JPH02151085A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH02151085A
JPH02151085A JP63305226A JP30522688A JPH02151085A JP H02151085 A JPH02151085 A JP H02151085A JP 63305226 A JP63305226 A JP 63305226A JP 30522688 A JP30522688 A JP 30522688A JP H02151085 A JPH02151085 A JP H02151085A
Authority
JP
Japan
Prior art keywords
active layer
layer
light emitting
cladding layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63305226A
Other languages
Japanese (ja)
Inventor
Isao Hino
日野 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63305226A priority Critical patent/JPH02151085A/en
Publication of JPH02151085A publication Critical patent/JPH02151085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To improve the confinement of injection carrier without deteriorating luminous efficiency by a method wherein a semiconductor layer arranged between an active layer and a clad layer has a small thickness of about 10Angstrom -200Angstrom , and its band gap energy is set at an intermediate value between the active layer and the clad layer. CONSTITUTION:A double hetero structure is composed of an active layer 4 turning to a light emitting layer, and clad layers 2, 6 which sandwich the active layer 4 and have energy gaps larger than that of the active layer. In this double hetero structure, the title semiconductor light emitting element has semiconductor layers (intermediate clad layers) 3, 5 whose thicknesses are between about 10Angstrom and 200Angstrom , and whose energy gaps have intermediate values between the active layer 4 and the clad layers 2, 6. By this set-up, the confinement of injection carrier is improved without deteriorating the luminous efficiency of the active layer 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体発光素子に関し、特に高効率で高温特性
に優れた半導体発光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor light emitting device, and particularly to a semiconductor light emitting device having high efficiency and excellent high temperature characteristics.

〔従来の技術〕[Conventional technology]

レーザ・ダイオードや発光ダイオードなど従来の高効率
半導体発光素子は第3図に示すようにダブルヘテロ構造
(DH)をとっている、第3図は、AjiGa I n
P系可視光レーザ・ダイオードによる例である。第3図
(a)に層構造を示すために光出射方向からみた模式的
正面図、第3図(b)に同じくエネルギバンドダイヤグ
ラムを示す。Gaq、5 I no、t P活性層10
3が、それよりもエネルギギャップの大きな(AJo、
4Ga(、、、、) 6.5 I no、5 Pクラッ
ド層102゜104で挟まれたダブルヘテロ構造となっ
ている。
Conventional high-efficiency semiconductor light emitting devices such as laser diodes and light emitting diodes have a double heterostructure (DH) as shown in Figure 3.
This is an example using a P-based visible light laser diode. FIG. 3(a) is a schematic front view seen from the light emission direction to show the layered structure, and FIG. 3(b) similarly shows an energy band diagram. Gaq, 5 I no, t P active layer 10
3 has a larger energy gap than that (AJo,
It has a double heterostructure sandwiched between 4Ga(,,,,)6.5Ino,5P cladding layers 102 and 104.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

効率が高く、低電流動作を可能としかつ高温特性を改善
する為には、クラッド層と活性層の間のエネルギーギャ
ップ差を大きくとらねばなら“ない。これは、活性層に
注入された電子・ホールなどのキャリアの活性層への閉
じ込めを良くするためである。特に、高温では、キャリ
アの持つ工゛ネルギが大きぐなるので、活性層とクラッ
ド層とのへテロ界面でのキャリアに対する障壁を大きく
とるべく両層間のエネルギギャップ差を十分大きくとる
ことがより重要となる。しかし、一般にエネルギギャッ
プを大きくすると、エネルギギャップ内に深い非発光再
結合順位が生成され易く、またその濃度も高くなる。可
視光発光素子材料として使われるAjiGaInP系化
合物の場合、クラッド層として用いる(Afflx G
a1−x )。。
In order to achieve high efficiency, enable low current operation, and improve high temperature characteristics, it is necessary to have a large energy gap difference between the cladding layer and the active layer. This is to improve the confinement of carriers such as holes in the active layer.Especially at high temperatures, the energy of carriers increases, so the barrier to carriers at the hetero interface between the active layer and the cladding layer is increased. In order to increase the energy gap, it is more important to make the energy gap difference between both layers sufficiently large. However, in general, when the energy gap is made large, deep non-radiative recombination ranks are likely to be generated within the energy gap, and the concentration thereof also increases. In the case of AjiGaInP-based compounds used as visible light emitting device materials, they are used as cladding layers (Afflx G
a1-x). .

