JPH0147667B2 - - Google Patents

Info

Publication number
JPH0147667B2
JPH0147667B2 JP57010465A JP1046582A JPH0147667B2 JP H0147667 B2 JPH0147667 B2 JP H0147667B2 JP 57010465 A JP57010465 A JP 57010465A JP 1046582 A JP1046582 A JP 1046582A JP H0147667 B2 JPH0147667 B2 JP H0147667B2
Authority
JP
Japan
Prior art keywords
conical
revolving
wheel
flexible
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57010465A
Other languages
Japanese (ja)
Other versions
JPS58128553A (en
Inventor
Buichi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichimen Co Ltd
Original Assignee
Nichimen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichimen Co Ltd filed Critical Nichimen Co Ltd
Priority to JP1046582A priority Critical patent/JPS58128553A/en
Publication of JPS58128553A publication Critical patent/JPS58128553A/en
Publication of JPH0147667B2 publication Critical patent/JPH0147667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)

Description

【発明の詳細な説明】 内筒摩擦車を用いた内公転車機構では各転がり
接触面への均等な加圧は困難であり、回転比も一
機構では大きくとることができない欠点がある。
DETAILED DESCRIPTION OF THE INVENTION In an inner revolving wheel mechanism using an inner cylindrical friction wheel, it is difficult to apply pressure evenly to each rolling contact surface, and the rotation ratio cannot be increased with one mechanism.

本発明は公転腕の定点で回転することによりそ
の軸心の半径方向位置を平行に変えられる偏心公
転軸に軸受を介して取付けた複数個の公転歯車
と、之と反方向円錐角の中心円錐車との一方又は
双方を弾性体で加圧することにより、之等公転円
錐車と可撓円錐環、及び可撓円錐環と円錐内筒を
均衡に圧接して公転−内擺差動成分の回転比を得
ようとする公転円錐車と可撓円錐環による摩擦伝
導装置に関するものである。
The present invention consists of a plurality of revolving gears attached via bearings to an eccentric revolving shaft that can change the radial position of the axis in parallel by rotating at a fixed point of the revolving arm, and a central cone having a cone angle in the opposite direction. By pressurizing one or both of the wheels with an elastic body, the orbiting conical wheel and the flexible conical ring, and the flexible conical ring and the conical inner cylinder are brought into equilibrium pressure contact, and the revolution-internal rotation differential component is rotated. This invention relates to a friction transmission device using a revolving conical wheel and a flexible conical ring to obtain a ratio.

その実施例を図面に就て説明する。第1図は3
分割公転車を使用した本装置応用の減、増速機の
中央断面図、第2図は同平面図である。
The embodiment will be explained with reference to the drawings. Figure 1 is 3
A cross-sectional view of the speed increaser in the application of this device using a split revolving vehicle, and FIG. 2 is a plan view of the same.

本実施例に於て円錐内筒4はハウジング13と
一体化され、入力軸12とキーで嵌合された中心
円錐車1は中心軸線X−X上に軸受を介して定位
置に取付けられている。円錐内筒4内にその径よ
り小さい外径の可撓円錐環3を設け、之等円錐面
と反方向勾配の中心円錐車1との間に3個の公転
円錐車2を軸承を介して偏心公転軸6に嵌合し、
その偏心部を公転腕5に回転可能に取付け、公転
腕5と軸受間に設けた弾性体9により各公転車2
をその大径側から加圧すると共に公転腕軸とキー
で連結した低速軸7の中心穴内のコイルバネ11
によつて各円錐車と環及び内筒間の転がり接触面
を平均に圧接させたものである。
In this embodiment, the conical inner cylinder 4 is integrated with the housing 13, and the central conical wheel 1, which is fitted with the input shaft 12 with a key, is mounted at a fixed position on the central axis XX via a bearing. There is. A flexible conical ring 3 having an outer diameter smaller than the diameter of the flexible conical ring 3 is provided inside the conical inner cylinder 4, and three revolving conical wheels 2 are mounted between the conical surface and the central conical wheel 1 having a slope in the opposite direction via bearings. Fits into the eccentric revolution shaft 6,
The eccentric part is rotatably attached to the revolving arm 5, and the elastic body 9 provided between the revolving arm 5 and the bearing allows each revolving wheel 2
The coil spring 11 in the center hole of the low-speed shaft 7 is pressurized from its large diameter side and connected to the revolving arm shaft with a key.
The rolling contact surfaces between each conical wheel, ring, and inner cylinder are brought into even pressure contact.

