경도를 향상시킬 수 있는 유효한 성분이다. 그러나, Mn의 함량이 0.50% 보다 적으면 소입성 향상 효과가 미흡하며, 0.80%를 넘으면 강도 향상 효과는 큰 반면 용접성을 떨어 뜨려 바람직하지 않다.The Mn is an element that improves the hardenability, and is an effective component capable of improving the hardness during heat treatment of the final steel. However, when the Mn content is less than 0.50%, the hardenability improvement effect is insufficient, and when the content of Mn is more than 0.80%, the strength improvement effect is great, but the weldability is not good, which is not preferable.

상기 P 성분은 강의 저온 충격인성을 저해시키는 가장 큰 불순물로서 특히 주편의 내부품질을 열화시키므로 그 함량은 0.015%이하로 제한하는 것이 바람직하다.The P component is the largest impurity that inhibits low-temperature impact toughness of the steel, and in particular, deteriorates the internal quality of the cast steel, so the content thereof is preferably limited to 0.015% or less.

상기 S는 주편의 내부품질을 열화시키는 원소일 뿐만 아니라 P 성분과 마찬가지로 유해한 원소이다. 특히, S 성분은 후판제품에 있어서 저온 충격인성을 열화시키는 원인이 될 뿐만 아니라 용접성을 해치므로 가능한 한 0.005%이하로 정련함이 바람직하다.S is not only an element deteriorating the internal quality of the cast steel, but also a harmful element like the P component. In particular, the S component is not only a cause of deterioration of low-temperature impact toughness in a thick plate product, but also impairs weldability. Therefore, it is preferable to refine the S component to 0.005% or less.

상기 Al은 주로 탈산제 또는 AlN에 의한 입자 미세화를 위해 첨가되나, Ti첨가강에서는 노즐 막힘의 원인이 되는 원소이므로 가능한 한 0.025%이하로 정련함이 바람직하다.The Al is mainly added to refine the particles by deoxidizer or AlN, but in Ti-added steel, it is preferable to refine it to 0.025% or less since it is an element causing nozzle clogging.

상기 Ni은 저온인성을 증가시키고 소입성을 향상시키는 합금원소이다. 그러나, Ni은 3.5% 미만으로 첨가하면 그 효과가 작기 때문에 바람직하지 않다. 그렇다고 Ni 함량을 높게 가져가는 것은 Ni 자체가 고가이므로 경제적인 측면에서 불리하므로 4.5%를 넘지 않도록 하는 것이 필요하다.Ni is an alloying element that increases low-temperature toughness and improves hardenability. However, addition of Ni to less than 3.5% is not preferable because the effect is small. However, it is necessary to keep the Ni content higher than 4.5% because Ni itself is expensive and disadvantageous economically.

상기 Cr은 소입성에 유해한 원소로서, 경도 및 강도를 증가시키는데 널리 사용된다. 그러나, Cr을 다량 첨가시 용접성에 유해하며 소량 첨가시 강의 경도 확보가 곤란하므로 그 함량을 0.8~1.2%의 범위로 관리함이 바람직하다.Cr is an element detrimental to quenchability and is widely used to increase hardness and strength. However, when a large amount of Cr is added, it is detrimental to weldability, and when a small amount of Cr is added, it is difficult to secure the hardness of the steel. Therefore, it is preferable to manage the content in the range of 0.8 to 1.2%.

상기 Mo은 강 조직상 오스테나이트 상태의 크리프(creep) 파단강도의 향상에 기여하며 소입성을 향상시켜 강도를 증가시키나, 소량 첨가시에는 그 효과가 미흡하고, 다량 첨가시에는 소려 취성을 유발할 우려가 있고 용접부 인성 열화에 유해하므로 그 함량을 0.4~0.6%의 범위로 관리함이 바람직하다.The Mo contributes to the improvement of creep rupture strength of the austenite state in the steel structure and improves the quenching property to increase the strength, but when the addition of a small amount is insufficient, the effect of causing a brittle brittleness when a large amount is added. And it is desirable to manage the content in the range of 0.4 ~ 0.6% because it is harmful to the deterioration of the weld toughness.

