JPH02151032A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02151032A
JPH02151032A JP30533688A JP30533688A JPH02151032A JP H02151032 A JPH02151032 A JP H02151032A JP 30533688 A JP30533688 A JP 30533688A JP 30533688 A JP30533688 A JP 30533688A JP H02151032 A JPH02151032 A JP H02151032A
Authority
JP
Japan
Prior art keywords
passivation film
wirings
cavities
film
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30533688A
Other languages
Japanese (ja)
Other versions
JPH0744178B2 (en
Inventor
Masashi Koyama
小山 昌司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63305336A priority Critical patent/JPH0744178B2/en
Publication of JPH02151032A publication Critical patent/JPH02151032A/en
Publication of JPH0744178B2 publication Critical patent/JPH0744178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent the fluctuation in the capacity between wirings before and after the assembling process by a method wherein the gaps between the wirings of a semiconductor device are provided with cavities and then an almost flat surfaced passivation film is formed on the cavities. CONSTITUTION:An interlayer insulating film 2, metallic wirings 3 and a passivation film 4 are formed on a semiconductor substrate 1 to be covered with a case resin 5. The gap regions between the metallic wirings 3 in the passivation film 4 are provided with cavities 6 whose upper parts being sealed with the passivation film 4, the assembling case resin 5 can be prevented from permeating into the cavities. In such a constitution, the cavities are formed between the continuous wirings in sufficient length substantially preventing the case resin 5 from permeating into the cavities so that the fluctuation in the capacity between wirings may be negligibly miniaturized before and after the assembling process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置に関し、特に、配線間間隙におい
て空洞が形成されたパッシベーション膜を有する半導体
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device, and particularly to a semiconductor device having a passivation film in which a cavity is formed in a gap between interconnections.

[従来の技術] 半導体装置には、一般的に、A1配線等の最上層金属配
線層上に、表面を保護し、汚染物質等の内部素子への侵
入を防ぐ目的でパッシベーション膜と呼ばれる膜が設け
られている。この従来例をその断面図である第4図を参
照して説明する。
[Prior Art] Semiconductor devices generally include a film called a passivation film on the top metal wiring layer such as A1 wiring to protect the surface and prevent contaminants from entering internal elements. It is provided. This conventional example will be explained with reference to FIG. 4, which is a sectional view thereof.

同図に示すように、半導体基板1上には眉間絶縁IN5
!2が形成され、その上に金属配線3が形成されている
。そして、前述したパッシベーション膜4が金属配線3
と層間絶縁膜2とを覆って形成されている。その外表面
は、更にケース樹脂5で覆われている。従来、パッシベ
ーション膜としては化学的気相成長法による燐(P)ド
ープ5i02膜やプラズマ気相成長法によるSL、N、
膜等がよく用いられてきた。
As shown in the figure, on the semiconductor substrate 1 there is a glabellar insulator IN5.
! 2 is formed, and a metal wiring 3 is formed thereon. Then, the above-mentioned passivation film 4 is applied to the metal wiring 3.
and interlayer insulating film 2 . Its outer surface is further covered with case resin 5. Conventionally, as passivation films, phosphorus (P)-doped 5i02 films are made by chemical vapor deposition, SL, N,
Membranes and the like have often been used.

[発明が解決しようとする問題点] 最近の半導体装置の集積度は一段と高まり、素子の寸法
は、ますます縮小化されてきている。それにともない金
属配線間容量の増大の問題が盟在化してきた。これは、
大規模メモリで特に顕著であり、例えば、大規模なRO
MやRAMでは、デイジット線間に付加される容量によ
って、読み出し速度が低下し、また、読み出し速度の読
み出しパターン依存性が増大する。
[Problems to be Solved by the Invention] The degree of integration of recent semiconductor devices has further increased, and the dimensions of elements have become smaller and smaller. Along with this, the problem of increased capacitance between metal interconnections has become a growing problem. this is,
Particularly noticeable in large memories, e.g. large RO
In M or RAM, the read speed decreases due to the capacitance added between the digit lines, and the dependence of the read speed on the read pattern increases.

