JPH02145423A - Production of oxide-based superconductor - Google Patents

Production of oxide-based superconductor

Info

Publication number
JPH02145423A
JPH02145423A JP30023488A JP30023488A JPH02145423A JP H02145423 A JPH02145423 A JP H02145423A JP 30023488 A JP30023488 A JP 30023488A JP 30023488 A JP30023488 A JP 30023488A JP H02145423 A JPH02145423 A JP H02145423A
Authority
JP
Japan
Prior art keywords
powder
superconductor
crystallized
oxide
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30023488A
Other languages
Japanese (ja)
Inventor
Arihiko Morita
森田 有彦
Tsutomu Minami
努 南
Noboru Toge
峠 登
Masahiro Tatsumisuna
昌弘 辰巳砂
Takenori Deguchi
出口 武典
Hirobumi Bukatsu
博文 武津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP30023488A priority Critical patent/JPH02145423A/en
Publication of JPH02145423A publication Critical patent/JPH02145423A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the preparation time, homogenize the composition and finely divide powder by crystallizing vitrified powder according to a specific method in electrodepositing crystallized powder of a superconductor composition consisting of Bi, Sr, Ca and Cu by an electrophoretic method and preparing a superconductor. CONSTITUTION:BiO3, SrO, CaO and CuO are blended with the range surrounded by dotted lines in the figure so as to vitrify by melting, quenching and cooling thereof. The resultant blend, as necessary, is heated at 450-550 deg.C to previously decompose substances having a low decomposition temperature and the resultant heated blend is subsequently calcined at 750-860 deg.C for preferably 2-20hr. The resultant calcined powder is press formed into an optional shape and sintered at 750-860 deg.C for 2-4hr. The sintered compact is subsequently placed on rotary cooling rolls and molten drops are dripped between the rolls while melting the compact from the lower side, quenched and cooled to afford thin film glass of 10-50mu thickness. The obtained glass is then finely pulverized, heated to 750-860 deg.C and crystallized. The crystallized powder is suspended in a solvent and electrodeposited on electrodes by an electrophoretic method to afford an oxide-based superconductor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導体組成の粉末を電気泳動法で電着させ
て超伝導体を作製する方法において、粉末の調製時間短
縮化、組成均質化および微細化を図った作製方法に関す
る。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for producing a superconductor by electrodepositing a powder having a superconducting composition by electrophoresis, reducing the preparation time of the powder, and improving the composition of the superconductor. This invention relates to a manufacturing method that achieves homogenization and miniaturization.

(従来技術) 酸化物系超伝導体は、加工性が劣るので、作製の時に目
的の形状に作製する必要がある。このような超伝導体の
作製方法として、超伝導体粉末材料を目的の形状に加工
した電極に電気泳動法で電着させる方法がある。
(Prior Art) Oxide-based superconductors have poor workability, so it is necessary to manufacture them into a desired shape. As a method for producing such a superconductor, there is a method in which a superconductor powder material is electrodeposited onto an electrode processed into a desired shape by electrophoresis.

この方法は、原料を組成が超伝導体の配合比になるよう
に混合して仮焼成した後、粉砕して超伝導体材料とし、
この材料を溶媒中に懸濁させ、電気泳動法により目的の
形状に加工した電極上に析出させるか、または、電着後
に焼成する方法であるが、超伝導体材料の粉砕は、焼成
したものを単に機械的に粉砕する方法で行っていた。
This method involves mixing the raw materials so that the composition matches that of the superconductor, pre-calcining them, and then pulverizing them to produce a superconductor material.
This material is suspended in a solvent and deposited on an electrode processed into the desired shape using electrophoresis, or the superconductor material is pulverized by firing after electrodeposition. This was done by simply mechanically crushing.

