JPH0214578B2 - - Google Patents

Info

Publication number
JPH0214578B2
JPH0214578B2 JP16137283A JP16137283A JPH0214578B2 JP H0214578 B2 JPH0214578 B2 JP H0214578B2 JP 16137283 A JP16137283 A JP 16137283A JP 16137283 A JP16137283 A JP 16137283A JP H0214578 B2 JPH0214578 B2 JP H0214578B2
Authority
JP
Japan
Prior art keywords
wheel
conical
shaft
carrier
conical wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16137283A
Other languages
Japanese (ja)
Other versions
JPS6053263A (en
Inventor
Ryosuke Okita
Kyohide Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16137283A priority Critical patent/JPS6053263A/en
Publication of JPS6053263A publication Critical patent/JPS6053263A/en
Publication of JPH0214578B2 publication Critical patent/JPH0214578B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • F16H15/503Gearings providing a continuous range of gear ratios in which two members co-operate by means of balls or rollers of uniform effective diameter, not mounted on shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は遊星摩擦式変速装置の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to an improvement in a planetary friction type transmission.

〔従来技術〕[Prior art]

従来一般に知られているこの種の装置を第1
図、第2図に従つて説明する。図において、1は
例えば電動機等の駆動源に連結されて回転する高
速軸、1aはこの高速軸1の一端部に結合された
推力受け体、1bはこの推力受け体1aの内端面
に等間隔に形成された3個の受圧凹部、2は上記
高速軸1にキー3を介して嵌着され且つ上記推力
受け体1aと所定の間隔を介して対向する推力受
け板、2aはこの推力受け板2の上記推力受け体
1aの3個の受圧凹部1bとの対向面に等間隔に
形成された3個の受圧凹部、4は上記高速軸1に
嵌着された止め輪で、上記推力受け板2の駆動源
側への移動を防止している。5,6は上記高速軸
1の上記推力受け体1aと上記推力受け板2との
間に対向して遊嵌された外形円錐梯形状の一対の
太陽ローラ、5a,6aは上記一対の太陽ローラ
5,6の上記推力受け体1a及び上記推力受け板
2の夫々の3個の受圧凹部1b,2aとの対向部
に等間隔に形成された各3個の受圧凹部、7は上
記受圧凹部1b,5a間に嵌挿された3個の銅
球、8は上記受圧凹部2a,6a間に嵌挿された
3個の銅球、9は上記一対の太陽ローラ5,6の
外周面に夫々外接し、且つ等間隔に配設された4
個の外形樽形の中空状の遊星ローラ、10は上記
遊星ローラ9の内周面に嵌着された中空状のメタ
ル、11はこのメタル10の内周に遊嵌され、上
記遊星ローラ9を回転自在に支承する遊星ローラ
軸、12は負荷に連結された低速軸で、上記高速
軸1、太陽ローラ5,6と同一軸線上に配設され
ている。12aは上記低速軸12に結合された平
板部で、上記遊星ローラ軸11が嵌着されてい
る。13は上記4個の遊星ローラ9の各々の外周
面に内接した内周面が凹彎曲状に形成された固定
リング、13aはこの固定リング13の外縁部に
刻設されたキー道、14は上記固定リング13を
内周面に嵌合する筐体、14aはこの筐体14の
内周面に刻設されたキー道、15は上記キー道1
3a,14aとに嵌入されたキーで、上記固定リ
ング13の回動を防止している。16は上記筐体
14の内周面に嵌着された止め輪で、上記固定リ
ング13の一端部と係合して上記固定リング13
の軸方向の移動を防止している。
This is the first known device of this type.
This will be explained with reference to FIGS. In the figure, 1 is a high-speed shaft that is connected to a drive source such as an electric motor to rotate, 1a is a thrust receiver connected to one end of this high-speed shaft 1, and 1b is equidistantly spaced on the inner end surface of this thrust receiver 1a. 2 is a thrust receiving plate that is fitted onto the high-speed shaft 1 via a key 3 and faces the thrust receiving body 1a at a predetermined distance; 2a is this thrust receiving plate; 2, three pressure receiving recesses formed at equal intervals on the surface facing the three pressure receiving recesses 1b of the thrust receiving plate 1a; 4, a retaining ring fitted to the high speed shaft 1; 2 from moving toward the drive source side. Reference numerals 5 and 6 denote a pair of sun rollers having a conical ladder shape, which are loosely fitted in opposition between the thrust receiver 1a and the thrust receiver plate 2 of the high-speed shaft 1, and 5a and 6a are the pair of sun rollers. Three pressure receiving recesses are formed at equal intervals in the portions of the thrust receiving body 1a and the thrust receiving plate 2 facing the three pressure receiving recesses 1b and 2a, and 7 is the pressure receiving recess 1b. , 5a; 8, three copper balls fitted between the pressure receiving recesses 2a, 6a; 9, circumscribing the outer peripheral surfaces of the pair of sun rollers 5, 6, respectively. and 4 equally spaced
10 is a hollow metal fitted to the inner peripheral surface of the planetary roller 9; 11 is loosely fitted to the inner periphery of the metal 10, and the planetary roller 9 is A rotatably supported planetary roller shaft 12 is a low speed shaft connected to a load, and is disposed on the same axis as the high speed shaft 1 and the sun rollers 5 and 6. 12a is a flat plate portion connected to the low-speed shaft 12, into which the planetary roller shaft 11 is fitted. 13 is a fixing ring inscribed in the outer circumferential surface of each of the four planetary rollers 9 and whose inner circumferential surface is formed in a concave curve; 13a is a keyway carved on the outer edge of the fixing ring 13; 14; 14a is a casing into which the fixing ring 13 is fitted on the inner periphery; 14a is a keyway carved into the inner periphery of the casing 14; 15 is the keyway 1;
3a and 14a prevent rotation of the fixing ring 13. Reference numeral 16 denotes a retaining ring fitted to the inner circumferential surface of the housing 14, which engages with one end of the fixing ring 13 and locks the fixing ring 13.
This prevents axial movement of the