ところが、従来のパッシベーション膜は、金属。However, conventional passivation films are made of metal.

配線間間隙で、第4図に示すように上方に開放した状態
となっている。このなめ、この半導体装置をケース樹脂
内に封止した場合、この配線間間隙にケース樹脂が侵入
してくる。そして、この組み立てケース樹脂に用いられ
る材料の比誘電率は、通常、約4.3と大きい、一方、
ウェハ状態ではこの部分は比誘電率1の空気で満たされ
いる。このように、ウェハ状態と比較して組み立て後の
状態ではこの領域を比誘電率の高い物質が満たすことに
なるので、組み立て後には配線間容量が増大する。その
結果、以下のような問題が生じる。第1に、ウェハ状態
でのテスティングが不正確となり、ウェハ段階で組み立
て後の製品特性を予測することが困難になる。第2に、
メモリにあっては組み立て後にビット線間容量の増大に
より、サイクルタイムが長くなり、かつ、サイクルタイ
ムのパターン依存性が増大する。
The gap between the wirings is in an upwardly open state as shown in FIG. Therefore, when this semiconductor device is sealed in a case resin, the case resin enters into the gaps between the wirings. The relative dielectric constant of the material used for this assembly case resin is usually as high as about 4.3, while
In the wafer state, this portion is filled with air having a dielectric constant of 1. In this manner, this region is filled with a material having a higher dielectric constant in the assembled state compared to the wafer state, so that the inter-wiring capacitance increases after the assembly. As a result, the following problems arise. First, wafer-level testing becomes inaccurate, making it difficult to predict post-assembly product characteristics at the wafer stage. Second,
In a memory, the cycle time becomes longer due to an increase in the capacitance between bit lines after assembly, and the pattern dependence of the cycle time increases.

第3に、従来例のものは、パッシベーション膜の厚さを
変化させると、配線間容量が変化するので、製品におけ
る配線間容量のばらつきが大きくなるという欠点を有し
ている。これは、パッシベーション膜を厚くするほど配
線間間隙がパッシベーション膜で充填されていくために
起きる。つまり、パッシベーション膜の比誘電率は酸化
膜で38、窒化膜で6.5と高く、金属配線間の空間が
これらの物質で充たされるに従い、配線間容量が増加す
るため起きる。
Thirdly, the prior art has the disadvantage that when the thickness of the passivation film is changed, the inter-wiring capacitance changes, so that the variation in the inter-wiring capacitance among products increases. This occurs because the thicker the passivation film is, the more the inter-wiring gaps are filled with the passivation film. In other words, the dielectric constant of the passivation film is as high as 38 for an oxide film and 6.5 for a nitride film, and as the spaces between metal wirings are filled with these materials, the capacitance between the metal wirings increases.

よって、この発明の目的とするところは、第1に、ウェ
ハ状態と半導体装置組み立て後とで配線間容量に差がで
ないようにすることであり、第2に、配線間の容量を低
減せしめることであり、第3に、パッシベーション膜の
膜厚による配線間容量に差を生ぜしぬないようにするこ
とである。
Therefore, the objects of the present invention are, firstly, to eliminate the difference in the capacitance between wirings between the wafer state and after the semiconductor device is assembled, and secondly, to reduce the capacitance between the wirings. The third objective is to prevent differences in inter-wiring capacitance due to the thickness of the passivation film.

[問題点を解決するための手段] 本発明による半導体装置は、最上層の金属配線を覆うパ
ッシベーション膜が金属配線間において空洞を有してい
る。この空洞は、パッシベーション膜を形成する際の膜
生成条件を適切に設定することにより形成しうるちので
ある。
[Means for Solving the Problems] In the semiconductor device according to the present invention, the passivation film covering the uppermost metal wiring has a cavity between the metal wiring. This cavity can be formed by appropriately setting the film formation conditions when forming the passivation film.