In□、5Pのエネルギギャップを高めるためにA1組
組成を高めねばならない、この時、エネルギギャップ内
に深い非発光再結合順位の生成・増加を招く。このため
、前述の従来例に於いて、クラッド層のエネルギギャッ
プを大きくするためにA1組組成を増すと、AJGaI
nPクラッド層とG a I n P活性層とのへテロ
界面で非発光再結合中心の増加による非発光再結合速度
の増加を招き、活性層における発光効率が著しく低下す
る。
In order to increase the energy gap of In□, 5P, the composition of the A1 group must be increased. At this time, a deep non-radiative recombination order is generated and increased within the energy gap. Therefore, in the conventional example described above, if the A1 group composition is increased to increase the energy gap of the cladding layer, AJGaI
An increase in the number of non-radiative recombination centers at the hetero-interface between the nP cladding layer and the G a I n P active layer causes an increase in the non-radiative recombination rate, resulting in a significant decrease in the luminous efficiency in the active layer.

以上述べたように前述の従来例においては、効率を高め
低電流動作を可能とするため、或いは高温特性を改善す
るためにクラッド層のエネルギギャップを増そうとする
と、活性層での発光効率の低下を招き、期待した効果が
得られず、却って素子特性を劣化させるという欠点があ
る。
As mentioned above, in the conventional example described above, when trying to increase the energy gap of the cladding layer in order to increase efficiency and enable low current operation or to improve high temperature characteristics, the luminous efficiency in the active layer decreases. This has the disadvantage that the expected effect cannot be obtained and, on the contrary, the device characteristics are deteriorated.