本例のような円錐車の組合せでは接触線での周
速が異なり夫々が反方向に滑り乍ら回転すること
となるからその平均径で回転比を考えることとす
る。
In a combination of conical wheels as in this example, the circumferential speeds at the contact line are different and each rotates while sliding in opposite directions, so the rotation ratio will be considered in terms of their average diameter.

今中心円錐車1の平均直径をa 公転 〃 2 〃 bとし之に内接する 可撓円錐環3の平均内径をc1、同外径をc2 円錐筒4の内径をdとすれば回転比は 1/R=a/a+c1−d−c2/c2となる。 Now, if the average diameter of the central conical wheel 1 is a, revolution 〃 2 〃 b, and the average inner diameter of the flexible conical ring 3 inscribed therein is c 1 , its outer diameter is c 2 , and the inner diameter of the conical cylinder 4 is d, then the rotation ratio is becomes 1/R=a/a+ c1 -d- c2 / c2 .

即ちこの回転比は内公転と内擺回転比の差とな
りその差が小さくなる程回転比は増大することが
判る。内公転機構で公転車が2個の場合その回転
比は1/10以上のものも得られるが本例のような3
分割の場合は通常1/9、4分割のものでは1/6程度
と回転比は制約される。一方内擺機構の回転比は
円錐内筒4と円錐環外周差と円錐環の外周比とな
るためにその差d−c2値によつて回転比が定ま
る。3分割公転車で可撓円錐環3を使用する場合
この差の最大値は d−c2=d−3(a+b)cos30゜/π+(b+2t
) t=環の厚さ となり、金属環を使用する場合概して大きな差を
とることはできない。従つて本装置で大きな回転
比を得ようとする場合は伝達能力を犠性にしても
2分割公転車を採用するか或は第3図のように中
心円錐車1の円錐角α1より大きな円錐角α2をもつ
可撓円錐環3に夫々圧接する公転車2を組合せ
る。例えば各円錐車の平均径をa=16、b=56、
c=(16+56×2)−8=120とすれば前記の内公
転車機構での減速比 1/R=a/a+c=16/16+120=1/8.5となる。
That is, it can be seen that this rotation ratio is the difference between the inner revolution and the inner shaft rotation ratio, and as the difference becomes smaller, the rotation ratio increases. If there are two revolution wheels in an inner revolution mechanism, the rotation ratio can be 1/10 or more, but 3 as in this example
The rotation ratio is usually limited to 1/9 in the case of a split shaft, and around 1/6 in a four-split design. On the other hand, since the rotation ratio of the inner scroll mechanism is determined by the difference between the outer circumferences of the conical inner cylinder 4 and the conical ring, and the outer circumference ratio of the conical ring, the rotation ratio is determined by the difference d-c 2 value. When using the flexible conical ring 3 on a three-part revolving vehicle, the maximum value of this difference is d-c 2 = d-3 (a + b) cos30° / π + (b + 2t
) t=thickness of the ring, and when using a metal ring, it is generally not possible to make a large difference. Therefore, when trying to obtain a large rotation ratio with this device, it is necessary to adopt a two-part revolving wheel even at the expense of transmission capacity, or to use a cone angle α larger than 1 of the central conical wheel 1 as shown in Fig. 3. A flexible conical ring 3 having a cone angle α 2 is combined with a pair of revolution wheels 2 that press against each other. For example, the average diameter of each conical wheel is a=16, b=56,
If c=(16+56×2)-8=120, then the reduction ratio in the inner revolution wheel mechanism described above becomes 1/R=a/a+c=16/16+120=1/8.5.

円錐角の異なるものでは a1=14 b1(大径)=58 b2(小径)=52 c2=120
−8=112とすれば 1/R=a1b2/a1b2+b1c1=14×52/14×52+58×112
=1/9.923 と稍大きな回転比となる。
For those with different cone angles, a 1 = 14 b 1 (large diameter) = 58 b 2 (small diameter) = 52 c 2 = 120
If −8=112, then 1/R=a 1 b 2 /a 1 b 2 +b 1 c 1 =14×52/14×52+58×112
= 1/9.923, which is a slightly large rotation ratio.