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例を示す断面図である。半導
体基板1上には、眉間絶縁1112、金属配線3および
パッシベーション膜4が形成されており、そして、これ
らはケース樹脂5によって被覆されている。この実施例
の特徴は、パッシベーション膜4内に金属配線間間隙領
域に空洞6を有していることである。この空洞は、パッ
シベーション膜4により上で閉じているので、この空洞
への組み立てケース樹脂の侵入は防止されている。
FIG. 1 is a sectional view showing one embodiment of the present invention. A glabellar insulation 1112, metal wiring 3, and a passivation film 4 are formed on the semiconductor substrate 1, and these are covered with a case resin 5. A feature of this embodiment is that the passivation film 4 has a cavity 6 in the gap region between the metal wirings. Since this cavity is closed at the top by the passivation film 4, intrusion of the assembly case resin into this cavity is prevented.

この構造は、例えば、調整された成長条件を用いた常圧
化学的気相成長法により実現できる。これを第2図によ
り説明する。第2図は、常圧化学的気相成長法による4
mo 1%Pドープシリコンガラスを、膜厚1.0μm
のAI配線上に成長させた場合の、成長膜下部における
垂直成長膜と水平成長膜とのなす角度θと成長温度との
rIlj係をドーピング材料POC1,およびPH,を
パラ、メータとしてプロットしたものである。これによ
り成長温度を低くすること、またドーピング材料をPH
3とすることにより角度θが小さくなること、つまり、
金属配線側部のパッシベーション膜厚が下部よりも上部
において厚くなることが分かる。
This structure can be achieved, for example, by atmospheric pressure chemical vapor deposition using controlled growth conditions. This will be explained with reference to FIG. Figure 2 shows 4.
mo 1% P-doped silicon glass, film thickness 1.0 μm
The rIlj relationship between the angle θ between the vertically grown film and the horizontally grown film at the bottom of the grown film and the growth temperature when grown on the AI wiring of is plotted with the doping material POC1 and PH as parameters. It is. This allows the growth temperature to be lowered and the doping material to be adjusted to PH
3, the angle θ becomes smaller, that is,
It can be seen that the passivation film thickness on the side portions of the metal wiring is thicker at the top than at the bottom.

金属配線間間隙が狭い部分に対して、このような成長条
件でPSGを厚く成長させると配線下部の成長よりも上
部の成長が早くなりついには上部の金属配線側部の膜ど
うしが接触する。その後は金属配線上部にのみ膜が成長
していき金属配線間の間隙領域には空洞が形成される。
If PSG is grown thickly under such growth conditions in a region where the gap between metal interconnects is narrow, the growth of the upper portion of the interconnect will be faster than the growth of the lower portion of the interconnect, and eventually the films on the sides of the upper metal interconnect will come into contact with each other. Thereafter, the film grows only on the upper part of the metal wiring, and a cavity is formed in the gap region between the metal wiring.

実際に、1,0μm間隔、幅2.0μm、長さ10mm
、厚さ1.0μmのAI配線に対しドーピング材料にP
H,を使用し、4mo 1%Pドープシリコンガラスを
400℃で1.5μmの厚さに成長させた場合、空洞を
全配線長にわたり生じさせることできた。この場合、空
洞上に0.5μmの厚さのPドープシリコンガラスを成
長させることができた。この構造を有した半導体装置を
組み立てた場合上部からの空洞内部への樹脂の侵入は抑
えられ、また、パッシベーション膜のクラックも生じな
かった。配線端部には空洞の開放端が生じたがこの部分
からの樹脂の浸入は10μmであった。従って、この例
のように十分長い連続した配線間には空洞が形成され、
そしてこの部分への樹脂の浸入は実質的に起きず、配線
間容量の組み立て前後での変動は無視できるほど小さく
できた。実際に、このパッシベーション膜をマスクRO
Mに適用したところ、ウェハ状態と組み立て後とで読み
出し速度の変動をなくすことができた。
Actually, the spacing is 1.0 μm, the width is 2.0 μm, and the length is 10 mm.
, P is used as a doping material for AI wiring with a thickness of 1.0 μm.
When 4mo 1% P-doped silicon glass was grown to a thickness of 1.5 μm at 400° C. using H, a cavity could be created over the entire wiring length. In this case, it was possible to grow a 0.5 μm thick P-doped silicon glass on the cavity. When a semiconductor device having this structure was assembled, resin was prevented from entering the cavity from above, and no cracks occurred in the passivation film. An open end of a cavity was formed at the end of the wiring, but the infiltration of the resin from this part was 10 μm. Therefore, as in this example, a cavity is formed between sufficiently long continuous wires,
There was virtually no resin infiltration into this part, and the fluctuation in inter-wiring capacitance before and after assembly was negligibly small. Actually, this passivation film is used as a mask RO.
When applied to M, it was possible to eliminate fluctuations in read speed between the wafer state and after assembly.