상기 Ti은 통상 TiN의 형태로 조직내에 석출하여 입자 미세화 및 석출강화에 의해 인성을 향상시키고 강도 증가에 기여하는 성분이다. 그러나, Ti 성분이 첨가되면 연속주조 조업시 노즐 막힘의 주요인이 되는 성분이다. 즉, Ti은 Al2O3를 핵으로 하여 성장하는 특성을 가지며, 이때 TiN 내부에는 Al2O3가 존재하게 되며, Al의 감소에 따라 용강의 융점이 저하하는 특성을 나타내어 Ti, Al의 함량이 증가되는 경우 노즐 막힘 현상이 빈번하게 된다. 따라서, 이를 방지하기 위해 가능한 한 Ti, Al를 감소시키거나 주조온도를 높여야 한다. Ti 성분의 경우 본 발명에서는 가능한 한 0.005~0.020%의 범위로 관리함이 바람직하다.The Ti is a component that precipitates in the structure in the form of TiN in general, thereby improving toughness and contributing to increase in strength by particle refinement and precipitation strengthening. However, when the Ti component is added, it is a component that is the main cause of nozzle clogging during continuous casting operation. That is, Ti has the characteristic of growing with Al 2 O 3 as a nucleus, and at this time, Al 2 O 3 is present inside TiN, and the melting point of molten steel decreases as the Al decreases. If this increases, nozzle clogging is frequent. Therefore, in order to prevent this, the Ti and Al should be reduced as much as possible or the casting temperature should be increased. In the case of the Ti component, the present invention is preferably managed in the range of 0.005% to 0.020% as much as possible.

상기 Nb은 Nb(C, N)의 형태로 조직내에 석출하여 강도 증가에 기여하는 원소서, 이를 위해 본 발명에서는 0.03~0.06%의 범위로 관리함이 바람직하다.The Nb is an element that precipitates in the structure in the form of Nb (C, N) to contribute to the increase in strength, for this purpose, it is preferable to manage in the range of 0.03 to 0.06%.

상기 정련과정에 있어 용강중에 수소성분이 높으면 시간의 경과에 따라 주편 또는 강 제품의 내부에 균열을 유발하게 되므로 저진공도에서 충분히 탈가스 처리함이 바람직하다. 바람직하게는 용강의 탈가스 처리는 2torr이하에서 약 20분 이상 행하는 것이다. In the refining process, if the hydrogen content is high in the molten steel, it will cause cracks in the cast steel or steel products over time, it is preferable to sufficiently degassing at low vacuum. Preferably, degassing of molten steel is performed for about 20 minutes or less in 2 torr or less.

이와 같이 정련된 용강을 이용하여 연속주조할 때 본 발명에서는 턴디쉬의 과열도나 연속주조기의 속도 및 주편의 냉각조건이 매우 중요하다. In the present invention, when continuously casting using the refined molten steel, the superheat degree of the tundish, the speed of the continuous casting machine and the cooling conditions of the cast steel are very important.

먼저, 연속주조시 용강의 과열도 관리는 근본적으로 주조성을 확보하고, 주편의 내부 품질을 개선하는데 매우 중요하다. 이를 위해 본 발명의 경우 용강의 과열도는 18~23℃의 범위가 되도록 함이 필요하다. 그러나, 용강의 과열도가 너무 높으면 주상정 조직의 발달과 등축정 조직의 감소로 인해 주편에 중심편석이 생성될 가능성이 높다. 반대로 너무 낮으면 주조중 노즐 막힘이 발생하거나 개재물 분리 부상이 미흡하여 강의 청정성이 악화될 우려가 있다. First, superheat management of molten steel during continuous casting is very important to secure castability and improve the internal quality of cast steel. To this end, in the case of the present invention, the superheat degree of molten steel needs to be in the range of 18 to 23 ° C. However, if the superheat of molten steel is too high, it is likely that central segregation is generated in the cast steel due to the development of columnar tissue and a decrease in equiaxed tissue. On the contrary, if too low, nozzle clogging may occur during casting or insufficiency of inclusion separation may deteriorate the cleanliness of the steel.

또한, 본 발명에서는 연속주조 속도를 0.95~ 1.0m/분의 범위로 함이 적당하다. 이러한 주조속도는 주편의 굽힘이 발생되지 않을 정도의 저속주조로서, 주형내이 용강 유동과 주편 냉각을 균일하게 하고 충분한 응고쉘의 확보가 가능하여 주형 하부에서의 벌징(bulging) 현상을 작게 하므로써 주편의 내부품질을 양호하게 할 수 있다.In addition, in the present invention, it is suitable that the continuous casting speed is in the range of 0.95 to 1.0 m / min. This casting speed is a low-speed casting that does not cause the bending of the cast, the uniformity of molten steel flow and casting cooling within the mold, and the sufficient solidification shell can be secured to reduce the bulging phenomenon in the lower part of the mold Internal quality can be made favorable.