そこで本発明の目的は、材料の性質を利用して上述の欠
点を除き、効率が高く低電流動作が可能で、高温特性の
優れた半導体発光素子を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor light-emitting device that eliminates the above-mentioned drawbacks by utilizing the properties of the material, has high efficiency, is capable of low-current operation, and has excellent high-temperature characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、発光層となる活性層と、この活性層を
挟みこれよりもエネルギギャップの大きなクラッド層と
から成るダブルヘテロ構造において、厚さが約1OAよ
りも厚く約200Åよりも薄くエネルギギャップの値が
活性層とクラッド層の中間的な値となっている半導体層
(以下中間クラッド層と記す)を活性層とクラッド層と
の間にもっている半導体発光素子の構成を与えることで
ある。活性層とクラッド層との間に設ける半導体層の厚
さが約10A〜約200Aと薄いこと及びその層のバン
ドギャップエネルギ値が活性層とクラッド層の中間的な
値である点が重要である。対象とする半導体発光素子は
A、RGa I nP系、AjlGaAs系、Affl
GaSb系等材料を問わない、又、各材料系を組み合わ
せた構成でも構わない 〔作用〕 第4図に示したエネルギバンドダイヤグラムを用いて本
発明の詳細な説明する。第4図は活性層201とクラッ
ド層202のへテロ界面に於けるエネルギバンドダイヤ
グラムである。第4図(a)が従来技術によるもの、第
4図(b)が本発明によるものである。活性層201と
クラッド層202のエネルギギャップ差を大きくすると
、エネルギの大きな注入キャリア208もヘテロ界、面
で跳ね返されて活性層201に閉じ込められ発光゛に寄
与することができる。このため、発光効率の向上、高温
特性の向上が期待される。ところが、第4図(a)のよ
うに、高エネルギギャップの5クラッド層202が直接
活性層201に接しているとヘテロ界面に生ずL非発光
再結合中心205により、活性層201中ヘテロ界面附
近のキャリアは、非発光再結合過程207により消費さ
れ、発光再結合過程206に寄与する割合が減るために
発光効率が低下する。このように、従来技術によると、
注入キャリアの閉じ込めを向上させようとすると発光効
率の低下を招く。本発明により、厚さ10〜20OA程
度の中間クラッド層210を挟んだものが第4図(b)
である。中間クラッド層210のエネルギギャップが活
性層201とクラッド層202のエネルギギャップの中
間値である場合について示す、中間クラッド層210と
エネルギギャップの大きなクラッド202層との間に非
発光再結合中心205が生ずるが、中間クラッド層21
0と活性層との間には非発光再結合中心が生じない、こ
のなめ、活性層中ヘテロ界面に接するキャリアも第4図
(b)に示すように発光再結合209に寄与する。この
ため、クラッド層にエネルギギャップの大きな組成の半
導体層を用いても活性層の発光効率の低下はない。また
、エネルギの大きな注入キャリア208は第4図(b)
に示されるように、エネルギギャップの大きなクラッド
層202によりヘテ口界面で跳ね返されて、活性層20
1に閉じ込められ、発光に寄与する。このように、本発
明により、活性層での発光効率を低下させることなく、
注入キャリアの閉じ込めを向上させることができる。さ
らに、このことにより、半導体発光素子の効率向上、低
電流動作、高温特性向上などを実現することができる。
The gist of the present invention is that in a double heterostructure consisting of an active layer serving as a light-emitting layer and a cladding layer with a larger energy gap between the active layer and the cladding layer, the energy gap is larger than about 1 OA and thinner than about 200 Å. The purpose of the present invention is to provide a structure of a semiconductor light emitting device having a semiconductor layer (hereinafter referred to as an intermediate cladding layer) having a gap value intermediate between that of the active layer and the cladding layer between the active layer and the cladding layer. . It is important that the thickness of the semiconductor layer provided between the active layer and the cladding layer is as thin as about 10A to about 200A, and that the bandgap energy value of that layer is an intermediate value between the active layer and the cladding layer. . The target semiconductor light emitting devices are A, RGa I nP system, AjlGaAs system, Affl
The present invention will be described in detail with reference to the energy band diagram shown in FIG. 4. The material may be any material such as GaSb, or a combination of materials may be used. FIG. 4 is an energy band diagram at the hetero interface between the active layer 201 and the cladding layer 202. FIG. 4(a) is a diagram according to the prior art, and FIG. 4(b) is a diagram according to the present invention. When the energy gap difference between the active layer 201 and the cladding layer 202 is increased, the injected carriers 208 having high energy are also bounced off by the hetero field and the surface and are confined in the active layer 201, thereby contributing to light emission. Therefore, improvements in luminous efficiency and high-temperature characteristics are expected. However, as shown in FIG. 4(a), when the 5-cladding layer 202 with a high energy gap is in direct contact with the active layer 201, a hetero-interface occurs, and the L non-radiative recombination center 205 causes a hetero-interface in the active layer 201. Nearby carriers are consumed by the non-radiative recombination process 207, and their contribution to the radiative recombination process 206 decreases, resulting in a decrease in luminous efficiency. Thus, according to the prior art,
Attempting to improve the confinement of injected carriers results in a decrease in luminous efficiency. According to the present invention, a structure with an intermediate cladding layer 210 having a thickness of about 10 to 20 OA sandwiched therein is shown in FIG. 4(b).
It is. A non-radiative recombination center 205 exists between the intermediate cladding layer 210 and the cladding 202 layer with a large energy gap, as shown in the case where the energy gap of the intermediate cladding layer 210 is an intermediate value between the energy gap of the active layer 201 and the cladding layer 202. However, the intermediate cladding layer 21
Because no non-radiative recombination center is generated between 0 and the active layer, carriers in contact with the hetero interface in the active layer also contribute to the radiative recombination 209 as shown in FIG. 4(b). Therefore, even if a semiconductor layer having a composition with a large energy gap is used for the cladding layer, the luminous efficiency of the active layer does not decrease. In addition, the injection carrier 208 with large energy is shown in FIG. 4(b).
As shown in FIG.
1 and contributes to light emission. Thus, according to the present invention, without reducing the luminous efficiency in the active layer,
Confinement of injected carriers can be improved. Furthermore, this makes it possible to improve the efficiency, low current operation, and high temperature characteristics of the semiconductor light emitting device.