また、本構造のものにおいては、実施例でパッシベーシ
ョン膜を1.5μm堆積していたものを例えば2.0μ
mと更に厚く堆積しても、この膜厚の増加が配線間容量
に影響を及ぼすことはない。
In addition, in this structure, the passivation film deposited with a thickness of 1.5 μm in the example was replaced with, for example, 2.0 μm.
Even if the film is deposited even thicker than m, this increase in film thickness will not affect the inter-wiring capacitance.

しかも、配線間に一定の空洞が存在しているため配線間
を全てパッシベーション膜あるいはケース樹脂で充填し
た場合より比t14電率の関係から配線間容量を小さく
することができる。
Furthermore, since a certain amount of cavity exists between the wirings, the capacitance between the wirings can be made smaller in terms of the ratio t14 electric rate than when all the spaces between the wirings are filled with a passivation film or case resin.

第2図は、本発明の他の実施例を示す断面図である。こ
の実施例の先の実施例との相違は、パッシベーション膜
が2層になり第1のパッシベーション膜4aと第2のパ
ッシベーション膜4bから構成されていることである。
FIG. 2 is a sectional view showing another embodiment of the invention. The difference between this embodiment and the previous embodiment is that the passivation film is composed of two layers, a first passivation film 4a and a second passivation film 4b.

先の実施例と同様のAI配線を形成した後に、第1のパ
ッシベーション膜4aとして4mo 1%PSGを1.
2μmに成長させ、その後第2のパッシベーションWA
4bとしてプラズマ窒化膜を膜厚0,8μmに成長させ
た。4mo I%PSGの成長条件は、先の実施例と同
じであるのでやはり空洞を生ぜしめることできた。そし
てその後プラズマ窒化膜を成長させたため空洞上部にも
厚さ02μmのPSGと厚さ0.8μmのプラズマ窒化
膜が積層して形成できた。
After forming the same AI wiring as in the previous example, 4mo 1% PSG was applied as the first passivation film 4a.
2μm, then second passivation WA
As 4b, a plasma nitride film was grown to a thickness of 0.8 μm. Since the growth conditions for 4mo I%PSG were the same as in the previous example, cavities could still be produced. After that, a plasma nitride film was grown, so that a 02 μm thick PSG layer and a 0.8 μm thick plasma nitride film were stacked on top of the cavity.

この実施例によれば、窒化膜のような耐湿性に優れ、か
つ、イオン透過に対し抵抗力を持つパッシベーション膜
材料を組み合わせて用いることにより半導体装置の信頼
度も向上できる。また、窒化膜のような比誘電率の大き
い材料を用いても、これが配線間に挿入されることがな
いので配線間容量を増大せしめることはない。
According to this embodiment, the reliability of the semiconductor device can be improved by using a combination of passivation film materials such as a nitride film that has excellent moisture resistance and resistance to ion permeation. Furthermore, even if a material with a high dielectric constant such as a nitride film is used, it will not be inserted between the wirings, so the capacitance between the wirings will not increase.

[発明の効果] 以上説明したように本発明は、半導体装置の配線間の間
隙において空洞を有し、その上表面がほぼ平坦になされ
たパッシベーション膜を有するものであるので、本発明
によれば次の効果を奏することができる。
[Effects of the Invention] As explained above, the present invention has a cavity in the gap between the wirings of a semiconductor device, and has a passivation film whose upper surface is made substantially flat. The following effects can be achieved.

■ 組み立て工程においてケース樹脂が配線間に流れ込
むことがないので、組み立て前後で配線間容量が変化す
ることがなく、ウェハ段階での精度の高いテスティング
を行うことができる。
■ Since case resin does not flow between the wires during the assembly process, the capacitance between the wires does not change before and after assembly, allowing highly accurate testing at the wafer stage.