本装置の円錐転がり接触面圧は可撓円錐環3の
曲げ荷重と弾性体9,11の取付圧力の増巾値
(円錐角がテーパー10゜のときは弾性体圧力Kg/
sin5゜≒約11.4倍)の和となる。円錐筒4と可撓円
錐環3の内擺接触面は弾性体の増巾圧力だけであ
るが、その接触面は径差の小さい凹凸面接触とな
るために摩擦面積が大きく、強大な伝導力が得ら
れる。
The conical rolling contact surface pressure of this device is the amplification value of the bending load of the flexible conical ring 3 and the mounting pressure of the elastic bodies 9 and 11 (when the cone angle is 10° taper, the elastic body pressure Kg/
sin5゜≒approximately 11.4 times). The inner surface of the conical cylinder 4 and the flexible conical ring 3 is in contact with only the amplified pressure of the elastic body, but since the contact surface is a concave and convex surface with a small difference in diameter, the friction area is large and a strong conductive force is generated. is obtained.

本装置の特徴は各円錐車の軸受負担を増すこと
なく各円錐車の転がり接触面に軸方向推力を増大
してかけられることである。この場合中心円錐車
1は他車に比べて相対滑り速度が大きいために摩
擦が早いが、偏心公転軸6に各円錐接触面圧は常
に平衡状態が保たれる。一般に内公転機構の公転
車の半径方向誤差は軸承遊隙で補償するのが普通
であるが、この場合各公転車の偏心誤差等による
高速振動は吸収することができず騒音の原因とな
る。又摩耗補償調整も僅かしかできない。偏心公
転車は偏心距離を自由に大きくとることができ、
偏心方向を取付時同一円周方向に配列することに
より回転方向に関係なく、公転車2の半径方向位
置を大きく変化させることができる。本実施例で
は複数個の公転車2は弾性体9で別個に加圧され
ているために各公転車2の偏心誤差はこの部で吸
収することができる。更に低速軸7の中心穴に設
けたコイルバネ11によつて公転腕5は軸方向へ
加圧されているために各円錐車や環の転がり接触
面を平均に加圧すると共にその摩耗代を大きく補
償することが可能である。
The feature of this device is that an increased axial thrust can be applied to the rolling contact surface of each conical wheel without increasing the bearing load on each conical wheel. In this case, the center conical wheel 1 has a higher relative sliding speed than the other wheels, so the friction is faster, but the contact pressure of each cone on the eccentric revolving shaft 6 is always maintained in an equilibrium state. Generally, errors in the radial direction of the revolution wheels of the inner revolution mechanism are usually compensated for by bearing play, but in this case, high-speed vibrations due to eccentricity errors of each revolution wheel cannot be absorbed, causing noise. Also, only a small amount of wear compensation adjustment is possible. An eccentric revolving vehicle can freely increase the eccentric distance,
By arranging the eccentric directions in the same circumferential direction at the time of installation, the radial position of the revolving wheel 2 can be greatly changed regardless of the rotation direction. In this embodiment, since the plurality of revolving wheels 2 are separately pressurized by the elastic body 9, the eccentricity error of each revolving wheel 2 can be absorbed by this portion. Furthermore, since the revolving arm 5 is pressurized in the axial direction by the coil spring 11 provided in the center hole of the low-speed shaft 7, the rolling contact surfaces of each conical wheel and ring are pressurized evenly, and the wear allowance is largely compensated for. It is possible to do so.

摩擦車伝導装置に於てその伝達力はその転がり
接触部の圧力によつて決るが過圧は摩擦が発熱害
が多く、伝達効率も低下するから弾性体9,11
の加圧は予じめ負荷に応じた適当な荷重に設定す
る必要がある。
In a friction wheel transmission device, the transmission force is determined by the pressure of the rolling contact part, but if the pressure is too high, the friction will generate more heat and the transmission efficiency will decrease, so the elastic bodies 9, 11
The pressurization must be set in advance to an appropriate load depending on the load.