次にこのように構成されたものの作用について
説明する。今、高速軸1を入力軸、低速軸12を
出力軸として、高速軸1を駆動源によつて回転す
ると高速軸1に結合された推力受け体1a、止め
輪4、推力受け板2が一体的に回転する。推力受
け体1a、推力受け板2が回転すると銅球7,8
を介して一対の太陽ローラ5,6→遊星ローラ9
→固定リング13に回転力が伝達される。この場
合固定リング13は筐体14にキー15で結合さ
れているので遊星ローラ9は太陽ローラ5,6と
外接、固定リング13と内接し自転且つ公転し、
低速軸12は遊星ローラ9の公転回転数で回転し
負荷を駆動することになる。この場合、負荷の大
小に応じて太陽ローラ5,6に加わる推力が変化
するが、負荷が大なる場合は推力受け体1a→銅
球7→太陽ローラ5、及び推力受け板2→銅球8
→太陽ローラ6の推力が増大し、このため太陽ロ
ーラ5,6と遊星ローラ9との接触圧力が増大
し、且つ遊星ローラ9と固定リング13との接触
圧力も増大し、大なる回転力が低速軸12に伝達
され大なる負荷を駆動することになる。
Next, the operation of the device configured as described above will be explained. Now, when the high-speed shaft 1 is rotated by the drive source with the high-speed shaft 1 as the input shaft and the low-speed shaft 12 as the output shaft, the thrust receiver 1a, the retaining ring 4, and the thrust receiver plate 2 connected to the high-speed shaft 1 are integrated. rotate. When the thrust receiver 1a and the thrust receiver plate 2 rotate, the copper balls 7 and 8
A pair of sun rollers 5, 6 → planetary roller 9
→The rotational force is transmitted to the fixed ring 13. In this case, the fixed ring 13 is connected to the housing 14 with the key 15, so the planetary roller 9 is in circumscribed contact with the sun rollers 5 and 6 and inscribed with the fixed ring 13, and rotates and revolves.
The low-speed shaft 12 rotates at the revolution speed of the planetary roller 9 and drives the load. In this case, the thrust applied to the sun rollers 5 and 6 changes depending on the magnitude of the load, but when the load is large, the thrust receiver 1a→copper ball 7→sun roller 5, and the thrust receiver plate 2→copper ball 8
→The thrust of the sun roller 6 increases, so the contact pressure between the sun rollers 5, 6 and the planetary rollers 9 increases, and the contact pressure between the planetary rollers 9 and the fixed ring 13 also increases, resulting in a large rotational force. This is transmitted to the low speed shaft 12 and drives a large load.