〔実施例〕〔Example〕

第1図に本発明の第1の実施例を示す。素子の光出射方
向から見た模式的正面図である。GaAs基板を用いた
A!2GaInP系可視光半導体レーザに本発明を実施
したものである。n−GaAs基板1の上に、厚さ1μ
mのn−A、Ro。
FIG. 1 shows a first embodiment of the present invention. FIG. 3 is a schematic front view of the element as seen from the light emitting direction. A! using GaAs substrate! The present invention is implemented in a 2GaInP visible light semiconductor laser. On the n-GaAs substrate 1, a 1μ thick
n-A of m, Ro.

In、)、5Pクラッド層2、厚さ50Aのn−(AJ
□、5 GaO,5) 0.5 I no、5 P中間
クラッド層5、厚さ1μmのp−A、ffo、5 I 
no、5 Pクラッド層6、p−GaAsキャップ層7
が順次成長されている。さらにストライプ状の窓11を
形成した5i02膜8上にp型用電極9を、基板1真面
にn型用電極を形成して、素子をストライプ状電流注入
できるようにしである。こうして得られた半導体発光素
子は、従来技術により得られた半導体発光素子(例えば
従来技術のところで引用した素子)と較べて、発振閾電
流値が約20%減少し、特性温度が約30%向上する等
、低電流動作や高温特性改善が可能となっていた。
), 5P cladding layer 2, 50A thick n-(AJ
□, 5 GaO, 5) 0.5 I no, 5 P intermediate cladding layer 5, 1 μm thick p-A, ffo, 5 I
no, 5 P cladding layer 6, p-GaAs cap layer 7
are being gradually grown. Further, a p-type electrode 9 is formed on the 5i02 film 8 on which the striped window 11 is formed, and an n-type electrode is formed directly on the substrate 1, so that a striped current can be injected into the device. The semiconductor light emitting device obtained in this way has an oscillation threshold current value reduced by about 20% and a characteristic temperature improved by about 30% compared to a semiconductor light emitting device obtained by the conventional technology (for example, the device cited in the conventional technology). This enabled low-current operation and improved high-temperature characteristics.

第2図に本発明の第2の実施例を示す、素子の光出射方
向から見た模式的正面図である。第1の実施例と較べて
、(AJx Gat−x ) 0.5In、)、5P中
間クラッド層12.13の厚さが10OA、A1組組成
が活性層4との界面からクラッド層2.6の界面に向か
うに従ってX=0.4からX=0.7まで線型に変化し
ていることが異る。他は第1の実施例と同じである。こ
のようにすると、第1の実施例と較べて、エネルギの高
い注入キャリアが受ける非発光再結合中心の影響がより
小さくなる。このため、第1の実施例と較べて発振閾電
流値が約5%減少、特性温度が約5%向上するため、さ
らに特性の優れた半導体発光素子が得られる。
FIG. 2 is a schematic front view of a second embodiment of the present invention, viewed from the light emitting direction of the element. Compared to the first example, (AJx Gat-x ) 0.5In, ), the thickness of the 5P intermediate cladding layer 12.13 is 10OA, and the composition of the A1 group is from the interface with the active layer 4 to the cladding layer 2.6. The difference is that it changes linearly from X=0.4 to X=0.7 as it approaches the interface. The rest is the same as the first embodiment. In this way, compared to the first embodiment, the influence of non-radiative recombination centers on high-energy injected carriers is reduced. Therefore, compared to the first embodiment, the oscillation threshold current value is reduced by about 5% and the characteristic temperature is improved by about 5%, so that a semiconductor light emitting device with even better characteristics can be obtained.