第4図は中心円錐車1と高速軸12間にボール
や正面カムを利用した回転−推力変換機を取付
け、その軸受部を弾性体16で締付けた装置を付
加したもので摩擦伝達力は負荷に比例して自動的
に加減される。即ち負荷が増大するに従い中心円
錐車1が突出し、公転円錐車2公転腕5を移動さ
せるために弾性体9,11が圧縮されて伝達力が
増加する。反対に負荷が減少すると中心円錐車1
は弾性体16により後退するために弾性体9,1
1が伸長し各接触面圧が減少する。
Figure 4 shows a system in which a rotation-to-thrust converter using balls and front cams is installed between the central conical wheel 1 and the high-speed shaft 12, and a device in which the bearing part is tightened with an elastic body 16 is added, and the friction transmission force is applied to the load. will be automatically adjusted in proportion to That is, as the load increases, the central conical wheel 1 protrudes, and in order to move the revolving conical wheel 2 and the revolving arms 5, the elastic bodies 9 and 11 are compressed, and the transmitted force increases. On the other hand, when the load decreases, the center conical wheel 1
is retracted by the elastic body 16, so that the elastic body 9,1
1 expands and each contact surface pressure decreases.

本装置は又可撓円錐環3を円錐筒4内で擺回さ
せる公転−内擺差動装置であるから各回転比の差
を小さくする程急激に回転比を増加することがで
きる。
Since this device is a revolution-internal rotation differential device in which the flexible conical ring 3 is rotated within the conical cylinder 4, the rotation ratio can be rapidly increased as the difference between each rotation ratio is made smaller.

而も内公転摩擦車機構に薄い可撓円錐環3を増
設するだけで大きな回転比のものが得られる。更
に本装置は又偏心公転軸6により公転車2の軸心
位置が変えられるために円錐筒を移動することに
より変速機として利用することができる。
Moreover, a large rotation ratio can be obtained simply by adding a thin flexible conical ring 3 to the inner revolving friction wheel mechanism. Furthermore, this device can also be used as a transmission by moving the conical cylinder, since the axial center position of the revolving wheel 2 can be changed by the eccentric revolving shaft 6.

第6図にその実施例を示す。 FIG. 6 shows an example thereof.

中心円錐車1は軸受を介してハウジング13の
定位置で回転できる軸受套19で保持され、両軸
受間のコイルバネ21で公転車2と圧接させてあ
る。一方可撓円錐環3と転がり接触する円錐筒1
7はハウジング13の内筒部に滑りキーで固定さ
れ、軸方向に摺動できるようになつて居り、之に
固着したフランジ18と軸受套19はネジで結合
し、軸承套19はハンドル20で回転できるよう
になつている。ハンドル20を回転して円錐筒1
7を公転車2の大径側に移動させると公転腕5は
一定以上後退することはできないので偏心公転軸
6が回転し公転車2の軸心径が縮小して中心円錐
車1が後退する。
The central conical wheel 1 is held by a rotatable bearing sleeve 19 at a fixed position in a housing 13 via a bearing, and is brought into pressure contact with the revolution wheel 2 by a coil spring 21 between both bearings. On the other hand, a conical tube 1 that rolls into contact with a flexible conical ring 3
7 is fixed to the inner cylindrical portion of the housing 13 with a sliding key so as to be able to slide in the axial direction, and the flange 18 fixed thereto and the bearing sleeve 19 are connected with screws, and the shaft bearing sleeve 19 is connected with the handle 20. It is designed to be able to rotate. Rotate the handle 20 to remove the conical tube 1.
When 7 is moved to the larger diameter side of the revolving wheel 2, the revolving arm 5 cannot move back more than a certain amount, so the eccentric revolving shaft 6 rotates, the axial center diameter of the revolving wheel 2 is reduced, and the central conical wheel 1 moves backward. .

可撓円錐環3の径は変らないので公転−擺回比
の差動値が漸増し回転比は小さくなる。即ち出力
は増速される。
Since the diameter of the flexible conical ring 3 does not change, the differential value of the revolution-swing ratio gradually increases and the rotation ratio becomes smaller. That is, the output speed is increased.