従来のこの種の装置は以上説明したように構成
され、かつ作用するため各構成部品の高精度加工
が必要となるばかりか構造が複雑で、部品点数が
多く装置が大形になる欠点があつた。
Conventional devices of this type are constructed and operated as described above, and therefore not only require high-precision machining of each component, but also have the drawbacks of complex structures, large numbers of parts, and large devices. Ta.

また、遊星ローラは遊星ローラ軸により支承さ
れているため、片持ち受けとなり偏荷重を生じ、
十分なトルク伝達をなし得ない欠点があつた。
In addition, since the planetary roller is supported by the planetary roller shaft, it is supported on a cantilever and causes an uneven load.
The drawback was that sufficient torque transmission could not be achieved.

さらに、この装置による変速比iは i=N1/N2=DI+DS/DS=1+DI/DS ただし、 N1:入力軸1の回転数 N2:出力軸12の回転数 DI:固定リング13の内径 DS:太陽ローラ5,6の外径 であり、変速比iの範囲は3〜5程度と狭いもの
であつた。また各々の接触は点接触となるため高
いヘルツ面圧が発生し、伝達容量が低い製品であ
つた。
Furthermore, the gear ratio i by this device is i=N 1 /N 2 =D I +D S /D S =1+D I /D S However, N 1 : Number of revolutions of input shaft 1 N 2 : Number of revolutions of output shaft 12 D I : Inner diameter of the fixed ring 13 D S : Outer diameter of the sun rollers 5 and 6, and the range of the speed ratio i was narrow, about 3 to 5. In addition, since each contact was a point contact, high Hertzian surface pressure was generated, resulting in a product with low transmission capacity.

〔発明の実施例〕[Embodiments of the invention]

この発明はこのような欠点を解消しようとして
なされたもので、以下第3図乃至第5図に従つて
この発明の一実施例について説明する。
The present invention has been made in an attempt to eliminate such drawbacks, and one embodiment of the present invention will be described below with reference to FIGS. 3 to 5.

第3図において、20は駆動源に連結されて回
転する入力軸、21は上記入力軸20の端部に設
けられた円錐車、22はベアリング23,24を
介して入力軸20を支承する第1のブラケツト、
25はブラケツト22の端面に固定されたハウジ
ング、26は上記ハウジング25に固定された転
動輪(以下固定板と呼ぶ)、27は上記円錐車2
1と固定板26に圧接される3個の鋼球、28は
出力軸、28aは出力軸28に設けられたスプラ
イン軸、29はベアリング30,31を介して出
力軸28を支承し、ハウジング25の他端に固定
された第2のブラケツト、32はスプライン軸2
8aに嵌合し、軸方向に移動可能な保持円板(以
下キヤリアと呼ぶ)、32aはキヤリア32の側
面に各々3ケ所設けられ、円周方向に対して傾斜
角を有して上記鋼球27と各々接触する凹部溝、
33は上記キヤリア32を入力軸側に押付ける弾
性体、28bは上記キヤリア32の出力側への移
動を制限するストツパー部である。
In FIG. 3, 20 is an input shaft that is connected to a drive source and rotates, 21 is a conical wheel provided at the end of the input shaft 20, and 22 is an input shaft that supports the input shaft 20 via bearings 23 and 24. 1 bracket,
25 is a housing fixed to the end face of the bracket 22, 26 is a rolling wheel (hereinafter referred to as a fixed plate) fixed to the housing 25, and 27 is the conical wheel 2.
1 and three steel balls pressed against the fixed plate 26, 28 is an output shaft, 28a is a spline shaft provided on the output shaft 28, 29 supports the output shaft 28 via bearings 30 and 31, and the housing 25 A second bracket 32 is fixed to the other end of the spline shaft 2.
Holding discs (hereinafter referred to as carriers) 32a that are fitted into the carriers 8a and movable in the axial direction are provided at three locations on each side of the carrier 32, and have an inclination angle with respect to the circumferential direction to hold the steel balls. recessed grooves each in contact with 27;
33 is an elastic body that presses the carrier 32 toward the input shaft, and 28b is a stopper that limits the movement of the carrier 32 toward the output side.