또한, 상기한 주속으로 연속주조되어 주형 밑으로 빠져 나와 2차 냉각대에 이르는 주편은 0.4~0.45ℓ/Kg의 범위에서 냉각수를 살수하여 2차 냉각함이 필요하다. 본 발명에 의한 고강도 고인성강은 Nb, Ti, Ni을 첨가한 강으로서, Nb, Ti 석출물에 의한 고온 취화로 발생되는 표면크랙 방지를 위해서는 2차 냉각대에서의 냉각패턴은 약냉이 바람직하다. 그러나, 너무 약랭으로 하게 되면 내부품질이 열화되고 최종 강의 오스테나이트 입자 미세화에 의해 고Ni 함유강의 표면크랙을 방지하기 곤란하다. In addition, the cast steel that is continuously cast at the above-described casting speed to the bottom of the mold to the secondary cooling zone is required to cool the secondary water by spraying the cooling water in the range of 0.4 ~ 0.45ℓ / Kg. The high strength high toughness steel according to the present invention is a steel to which Nb, Ti, and Ni are added, and in order to prevent surface cracks caused by high temperature embrittlement by Nb and Ti precipitates, the cooling pattern in the secondary cooling zone is preferably weakly cooled. However, when too cold, the internal quality deteriorates and it is difficult to prevent the surface cracks of the high Ni-containing steel due to the miniaturization of the austenitic particles of the final steel.

한편, 레이들 콜렉터 노즐(Collector Nozzle) 게이트(Gate)가 닫히는 시점부터 턴디시 슬라이딩 게이트(Sliding Gate)가 닫히는 시점까지를 연속주조 말기라 하는데, 통상 연속주조 말기에는 조업 안정성을 위해 주조속도를 감속한 후 증속하여 주조를 마무리하게 된다. 그러나, 주조속도 변화에 따라 표면과 내부품질이 악화되므로 본 발명의 경우 연속주조의 말기에도 상기 주조속도 범위에서 주조를 실시하여 주조속도의 변화가 없는 정속주조를 실시함이 바람직하다.On the other hand, continuous casting is called the end of continuous casting from the time when the ladle collector nozzle gate is closed to the time when the tundish sliding gate is closed. After that, it is accelerated to finish casting. However, since the surface and the internal quality deteriorate with the change in the casting speed, it is preferable that the casting is performed in the casting speed range even at the end of the continuous casting in the present invention to perform the constant casting without changing the casting speed.

이와같이 본 발명은 제강공정에서는 Ti, Al 성분을 낮게 관리하면서 Ni, Cr, Mo, Nb 등의 합금원소 함유강을 충분히 탈가스 처리하는 한편 연속주조공정에서는 저속주조, 중간정도의 냉각을 하므로써, 연속주조시 노즐 막힘과 주편 굽힘(bending)과 같은 조업상의 문제없이 주편의 표면과 내부품질이 우수한 고강도 고인성 강을 얻을 수 있다.As described above, the present invention provides continuous degassing treatment of alloy element-containing steels such as Ni, Cr, Mo, and Nb while maintaining low Ti and Al components in the steelmaking process, and low-speed casting and intermediate cooling in the continuous casting process. When casting, it is possible to obtain high strength and high toughness steel with excellent surface and internal quality of the cast steel without any operational problems such as nozzle clogging and cast bending.

이하, 본 발명을 실시예를 통하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

표1과 같은 조성을 갖도록 용강을 전로에서 취련한 후 2torr 이하의 저진공에서 20분 이상 탈가스 처리를 한 다음, 정련된 용강을 턴디쉬에서 과열도를 18~23℃의 범위로 유지한 상태에서 연속주조하였다. 이때, 연속주조시 주조속도와 2차 냉각대에서의 비수량은 표2와 같이 실시하였다. 이렇게 하여 두께 200mm, 폭 1600mm인 주편을 얻었다. After the molten steel was blown in the converter to have the composition as shown in Table 1, after degassing for 20 minutes or more in a low vacuum of 2torr or less, the refined molten steel was maintained in the tundish in the range of 18 ~ 23 ℃. Continuous casting. At this time, the casting speed during the continuous casting and the specific quantity in the secondary cooling zone was performed as shown in Table 2. In this way, a cast piece having a thickness of 200 mm and a width of 1600 mm was obtained.