円錐筒17を反対側に移動させると中心円錐車
がコイルバネ21により突出し、公転車2の軸心
径を増大するために可撓円錐環3の外周と円錐筒
17の内周差が漸増し公転−擺回比差が縮小され
るために差動成分が大きく作用して回転比が増大
する。本変速機の回転比は主として公転−擺回比
の差によつて定まるために大きな変速比のものが
容易に得られる。変速操作も弾性体で平衡が保た
れているために軽快に行うことができる。又前記
自動トルク調整装置と併用したり、別個の操作動
力で自動変速化することも容易である。
When the conical cylinder 17 is moved to the opposite side, the central conical wheel is projected by the coil spring 21, and in order to increase the axial center diameter of the revolving wheel 2, the difference between the outer circumference of the flexible conical ring 3 and the inner circumference of the conical cylinder 17 gradually increases. - Since the rotation ratio difference is reduced, the differential component acts greatly and the rotation ratio increases. Since the rotation ratio of this transmission is determined mainly by the difference between revolution and rotation ratio, a large transmission ratio can be easily obtained. Shifting operations can also be carried out easily because the balance is maintained with an elastic body. Further, it is easy to use the automatic torque adjusting device in combination with the automatic torque adjusting device or to automatically change the speed using a separate operation power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本装置一実施例の中央断面図、第2図
は同平面図である。第3図は円錐角の異なる中心
円錐車1と可撓円錐環3に公転車2を圧接させた
場合の断面説明図、第4図は自動トルク調整式本
装置の回転−推力変換機構部の断面図、第5図は
本装置利用変速機の断面構造図である。 1……中心円錐車、2……公転円錐車、3……
可撓円錐環、4……円錐筒、5……公転腕、6…
…偏心公転軸、7……低速軸、8……フランジ、
9……弾性体(皿バネ)、10……スペーサー、
11……コイルバネ、12……高速軸、13……
ハウジング、14……回転−推力変換機、15…
…軸受套、16……コイルバネ(戻しバネ)、1
7……円錐筒(摺動)、18……フランジ、19
……軸受套、20……ハンドル、21……コイル
バネ。
FIG. 1 is a central sectional view of one embodiment of the present device, and FIG. 2 is a plan view thereof. Fig. 3 is a cross-sectional explanatory diagram when the revolving wheel 2 is brought into pressure contact with the central conical wheel 1 and the flexible conical ring 3, which have different cone angles, and Fig. 4 is an illustration of the rotation-thrust conversion mechanism of the automatic torque adjustment type device. 5 is a cross-sectional structural diagram of a transmission using this device. 1...Central conical wheel, 2...Revolving conical wheel, 3...
Flexible conical ring, 4... Conical cylinder, 5... Revolution arm, 6...
...Eccentric revolution axis, 7...Low speed axis, 8...Flange,
9...Elastic body (disc spring), 10...Spacer,
11...Coil spring, 12...High speed shaft, 13...
Housing, 14...Rotation-thrust converter, 15...
...Bearing sleeve, 16...Coil spring (return spring), 1
7... Conical cylinder (sliding), 18... Flange, 19
... Bearing mantle, 20 ... Handle, 21 ... Coil spring.

Claims (1)