第4図は入力軸側より見たキヤリア32の側面
図、第5図は第4図−線断面図であり、キヤ
リア32に設けられた凹部溝32aは円周方向に
傾斜角θを有する。32bは凹部溝32a内の等
高線を示す。
FIG. 4 is a side view of the carrier 32 seen from the input shaft side, and FIG. 5 is a sectional view taken along the line in FIG. 32b indicates a contour line within the recessed groove 32a.

次に鋼球27の接触について第6図によつて説
明する。第6図において鋼球27の中心Oを原点
とし、回転軸20の軸方向をX軸、鋼球27の中
心Oを原点とし、半径方向をZ軸、円錐車21と
鋼球27の圧接点をA、キヤリア32の凹部溝3
2aと鋼球27の圧接点をB、固定板26と鋼球
27の圧接点をC、各圧接点A,B,Cでの押付
力をNA,NB,NCとする。また圧接点BはX軸に
対して角度θを有していてOB線をη軸とする。
つまり、鋼球27と円錐車21、固定板26の圧
接点A,CはX−Z面上にあり、キヤリア32と
の圧接点BはX−Z面に対して角度θだけ傾いた
η−Z面にあり、円錐車21からの一方向の回転
力により、圧接点A,B,Cの3点で円周方向に
楔状に喰い込むことになる。しかし、鋼球27は
円周方向に楔状に喰い込んでいても、η軸を中心
とした自転については自由であり、円錐車21の
回転力により、公転および自転を行なう遊星運動
となり、固定板26の円錐面上を転動し、キヤリ
ア32は減速されることになる。
Next, the contact between the steel balls 27 will be explained with reference to FIG. In FIG. 6, the center O of the steel ball 27 is the origin, the axial direction of the rotating shaft 20 is the X axis, the center O of the steel ball 27 is the origin, the radial direction is the Z axis, and the contact point between the conical wheel 21 and the steel ball 27. A, recess groove 3 of carrier 32
Let B be the pressure contact point between 2a and the steel ball 27, C be the pressure contact point between the fixed plate 26 and the steel ball 27, and let the pressing forces at each pressure contact point A, B, and C be N A , N B , and N C . Further, pressure contact point B has an angle θ with respect to the X axis, and the OB line is set as the η axis.
In other words, the pressure contact points A and C between the steel ball 27, the conical wheel 21, and the fixed plate 26 are on the X-Z plane, and the pressure contact point B with the carrier 32 is on the η- It is located on the Z plane, and due to the unidirectional rotational force from the conical wheel 21, three pressure contact points A, B, and C are wedged in the circumferential direction. However, even though the steel ball 27 is wedged in the circumferential direction, it is free to rotate about the η-axis, and due to the rotational force of the conical wheel 21, it becomes a planetary motion that revolves and rotates, and the fixed plate 26, the carrier 32 is decelerated.

この減速比は次のようになり、キヤリア32の
移動を制限するストツパー部28bの位置を任意
に設定することにより圧接点A,B,Cの3点の
位置が変化し、広範囲の変速比が得られることに
なる。
This reduction ratio is as follows, and by arbitrarily setting the position of the stopper portion 28b that restricts the movement of the carrier 32, the positions of the pressure contact points A, B, and C can be changed, and a wide range of transmission ratios can be achieved. You will get it.

i=NIN/NOUT=1+r1/R1×R2/r2 ただし、円錐車21の回転数 …NIN キヤリア32の回転数 …NOUT 回転軸20からA点までの半径 …R1 回転軸20からC点までの半径 …R2 鋼球27のη軸からA点までの半径 …r1 鋼球27のη軸からC点までの半径 …r2 次に動作について説明する。駆動源より回転力
が伝達されていない状態では、弾性体33の押付
力によりキヤリア32は入力軸側へ押されてい
て、鋼球27は凹部溝32aの一番深い所で接し
ている。
i=N IN /N OUT =1+r 1 /R 1 ×R 2 /r 2 However, the number of revolutions of the conical wheel 21...N IN The number of revolutions of the carrier 32...N OUT The radius from the rotating shaft 20 to point A...R 1 Radius from rotating shaft 20 to point C...R 2 Radius from η axis of steel ball 27 to point A...r 1 Radius from η axis of steel ball 27 to point C...r 2 Next, the operation will be explained. When no rotational force is transmitted from the drive source, the carrier 32 is pushed toward the input shaft by the pressing force of the elastic body 33, and the steel ball 27 is in contact with the recessed groove 32a at its deepest point.