본 실시예의 표2에서 표면크랙지수는 크랙의 정도에 따라 0~3 등급까지 지수화하여 분류한 후, 주편의 4면에서 각각의 표면결함지수를 체크하여 전체 결함지수의 합을 4면으로 나누어서 산출하였다. 또한, 중심편석지수는 0~4 등급으로 분류하여 판정하였다.In Table 2 of this example, the surface crack index is classified by classifying from 0 to 3 according to the degree of cracking, and then calculated by dividing the total defect index by 4 by checking each surface defect index on 4 sides of the cast steel. It was. In addition, the central segregation index was determined by classifying 0 to 4 grades.

구분division 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS s. Als. Al NiNi CrCr MoMo VV NbNb TiTi 발명강aInventive Steel a 0.150.15 0.290.29 0.590.59 0.0080.008 0.0020.002 0.0090.009 4.254.25 0.980.98 0.490.49 0.0450.045 0.0120.012 발명강bInventive Steel b 0.160.16 0.300.30 0.570.57 0.0100.010 0.0030.003 0.0120.012 4.014.01 1.01.0 0.500.50 0.0460.046 0.0140.014 발명강cInvention steel c 0.150.15 0.280.28 0.600.60 0.0110.011 0.0020.002 0.0240.024 3.583.58 0.990.99 0.480.48 0.0480.048 0.0200.020 비교강AComparative Steel A 0.170.17 0.250.25 0.250.25 0.0100.010 0.0020.002 0.0350.035 3.003.00 1.501.50 0.400.40 0.0200.020 비교강BComparative Steel B 0.150.15 0.250.25 0.600.60 0.0080.008 0.0020.002 0.0300.030 4.44.4 1.01.0 0.500.50 0.0450.045 0.0250.025 비교강CComparative Steel C 0.160.16 0.250.25 0.600.60 0.0090.009 0.0010.001 0.0150.015 3.953.95 0.990.99 0.480.48 0.0500.050 0.0100.010 비교강DComparative Steel D 0.160.16 0.270.27 0.590.59 0.0090.009 0.0030.003 0.0240.024 4.144.14 0.980.98 0.480.48 0.0470.047 0.0200.020 비교강EComparative Steel E 0.150.15 0.250.25 0.570.57 0.0120.012 0.0020.002 0.0320.032 3.783.78 0.990.99 0.500.50 0.0490.049 0.0200.020 비교강FComparative Steel F 0.160.16 0.270.27 0.570.57 0.0110.011 0.0020.002 0.0270.027 3.993.99 1.01.0 0.470.47 0.0460.046 0.0240.024

구분division 강종Steel grade 과열도(℃)Superheat degree (℃) 주조속도(m/분)Casting speed (m / min) 비수량(ℓ/Kg)Specific water quantity (ℓ / Kg) 기계적 특성Mechanical properties 주편 굽힘Cast bending 주조중 노즐막힘Nozzle clogging during casting 주편품질지수 Cast quality index 인장강도(kg/㎟)Tensile Strength (kg / ㎡) 충격치(J)Impact value (J) 표면결함지수Surface Defect Index 내부결함지수Internal Defect Index 발명예1Inventive Example 1 aa 2323 0.950.95 0.380.38 133133 5959 양호Good 양호Good 0.120.12 0.50.5 발명예2Inventive Example 2 bb 1818 1.01.0 0.430.43 131131 5858 양호Good 양호Good 0.200.20 0.50.5 발명예3Inventive Example 3 cc 2121 0.980.98 0.400.40 130130 5757 양호Good 양호Good 0.100.10 0.50.5 비교예1Comparative Example 1 AA 1515 0.950.95 0.400.40 118118 4545 발생Occur 양호Good 0.430.43 0.50.5 비교예2Comparative Example 2 BB 1717 1.051.05 0.320.32 128128 4747 양호Good 발생Occur 0.410.41 1.51.5 비교예3Comparative Example 3 CC 1717 0.950.95 0.360.36 127127 4545 양호Good 양호Good 0.400.40 1.01.0 비교예4Comparative Example 4 DD 1818 0.900.90 0.360.36 132132 4949 발생Occur 양호Good 0.870.87 0.50.5 비교예5Comparative Example 5 EE 2222 0.950.95 0.380.38 127127 4646 양호Good 발생Occur 0.510.51 1.01.0 비교예6Comparative Example 6 FF 1919 0.10.1 0.430.43 129129 4747 양호Good 발생Occur 0.910.91 1.01.0