■ パッシベーション膜の膜厚の差によって配線間容量
が変化することがなく、製品の特性のばらつきを抑える
ことができる。
■ Inter-wiring capacitance does not change due to differences in passivation film thickness, and variations in product characteristics can be suppressed.

■ 配線間の間隙を高誘電率の材料で充填したものでは
ないので、配線間容量を低減させることができる。
■ Since the gaps between the wires are not filled with a material with a high dielectric constant, the capacitance between the wires can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す断面図、第2図は、
膜成長条件と形成膜の形状に関する実験データを示す図
、第3図は、本発明の他の実施例を示す断面図、第4図
は、従来例を示す断面図である。 1・・・半導体基板、 2・・・層間絶縁膜、 3・・
・金属配線、 4・・・パッシベーション膜、 4a・
・・第1のパッシベーション膜、 4b・・・第2のパ
ッシベーション膜、 5・・・ケース樹脂、 6・・・
空洞。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing another embodiment of the present invention, and FIG. 4 is a cross-sectional view showing a conventional example. 1... Semiconductor substrate, 2... Interlayer insulating film, 3...
・Metal wiring, 4... Passivation film, 4a・
...First passivation film, 4b...Second passivation film, 5...Case resin, 6...
cavity.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板と、前記半導体基板上に形成された絶縁膜と
、前記絶縁膜上に形成された複数の配線層と、前記複数
の配線層および前記絶縁膜を覆って形成されたパッシベ
ーション膜とを具備する半導体装置において、前記パッ
シベーション膜には前記配線層間において空洞が形成さ
れておりかつ前記パッシベーション膜の上表面はほぼ平
坦になされていることを特徴とする半導体装置。
A semiconductor substrate, an insulating film formed on the semiconductor substrate, a plurality of wiring layers formed on the insulating film, and a passivation film formed covering the plurality of wiring layers and the insulating film. A semiconductor device characterized in that a cavity is formed in the passivation film between the wiring layers, and the upper surface of the passivation film is made substantially flat.
JP63305336A 1988-12-02 1988-12-02 Method for manufacturing semiconductor device Expired - Lifetime JPH0744178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305336A JPH0744178B2 (en) 1988-12-02 1988-12-02 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305336A JPH0744178B2 (en) 1988-12-02 1988-12-02 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02151032A true JPH02151032A (en) 1990-06-11
JPH0744178B2 JPH0744178B2 (en) 1995-05-15