次に入力軸20を起動すると回転力が加わり、
各接点A,B,Cの押付力は変化する。回転力に
よる接点Bの軸方向推力は弾性体33の押付力に
打ち勝ち、キヤリア32は出力軸側へ摺動するこ
とになる。この時、キヤリア32はストツパー部
28bに当接するまで移動し、鋼球27は凹部溝
32aの傾斜面にそつて移動する。キヤリア32
がストツパー部28bに当接すると回転力に応じ
た圧接力で接点A,B,Cでトルク伝達が行なわ
れる。そして入力軸20の回転は鋼球27の遊星
運動により減速されて、出力軸28に伝達される
ことになる。
Next, when the input shaft 20 is started, rotational force is applied,
The pressing force of each contact point A, B, C changes. The axial thrust of the contact B due to the rotational force overcomes the pressing force of the elastic body 33, and the carrier 32 slides toward the output shaft. At this time, the carrier 32 moves until it comes into contact with the stopper portion 28b, and the steel ball 27 moves along the slope of the recessed groove 32a. carrier 32
When it comes into contact with the stopper portion 28b, torque is transmitted at the contacts A, B, and C using a pressing force corresponding to the rotational force. The rotation of the input shaft 20 is then decelerated by the planetary motion of the steel balls 27 and transmitted to the output shaft 28.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば鋼球と円錐車、固
定板、傾斜角を有する凹部溝をもつキヤリアおよ
び弾性体により構成された機構により部品点数が
少なく、小型簡潔、廉価な変速機を提供しうるこ
とになる。なお伝達力が小さい場合には凹部溝は
不要であり、弾性体の弾性力に応じた伝達力が伝
達されることになる。また鋼球に作用する力は3
点の力のつりあいで、回転力に応じた押付力で、
かつ摩擦伝動に必要な最小限の押付力の発生とな
る。そしてキヤリアのストツパー部の位置を任意
に設定することで圧接点の3点を変化させて変速
比を変えることになり、かつ広い変速比の範囲が
えられる。なお、入出力軸は逆にしても変速比が
逆数になるだけで動作は同一である。
As described above, according to the present invention, a small, simple, and inexpensive transmission with a small number of parts is provided by a mechanism composed of steel balls, a conical wheel, a fixed plate, a carrier having a concave groove with an inclined angle, and an elastic body. It will be possible. Note that when the transmission force is small, the recessed groove is not necessary, and the transmission force corresponding to the elastic force of the elastic body is transmitted. Also, the force acting on the steel ball is 3
With the balance of force at a point, the pressing force corresponds to the rotational force,
In addition, the minimum pressing force necessary for frictional transmission is generated. By arbitrarily setting the position of the stopper portion of the carrier, the three pressure contact points can be changed to change the gear ratio, and a wide range of gear ratios can be obtained. Note that even if the input and output shafts are reversed, the operation is the same, except that the gear ratio becomes a reciprocal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の遊星摩擦式変速装置の一部側面
図、第2図は第1図の−断面図、第3図はこ
の発明の一実施例を示す断面図、第4図はキヤリ
アの側面図、第5図は第4図の−断面図、第
6図は本発明の動作説明図である。 図中、20は入力軸、21は円錐車、22,2
9はブラケツト、25はハウジング、26は固定
板、27は鋼球、28は出力軸、32はキヤリ
ア、33は弾性体である。尚図中、同一符号は同
一または相当部分を示す。
Fig. 1 is a partial side view of a conventional planetary friction type transmission, Fig. 2 is a cross-sectional view taken from Fig. 1, Fig. 3 is a sectional view showing an embodiment of the present invention, and Fig. 4 is a cross-sectional view of a carrier. 5 is a side view, FIG. 5 is a cross-sectional view taken from FIG. 4, and FIG. 6 is an explanatory diagram of the operation of the present invention. In the figure, 20 is an input shaft, 21 is a conical wheel, 22, 2
9 is a bracket, 25 is a housing, 26 is a fixed plate, 27 is a steel ball, 28 is an output shaft, 32 is a carrier, and 33 is an elastic body. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 円錐車、この円錐車と同心に配置され内周に
円錐面を有する転動輪、上記円錐車と転動輪の円
錐面に当接する球体、上記球体と円周方向に対し
て所定の傾斜角をもつて当接する側面を有する保
持円板、および上記円錐車、転動輪、保持円板の
いずれか一つを上記球体に押付ける弾性体を備え
たことを特徴とする遊星摩擦式変速装置。 2 傾斜角を2゜〜15゜の範囲としたことを特徴と
する特許請求の範囲第1項記載の遊星摩擦式変速
装置。 3 円錐車、転動輪、保持円板のいずれか一つを
固定したことを特徴とする特許請求の範囲第1項
または第2項記載の遊星摩擦式変速装置。
[Scope of Claims] 1. A conical wheel, a rolling wheel arranged concentrically with the conical wheel and having a conical surface on its inner periphery, a sphere that comes into contact with the conical wheel and the conical surface of the rolling wheel, and a conical wheel with respect to the circumferential direction of the conical wheel. a holding disk having a side surface that abuts at a predetermined inclination angle; and an elastic body that presses any one of the conical wheel, rolling wheel, and holding disk against the spherical body. Friction type transmission. 2. The planetary friction type transmission according to claim 1, characterized in that the angle of inclination is in the range of 2° to 15°. 3. The planetary friction transmission according to claim 1 or 2, wherein any one of a conical wheel, a rolling wheel, and a holding disk is fixed.
JP16137283A 1983-08-31 1983-08-31 Planetary frictional transmission Granted JPS6053263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16137283A JPS6053263A (en) 1983-08-31 1983-08-31 Planetary frictional transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16137283A JPS6053263A (en) 1983-08-31 1983-08-31 Planetary frictional transmission