以上、AJGaInP系可視光半導体レーザの場合に実
施例を用いて詳細に説明してきたが、他の材料、Aff
lGaAs、A、ffGaSb、GaInPAs系等の
■−■化合物或いはII−Vl化合物、さらにはこれら
の組み合せに対しても適用できる。又、半導体レーザに
限らず、発光ダイオードを含む一般の半導体発光素子に
適用できることは言を持たない。
Above, the AJGaInP visible light semiconductor laser has been explained in detail using examples, but other materials, Aff
It can be applied to 1--2 compounds such as lGaAs, A, ffGaSb, and GaInPAs, or II-Vl compounds, and also to combinations thereof. Furthermore, it goes without saying that the present invention can be applied not only to semiconductor lasers but also to general semiconductor light emitting devices including light emitting diodes.

〔発明の効果〕〔Effect of the invention〕

この様に本発明により、活性層の発光効率を損うことな
く注入キャリアの閉じ込めを向上させることができ、従
来よりも高効率で低電流動作の可能な高温特性の優れた
半導体発光素子を実現できる。
As described above, the present invention makes it possible to improve the confinement of injected carriers without impairing the luminous efficiency of the active layer, thereby realizing a semiconductor light-emitting device with excellent high-temperature characteristics that is capable of higher efficiency and lower current operation than ever before. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の第1.第2の実施例
の正面図、第3図は従来例の正面図およびエネルギバン
ドダイヤグラム、第4図は本発明の作用を示すためのへ
テロ界面におけるエネルギバンドダイヤグラムである。 l ・・−n −G a A s基板、2・・−n−A
Jo、5 I nO,5Pクラッド層、3・−・n −
(Aio、s Gao、s )0.5 I no、st
 P中間クラッド層、4,103−・・Ga(、,5I
 no、5P活性層、5− P  (A I 0.5G
 aQ、5 ) 0.5 I nO,S P中間クラッ
ド層、6・・・p  Al(3,5I no、5 Pク
ラッド層、7−p −GaAsキャップ層、8・・・5
i02膜、9・・・p型用電極、10・・・n型用電極
、11・・・ストライプ状電流注入領域、12−n  
(Ajlx Gat−x ) 。 5Ino、5P中間クラッド層、13・p−(Alx 
Ga1−x ) 0.5 I no、5 P中間クラッ
ド層、102・−n −(AJ!□、4 Gao、6)
 0.5 I no、sPクラッド層、104・・・p
−(AJo、4Ga、)、6 )0.5 I nO,5
Pクラッド層、201 ・・・活性層、202・・・ク
ラッド層、205・・・非発光再結合中心、206.2
09・・・発光再結合過程、207・・・非発光再結合
過程、208・・・高エネルギ注入キャリア、210・
・・中間クラッド層。
FIG. 1 and FIG. 2 respectively show the first embodiment of the present invention. FIG. 3 is a front view and an energy band diagram of the conventional example, and FIG. 4 is an energy band diagram at a hetero interface to show the effect of the present invention. l...-n-G a As substrate, 2...-n-A
Jo, 5I nO, 5P cladding layer, 3·-·n −
(Aio, s Gao, s ) 0.5 I no, st
P intermediate cladding layer, 4,103-...Ga(,,5I
no, 5P active layer, 5-P (AI 0.5G
aQ, 5) 0.5 InO, SP intermediate cladding layer, 6...p Al(3,5I no, 5 P cladding layer, 7-p-GaAs cap layer, 8...5
i02 film, 9... electrode for p type, 10... electrode for n type, 11... striped current injection region, 12-n
(Ajlx Gat-x). 5Ino, 5P intermediate cladding layer, 13・p-(Alx
Ga1-x) 0.5 I no, 5 P intermediate cladding layer, 102・-n −(AJ!□, 4 Gao, 6)
0.5 I no, sP cladding layer, 104...p
-(AJo,4Ga,),6)0.5I nO,5
P cladding layer, 201...active layer, 202...cladding layer, 205...non-radiative recombination center, 206.2
09... Luminescent recombination process, 207... Non-radiative recombination process, 208... High energy injection carrier, 210.
...Intermediate cladding layer.