표2에 나타난 바와 같이, 저온 또는 저속주조를 한 비교예(1)(4)의 경우 주편 굽힘현상 발생으로 주조성이 열위하였으며, Ti과 Al함량이 높은 비교예(2)(6)의 경우 노즐 막힘 현상이 발생하였다. 강랭일수록 비교예(6)과 같이 내부품질은 양호하나 표면품질은 미흡한 경향이 있었다. 또한, 약랭이면서 주조속도가 증대한 비교예(2)의 경우 반대의 현상이 나타났다. 그리고, 비교예(3)의 경우 저온 약랭으로 주조되어 표면결함이 다소 미흡하였다.As shown in Table 2, in Comparative Example (1) and (4) which were subjected to low temperature or low speed casting, castability was inferior due to the occurrence of cast bending, and in Comparative Example (2) and (6) where Ti and Al contents were high. Nozzle clogging occurred. The stronger the cold, the better the internal quality as in Comparative Example (6), but the surface quality tended to be insufficient. In addition, in the case of Comparative Example (2) in which the casting speed was increased while being weakly cooled, the opposite phenomenon appeared. In the case of Comparative Example (3), the surface defects were somewhat insufficient due to casting with low temperature and low temperature.

반면, 본 발명의 조건을 만족하는 발명예(1-3)의 경우 연속주조중 노즐막힘은 물론 주편 굽힘 현상이 없으면서도 표면품질과 내부품질이 매우 양호함을 알 수 있었다.On the other hand, in the case of Inventive Example (1-3) that satisfies the conditions of the present invention, it was found that the surface quality and the internal quality were very good without the nozzle clogging as well as the bending phenomenon during the continuous casting.

상술한 바와 같이, 본 발명에 의하면 Ni, Ti 등 다양한 합금원소를 함유한 고강도 고인성강을 연속주조함에 있어 정련공정과 연속주조 조건을 적절히 제어하므로써, 표면품질은 물론 내부품질이 우수한 고합금강 후판 소재를 안정적으로 공급할 수 있는 매우 유용한 효과가 있다.As described above, according to the present invention, in the continuous casting of high-strength high toughness steel containing various alloying elements such as Ni and Ti, by appropriately controlling the refining process and continuous casting conditions, high alloy steel thick plate material having excellent surface quality as well as internal quality There is a very useful effect that can supply a stable.

Claims (1)

고강도 고인성 강의 제조방법에 있어서,In the manufacturing method of high strength high toughness steel, 중량%로, C: 0.13~0.18%, Si: 0.20~0.40%, Mn: 0.50~0.80%, P: 0.05%이하, S: 0.005%이하, 가용성 Al: 0.025%이하, Ni: 3.5~4.5%, Cr: 0.8~1.2%, Mo: 0.4~0.6%, Nb: 0.03~0.06%, Ti: 0.005~0.020%, 및 잔부 Fe로 조성되도록 정련을 한 후, 턴디쉬에서 상기 정련된 용강의 과열도를 18~23℃의 범위로 유지하고, 상기 용강을 0.95~1.0m/분의 주조속도로 연속주조하면서 2차 냉각대에서 비수량을 0.4~0.45ℓ/Kg의 범위로 하여 연속주조하고, 레이들 콜렉터 노즐(Collector Nozzle) 게이트(Gate)가 닫히는 시점부터 턴디시 슬라이딩 게이트(Sliding Gate)가 닫히는 시점까지인 연속주조 말기에는 정속으로 주조함을 포함하여 구성되는 것을 특징으로 하는 내부품질이 우수한 고강도 고인성 강의 제조방법By weight%, C: 0.13 to 0.18%, Si: 0.20 to 0.40%, Mn: 0.50 to 0.80%, P: 0.05% or less, S: 0.005% or less, Soluble Al: 0.025% or less, Ni: 3.5 to 4.5% , Cr: 0.8 ~ 1.2%, Mo: 0.4 ~ 0.6%, Nb: 0.03 ~ 0.06%, Ti: 0.005 ~ 0.020%, and after refining to make up the balance Fe, the superheat degree of the refined molten steel in tundish In the range of 18 ~ 23 ℃, continuously casting the molten steel at a casting speed of 0.95 ~ 1.0m / min in the secondary cooling zone to a continuous casting in the range of 0.4 ~ 0.45ℓ / Kg, High strength with excellent internal quality, characterized in that it comprises casting at constant speed at the end of continuous casting, from the time when the collector nozzle gate is closed to the time when the tundish sliding gate is closed. Manufacturing method of high toughness steel
KR10-2000-0036191A 2000-06-28 2000-06-28 A method for manufacturing high tensile high toughness steel having superior internal quality KR100489021B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0036191A KR100489021B1 (en) 2000-06-28 2000-06-28 A method for manufacturing high tensile high toughness steel having superior internal quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0036191A KR100489021B1 (en) 2000-06-28 2000-06-28 A method for manufacturing high tensile high toughness steel having superior internal quality