Family

ID=17943887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305336A Expired - Lifetime JPH0744178B2 (en) 1988-12-02 1988-12-02 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0744178B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407860A (en) * 1994-05-27 1995-04-18 Texas Instruments Incorporated Method of forming air gap dielectric spaces between semiconductor leads
US5468685A (en) * 1992-03-31 1995-11-21 Mitsubishi Denki Kabushiki Kaisha Method for producing a semiconductor integrated circuit
US5641712A (en) * 1995-08-07 1997-06-24 Motorola, Inc. Method and structure for reducing capacitance between interconnect lines
US5661049A (en) * 1994-02-14 1997-08-26 United Microelectronics Corporation Stress relaxation in dielectric before metallization
US5677241A (en) * 1995-12-27 1997-10-14 Micron Technology, Inc. Integrated circuitry having a pair of adjacent conductive lines and method of forming
US5728631A (en) * 1995-09-29 1998-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a low capacitance dielectric layer
US6165897A (en) * 1998-05-29 2000-12-26 Taiwan Semiconductor Manufacturing Company Void forming method for fabricating low dielectric constant dielectric layer
US6440839B1 (en) * 1999-08-18 2002-08-27 Advanced Micro Devices, Inc. Selective air gap insulation
JP2012109496A (en) * 2010-11-19 2012-06-07 Sony Corp Solid state image sensor, manufacturing method of the same, and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205630A (en) * 1986-03-06 1987-09-10 Seiko Epson Corp Semiconductor device
JPS62230026A (en) * 1986-03-31 1987-10-08 Matsushita Electric Ind Co Ltd Formation of thin film
JPS6388829A (en) * 1986-10-01 1988-04-19 Matsushita Electric Ind Co Ltd Vapor growth method
JPS63120427A (en) * 1986-11-10 1988-05-24 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205630A (en) * 1986-03-06 1987-09-10 Seiko Epson Corp Semiconductor device
JPS62230026A (en) * 1986-03-31 1987-10-08 Matsushita Electric Ind Co Ltd Formation of thin film
JPS6388829A (en) * 1986-10-01 1988-04-19 Matsushita Electric Ind Co Ltd Vapor growth method
JPS63120427A (en) * 1986-11-10 1988-05-24 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468685A (en) * 1992-03-31 1995-11-21 Mitsubishi Denki Kabushiki Kaisha Method for producing a semiconductor integrated circuit
US5661049A (en) * 1994-02-14 1997-08-26 United Microelectronics Corporation Stress relaxation in dielectric before metallization
US5407860A (en) * 1994-05-27 1995-04-18 Texas Instruments Incorporated Method of forming air gap dielectric spaces between semiconductor leads
US5641712A (en) * 1995-08-07 1997-06-24 Motorola, Inc. Method and structure for reducing capacitance between interconnect lines
US5728631A (en) * 1995-09-29 1998-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a low capacitance dielectric layer
US5691565A (en) * 1995-12-27 1997-11-25 Micron Technology, Inc. Integrated circuitry having a pair of adjacent conductive lines
US5677241A (en) * 1995-12-27 1997-10-14 Micron Technology, Inc. Integrated circuitry having a pair of adjacent conductive lines and method of forming
US5856703A (en) * 1995-12-27 1999-01-05 Micron Technology, Inc. Integrated circuitry having a pair of adjacent conductive lines
US5932490A (en) * 1995-12-27 1999-08-03 Micron Technology, Inc. Integrated circuitry having a pair of adjacent conductive lines and method of forming
US5981397A (en) * 1995-12-27 1999-11-09 Micron Technology, Inc. Integrated circuitry having a pair of adjacent conductive lines and method of forming
US6165897A (en) * 1998-05-29 2000-12-26 Taiwan Semiconductor Manufacturing Company Void forming method for fabricating low dielectric constant dielectric layer
US6440839B1 (en) * 1999-08-18 2002-08-27 Advanced Micro Devices, Inc. Selective air gap insulation
JP2012109496A (en) * 2010-11-19 2012-06-07 Sony Corp Solid state image sensor, manufacturing method of the same, and electronic apparatus

Also Published As

Publication number Publication date
JPH0744178B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US5306946A (en) Semiconductor device having a passivation layer with silicon nitride layers
US5468684A (en) Integrated circuit with layered superlattice material and method of fabricating same
DE69635953T2 (en) METHOD FOR PRODUCING A Ta205 DIELECTRIC LAYER
US20030015801A1 (en) Semiconductor device
JPH09199496A (en) Micromechanism device and its manufacturing method
JPH02151032A (en) Semiconductor device
US5238863A (en) Process for fabricating gate insulating structure of a charge coupled device
JPS5842227A (en) Manufacture of semiconductor device
JPH03133131A (en) Semiconductor device
JPH04311059A (en) Decreasing method of wiring capacity
JPS62177927A (en) Manufacture of semiconductor integrated circuit device
JPH0342834A (en) Semiconductor device
JPS6161698B2 (en)
JPS62165328A (en) Method of alloying metal after oxidization
US7202184B2 (en) Method for fabricating semiconductor device
JPH0363828B2 (en)
KR100631920B1 (en) Method for fabricating insalating film of semiconductor device
JPH0370160A (en) Manufacture of semiconductor device
JPS6249644A (en) Manufacture of semiconductor device
KR20000043047A (en) Method for fabricating ferroelectric capacitor
JPH06151415A (en) Manufacturing method of semiconductor device
JPH03157925A (en) Manufacture of semiconductor device
JPH0244142B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPS618953A (en) Manufacture of semiconductor device
JPH033382B2 (en)