(発明が解決しようとする問題点) しかしながら、この方法でBi −Sr −ea −C
u −0系の超伝導体を作製する場合、電着後焼成して
も、焼成時の反応が同相反応であるため、粒界と粒内の
組成が異なり、全体を均質な組成にできず、また、金属
元素と酸素との相互拡散も遅く、焼成を数百時間行わな
いと安定した超伝導体が得られないという問題があった
。さらに、焼成時に温度管理を厳格に行わないと、超伝
導相の比率が低下し、超伝導性が悪化するという問題も
あった。
(Problem to be solved by the invention) However, in this method, Bi -Sr -ea -C
When producing a u-0-based superconductor, even if it is fired after electrodeposition, the reaction during firing is an in-phase reaction, so the composition at grain boundaries and inside the grains is different, making it impossible to make the entire composition homogeneous. In addition, interdiffusion between metal elements and oxygen is slow, and a stable superconductor cannot be obtained unless sintering is performed for several hundred hours. Furthermore, if the temperature is not strictly controlled during firing, the ratio of the superconducting phase decreases, leading to a problem in that the superconductivity deteriorates.

本発明は、かかる点に鑑み、全体の組成が均質になり、
電着後の焼成省略により作製時間を短縮できる電気泳動
法による超伝導体作製方法を提供するものである。
In view of this, the present invention has a homogeneous overall composition,
The present invention provides a method for producing a superconductor by electrophoresis, which can shorten the production time by omitting baking after electrodeposition.

(問題点を解決するための手段) 本発明は、電気泳動法に使用する超伝導体材料の調製方
法を改善して、均質化された超伝導体微細粉末にするこ
とにより電着するだけで目的の形状の超伝導体になるよ
うにし、電着後の焼成を不要にして作製時間を短縮化す
るようにした。具体的には、原料を融解することにより
超伝導体材料調製反応の短時間化、組成の均質化を図り
、さらに、融解物を急速冷却して歪の大きいガラス化す
ることにより、粉砕した場合、原料を単に機械的に粉砕
した場合より粒子を微細化させるとともに、その粒子微
細化により超伝導体にするために加熱結晶化を容易にし
た。
(Means for Solving the Problems) The present invention improves the method for preparing superconductor materials used in electrophoresis, and makes homogenized superconductor fine powders that can be simply electrodeposited. The goal was to create a superconductor with the desired shape, and eliminate the need for firing after electrodeposition, thereby shortening the manufacturing time. Specifically, by melting the raw materials, we aim to shorten the superconductor material preparation reaction time and homogenize the composition, and further, by rapidly cooling the melt and turning it into highly strained vitrification, when pulverized. In addition to making the particles finer than when the raw material was simply mechanically pulverized, the finer particles made it easier to heat and crystallize the material to make it a superconductor.

すなわち、本発明は、融解後急速冷却によりガラス化す
るように配合した[li、 Sr、 CaおよびCuの
塩または酸化物を適当なる組成比に混合し、750〜8
60℃で仮焼成、粉砕した後、加圧成形して750〜8
60℃で焼結し、その後、その焼結体を回転冷却ロール
の上部に配置して下部より融解しながら、その液滴をロ
ール間に滴下して急速冷却することによりガラス化し、
しかる後に、微粉砕して750℃〜860℃で加熱して
結晶化し、この結晶化粉末を溶媒中に懸濁して電気泳動
法により電極に電着させることによりBi系酸化物超伝
導体を作製するようにした。
That is, in the present invention, salts or oxides of [li, Sr, Ca, and Cu are mixed in an appropriate composition ratio to vitrify by rapid cooling after melting, and
After pre-calcining and crushing at 60℃, it is press-molded to 750~8
Sintered at 60°C, then placed the sintered body on the top of a rotating cooling roll and while melting from the bottom, droplets of the sintered body are dropped between the rolls for rapid cooling to vitrify it,
Thereafter, it is finely pulverized and crystallized by heating at 750°C to 860°C, and this crystallized powder is suspended in a solvent and electrodeposited by electrophoresis to produce a Bi-based oxide superconductor. I decided to do so.

(作用) B1、Sr%CaおよびCuの塩または酸化物を混合し
て750〜860℃で仮焼成すると、均質な複合酸化物
が得られる。仮焼成温度が750℃未満であると、反応
がほとんど進行せず、原料の混合物しか得られない。ま
た、860℃を越えると、融解が起り、容器との反応や
不純物の混入などの問題が生じる。
(Function) B1, Sr% When salts or oxides of Ca and Cu are mixed and calcined at 750 to 860°C, a homogeneous composite oxide is obtained. If the pre-calcination temperature is less than 750°C, the reaction will hardly proceed and only a mixture of raw materials will be obtained. Furthermore, if the temperature exceeds 860°C, melting will occur, causing problems such as reaction with the container and contamination of impurities.