Claims (1)

【特許請求の範囲】[Claims] 発光領域となる活性層と、該活性層を挟みこれよりもエ
ネルギギャップの大きなクラッド層とからなるダブルヘ
テロ構造を有し、厚さが約10Åよりも厚く約200Å
よりも薄くエネルギギャップの値が活性層とクラッド層
の中間的な値となっている半導体層を活性層とクラッド
層との間にもっていることを特徴とする半導体発光素子
It has a double heterostructure consisting of an active layer serving as a light emitting region and a cladding layer sandwiching the active layer and having a larger energy gap than the active layer, and has a thickness of about 200 Å thicker than about 10 Å.
1. A semiconductor light emitting device comprising a semiconductor layer between an active layer and a cladding layer, which is thinner than the active layer and having an energy gap value intermediate between the active layer and the cladding layer.
JP63305226A 1988-12-01 1988-12-01 Semiconductor light emitting element Pending JPH02151085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305226A JPH02151085A (en) 1988-12-01 1988-12-01 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305226A JPH02151085A (en) 1988-12-01 1988-12-01 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH02151085A true JPH02151085A (en) 1990-06-11

Family

ID=17942555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305226A Pending JPH02151085A (en) 1988-12-01 1988-12-01 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH02151085A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335567A (en) * 1989-07-03 1991-02-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting diode
KR100237804B1 (en) * 1995-05-26 2000-01-15 마찌다 가쯔히꼬 Semiconductor light emitting device and manufacturing method thereof
JP2001189491A (en) * 2000-01-05 2001-07-10 Showa Denko Kk AlGaInP LIGHT-EMITTING DIODE
US6265732B1 (en) 1998-11-30 2001-07-24 Sharp Kabushiki Kaisha Light emitting diode
US6621106B2 (en) 2000-01-18 2003-09-16 Sharp Kabushiki Kaisha Light emitting diode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335567A (en) * 1989-07-03 1991-02-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting diode
KR100237804B1 (en) * 1995-05-26 2000-01-15 마찌다 가쯔히꼬 Semiconductor light emitting device and manufacturing method thereof
US6074889A (en) * 1995-05-26 2000-06-13 Sharp Kabushiki Kaisha Method for producing semiconductor light-emitting device with undoped spacer layer
US6265732B1 (en) 1998-11-30 2001-07-24 Sharp Kabushiki Kaisha Light emitting diode
US6384430B1 (en) 1998-11-30 2002-05-07 Sharp Kabushiki Kaisha Light emitting diode
JP2001189491A (en) * 2000-01-05 2001-07-10 Showa Denko Kk AlGaInP LIGHT-EMITTING DIODE
US6621106B2 (en) 2000-01-18 2003-09-16 Sharp Kabushiki Kaisha Light emitting diode
US6881985B2 (en) 2000-01-18 2005-04-19 Sharp Kabushiki Kaisha Light emitting diode

Similar Documents

Publication Publication Date Title
US5153889A (en) Semiconductor light emitting device
JP3698402B2 (en) Light emitting diode
US7528417B2 (en) Light-emitting diode device and production method thereof
JP2002232005A (en) Light emitting element
JPH04229665A (en) Semiconductor light-emitting device
JPH02151085A (en) Semiconductor light emitting element
JPH0786638A (en) Semiconductor light emitting device
JPH0327577A (en) Light emitting diode array
JP3209786B2 (en) Semiconductor light emitting device
JP3332785B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH08181356A (en) Semiconductor light emitting device
JP2661576B2 (en) Semiconductor light emitting device
JPH05267715A (en) Semiconductor light-emitting device
JPS62216386A (en) Semiconductor light emitting element
JPH07169992A (en) Semiconductor light emitter
CN211957673U (en) High-brightness LED epitaxial wafer
US5768303A (en) Semiconductor device
JPH10284756A (en) Light-emitting diode
JPH0794780A (en) Semiconductor light emitting device
JPS61228684A (en) Semiconductor light emitting element
JPH0327578A (en) Light emitting diode array
JP2004297060A (en) Light emitting diode element and method for manufacturing the same
JP3193087B2 (en) AlGaInP semiconductor light emitting device
JPH0330486A (en) Multi quantum well light emitting element
JPS63164374A (en) Semiconductor laser device and manufacture thereof