【特許請求の範囲】 1 円錐内筒4にその円錐径より小さい外径の可
撓円錐環3を設け、その円錐面と反方向勾配の中
心円錐車1との間に複数個の公転円錐車2を軸受
を介して偏心公転軸6に嵌合し、その偏心部を公
転腕5に回転可能に取付け、公転腕5と中心円錐
車1の何れか一方又は双方を弾性体で加圧するこ
とにより各円錐車と可撓円錐環3及び円錐内筒4
の転がり接触面を均衡に圧接させた公転円錐摩擦
車による可撓円錐環の内擺差動装置。 2 中心円錐車1と高速軸12間にボール又は正
面カム応用の回転−推力変換機構14を設け、駆
動時負荷トルクに応じて各円錐車と可撓円錐環3
内外部の円錐転がり接触面の圧接力が自動的に加
減できる特許請求範囲第1項記載の公転円錐摩擦
車による可撓環内擺差動装置の自動トルク調整機
構。 3 ハウジング13内筒にキー、スプライン等に
よつて軸方向へ摺動できるように取付けた円錐套
21に公転車2によつて可撓環3がその内周に圧
接するように中心円錐車1及び公転腕5双方を弾
性体で加圧した円錐摩擦車機構に於て、円錐套2
1を軸方向へ摺動させることによつて回転比を変
えることができるようにした特許請求範囲第1
項、第2項記載の公転円錐摩擦による可撓円錐環
の内擺差動変速機。
[Scope of Claims] 1. A flexible conical ring 3 having an outer diameter smaller than the conical diameter is provided in the conical inner cylinder 4, and a plurality of revolving conical wheels are provided between the conical surface and the central conical wheel 1 having a slope in the opposite direction. 2 is fitted onto the eccentric revolving shaft 6 via a bearing, its eccentric part is rotatably attached to the revolving arm 5, and either or both of the revolving arm 5 and the central conical wheel 1 are pressurized with an elastic body. Each conical wheel, flexible conical ring 3 and conical inner cylinder 4
A flexible conical ring internal differential with a revolving conical friction wheel whose rolling contact surfaces are in even pressure contact. 2. A rotation-thrust conversion mechanism 14 using a ball or a front cam is provided between the central conical wheel 1 and the high-speed shaft 12, and each conical wheel and the flexible conical ring 3 are connected according to the load torque during driving.
An automatic torque adjustment mechanism for a flexible ring internal sliding differential device using a revolving conical friction wheel according to claim 1, which can automatically adjust the pressure contact force between the inner and outer conical rolling contact surfaces. 3. The center conical wheel 1 is mounted so that the flexible ring 3 is pressed against the inner periphery of the conical sleeve 21 by the revolving wheel 2, which is attached to the inner cylinder of the housing 13 so as to be able to slide in the axial direction by means of keys, splines, etc. In a conical friction wheel mechanism in which both the revolving arm 5 and the revolving arm 5 are pressurized by an elastic body, the conical mantle 2
Claim 1, in which the rotation ratio can be changed by sliding 1 in the axial direction.
2. An internal rotary differential transmission with a flexible conical ring using revolving conical friction according to item 1 and 2.
JP1046582A 1982-01-26 1982-01-26 Cycloidal differentiating device in flexible conical ring by revolving conical frictional wheel Granted JPS58128553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1046582A JPS58128553A (en) 1982-01-26 1982-01-26 Cycloidal differentiating device in flexible conical ring by revolving conical frictional wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1046582A JPS58128553A (en) 1982-01-26 1982-01-26 Cycloidal differentiating device in flexible conical ring by revolving conical frictional wheel

Publications (2)

Publication Number Publication Date
JPS58128553A JPS58128553A (en) 1983-08-01
JPH0147667B2 true JPH0147667B2 (en) 1989-10-16

Family

ID=11750879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046582A Granted JPS58128553A (en) 1982-01-26 1982-01-26 Cycloidal differentiating device in flexible conical ring by revolving conical frictional wheel

Country Status (1)

Country Link
JP (1) JPS58128553A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT393548B (en) * 1988-07-18 1991-11-11 Bock Orthopaed Ind PLANETARY DRIVE GEARBOX

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039222A (en) * 1973-08-10 1975-04-11

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118978U (en) * 1978-02-10 1979-08-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039222A (en) * 1973-08-10 1975-04-11

Also Published As

Publication number Publication date
JPS58128553A (en) 1983-08-01

Similar Documents

Publication Publication Date Title
US2959972A (en) Single ball joint roller support for toroidal variable ratio transmissions
JP2604422B2 (en) Loading gum device for toroidal continuously variable transmission
JP2609919B2 (en) Friction conduction device
US20080234095A1 (en) Planetary Gear
US2936638A (en) Variable speed friction drive
JPH0147667B2 (en)
US4112787A (en) Epicyclic friction transmission with torque-dependent pressure-exerting device
JPH03153947A (en) Planetary traction type transmission for high speed rotation
JPS6032056B2 (en) Axial load device
US6902510B2 (en) Toroidal-type continuously variable transmission
JP3457700B2 (en) Right angle rolling transmission
JP5182593B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JPS6128121Y2 (en)
JP2979945B2 (en) Friction wheel type continuously variable transmission
JPH06272745A (en) Frictional epicyclic roller-type reduction gear
JP4032547B2 (en) Toroidal type continuously variable transmission assembly method
JPH0323782B2 (en)
JP3899761B2 (en) Toroidal continuously variable transmission
US6945904B2 (en) Toroidal-type continuously variable transmission
JPH10339361A (en) Toroidal type continuously variable transmission
JP2576535Y2 (en) Disc for toroidal type continuously variable transmission
JPS5810040Y2 (en) Rolling transmission type planetary roller device
JP2002147461A (en) Toroidal type continuously variable transmission
JPS6315632Y2 (en)
US4454782A (en) Torque transmitting body for traction drive transmissions and normal friction force developing method