Publications (2)

Publication Number Publication Date
KR20020000700A KR20020000700A (en) 2002-01-05
KR100489021B1 true KR100489021B1 (en) 2005-05-11

Family

ID=19674614

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0036191A KR100489021B1 (en) 2000-06-28 2000-06-28 A method for manufacturing high tensile high toughness steel having superior internal quality

Country Status (1)

Country Link
KR (1) KR100489021B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320134C (en) * 2005-08-09 2007-06-06 重庆汽车研究所 Reinforcement method of armor plate capability resistant to cut-in of bullet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155548A (en) * 1988-12-07 1990-06-14 Nippon Steel Corp Method for continuously casting free cutting steel
JPH02282418A (en) * 1989-04-24 1990-11-20 Kawasaki Steel Corp Production of high tensile strength steel sheet excellent in internal quality and workability
KR970033247A (en) * 1995-12-30 1997-07-22 김종진 Continuous casting method of thick plate high carbon steel
KR19980052513A (en) * 1996-12-24 1998-09-25 김종진 Continuous casting method of special welded broom casting with excellent internal quality

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155548A (en) * 1988-12-07 1990-06-14 Nippon Steel Corp Method for continuously casting free cutting steel
JPH02282418A (en) * 1989-04-24 1990-11-20 Kawasaki Steel Corp Production of high tensile strength steel sheet excellent in internal quality and workability
KR970033247A (en) * 1995-12-30 1997-07-22 김종진 Continuous casting method of thick plate high carbon steel
KR19980052513A (en) * 1996-12-24 1998-09-25 김종진 Continuous casting method of special welded broom casting with excellent internal quality

Also Published As

Publication number Publication date
KR20020000700A (en) 2002-01-05

Similar Documents

Publication Publication Date Title
US7105066B2 (en) Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
KR100482208B1 (en) Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
CN108950432B (en) Manufacturing method of high-strength and high-toughness low-alloy wear-resistant steel
US20040238075A1 (en) Non-heat treated seamless steel tube
CN110629114A (en) Low-cost high-strength high-toughness bridge steel and preparation method thereof
US11408048B2 (en) High-strength, hot rolled abrasive wear resistant steel strip
US6946038B2 (en) Steel plate having Tin+MnS precipitates for welded structures, method for manufacturing same and welded structure
JP2023519992A (en) 355 MPa grade cold-resistant hot-rolled H-beam steel for marine engineering and its production method
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
US6110300A (en) Tool for glass molding operations and method of manufacture thereof
KR101070132B1 (en) Steel with Excellent Low-Temperature Toughness for Construction and Manufacturing Method Thereof
US6344093B1 (en) High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone
KR100489021B1 (en) A method for manufacturing high tensile high toughness steel having superior internal quality
CN113373380B (en) Zirconium-treated economical plastic die steel and production method thereof
JP6455287B2 (en) Manufacturing method of continuous cast slab
CN115491608B (en) A kind of (Cr, fe) 7 C 3 TiC composite reinforced medium manganese steel and preparation method thereof
CN115786806B (en) High-strength low-carbon equivalent extra-thick steel plate with good low-temperature toughness and manufacturing method thereof
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
KR101302693B1 (en) Plastic mold steel with uniform hardness and workability by reducing segregation
CN110144517B (en) High-strength high-toughness high-aluminum nickel-free easily-welded 40-70 mm-thick wear-resistant steel plate and preparation method thereof
KR101455469B1 (en) Thick steel sheet and method of manufacturing the same
KR100765114B1 (en) A method for manufacturing TMCP heavy plate using soft reduction
KR100470052B1 (en) High strength steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same
CN116635557A (en) High-strength thin-wall API steel material having excellent deformation stability and method for producing same
KR100498133B1 (en) Cu Contained NiCr Alloy Having High Wear Resistance and High Shock Resistance, and the Method of Manufacturing therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140428

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150427

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160425

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170424

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 15