Publications (2)

Publication Number Publication Date
JPS6053263A JPS6053263A (en) 1985-03-26
JPH0214578B2 true JPH0214578B2 (en) 1990-04-09

Family

ID=15733831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16137283A Granted JPS6053263A (en) 1983-08-31 1983-08-31 Planetary frictional transmission

Country Status (1)

Country Link
JP (1) JPS6053263A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965397B2 (en) * 2007-09-07 2012-07-04 株式会社豊田中央研究所 Friction type planetary power transmission mechanism and design method thereof

Also Published As

Publication number Publication date
JPS6053263A (en) 1985-03-26

Similar Documents

Publication Publication Date Title
JPH0228027B2 (en)
JPH0533840A (en) Planetary friction type speed changer
JPH0214578B2 (en)
JPH06241285A (en) Friction gearing type wave motion device
JPS6032056B2 (en) Axial load device
JPH0238716A (en) Power transmission joint
US6902510B2 (en) Toroidal-type continuously variable transmission
JPS6053265A (en) Planetary frictional transmission
JPS6053266A (en) Planetary frictional transmission
JPS6053264A (en) Planetary frictional transmission
JPS6246045A (en) Speed reduction gear and speed reduction geared motor
JPH0621621B2 (en) Planetary roller reducer
JPS5852092B2 (en) ITSUPOKURATSUCHI
JP3247733B2 (en) Magnetic friction roller type reducer
JP3086233B2 (en) Friction transmission type harmonic transmission
JPH0735212A (en) Deceleration device
JPS6316918Y2 (en)
JPH0147667B2 (en)
JPS6057049A (en) Centrifugal stepless speed change device
JPS6053268A (en) Device for transmitting motive power
JPS6053267A (en) Device for transmitting motive power
JPH06193698A (en) Friction gearing speed reducer
JP2604078Y2 (en) Planetary roller type power transmission
JP4486835B2 (en) Planetary friction transmission speed reducer
JPH0523881Y2 (en)