仮焼成物を粉砕、加圧成形して750〜860℃で焼結
し、それを融解すると、反応が液相反応のため、固相反
応より反応速度が速くなり、組成も一層均質になる。焼
結温度が750℃未満であると、焼結がほとんど起らず
、保持して下部から順次融解させる融解用原料としての
充分な機械的強度が得られない。また、860℃を越え
ると、融解が起り、融解用原料としての形状を維持でき
ない。
When the calcined product is crushed, pressure-molded, sintered at 750 to 860°C, and then melted, the reaction is a liquid phase reaction, so the reaction rate is faster than a solid phase reaction, and the composition becomes more homogeneous. If the sintering temperature is less than 750°C, sintering will hardly occur, and sufficient mechanical strength will not be obtained as a melting raw material that is held and sequentially melted from the bottom. Further, if the temperature exceeds 860°C, melting occurs and the shape as a raw material for melting cannot be maintained.

焼結体の融解は、焼結体を回転冷却ロールの上部に配置
して、その下部より融解させると、融解物が回転冷却ロ
ールの間に滴下し、急速冷却され、ガラス化する。この
ガラスは、急速冷却したままであるので、大きな歪を有
し、粉砕した場合、極めて微細化し易い。このため、粉
末は、焼成したものを単に機械的に粉砕した場合より着
しく細かくなる。この粉末を750〜860℃に加熱す
ると、結晶化し、超伝導性を示すようになる。この結晶
化は、粉末が微細化されているので、加熱は短時間で済
むとともに、均質に結晶化される。結晶化温度は、75
0℃未満であると、結晶化が不十分で、860℃を越え
ると、粒子間の融着が起る。
The sintered body is melted by placing the sintered body on top of a rotating cooling roll and melting the sintered body from the bottom. The melt drips between the rotating cooling rolls and is rapidly cooled and vitrified. Since this glass remains rapidly cooled, it has a large strain, and when crushed, it tends to become extremely fine. Therefore, the powder becomes finer than when the fired product is simply mechanically pulverized. When this powder is heated to 750 to 860°C, it crystallizes and exhibits superconductivity. This crystallization requires only a short heating time because the powder is finely divided, and the crystallization is uniform. The crystallization temperature is 75
If the temperature is less than 0°C, crystallization will be insufficient, and if it exceeds 860°C, fusion between particles will occur.

この結晶化粉末は、電気泳動法により電着させると、微
粉末であるので、ち密になり、電着後の仮焼成や焼結を
施さなくても良好な超伝導性を示し、仮焼成や焼結が不
要になる。
When this crystallized powder is electrodeposited by electrophoresis, it becomes dense because it is a fine powder, and exhibits good superconductivity even without calcination or sintering after electrodeposition. Sintering becomes unnecessary.

(発明の具体的開示) [1iv Sr、 CaおよびCuの塩または酸化物の
配合は、B12O3、SrO+ Cab(等モル%)、
CuOのモル%が第1図の点線に囲まれた範囲になるよ
うにすると、融解、急速冷却によりガラス化できる。
(Specific Disclosure of the Invention) [1iv The formulation of salts or oxides of Sr, Ca and Cu is B12O3, SrO+Cab (equal mol%),
When the mol% of CuO is within the range surrounded by the dotted line in FIG. 1, it can be vitrified by melting and rapid cooling.

750〜860℃での仮焼成は、2〜20時間実施する
のが好ましい。この仮焼成前に450〜550℃に加熱
して分解温度の低いものを予め熱分解して仮焼成時間を
短くしてもよい。
It is preferable to carry out the temporary calcination at 750 to 860°C for 2 to 20 hours. Before this pre-calcination, the material having a low decomposition temperature may be thermally decomposed by heating to 450 to 550° C. to shorten the pre-calcination time.

仮焼成したものを加圧成形する形状は、任意の形状でよ
く、例えば、棒状、板状、球状でもよいが、棒状もしく
は板状にすると、連続融解が可能になる。
The shape in which the pre-fired material is pressure-molded may be any shape, such as a rod, a plate, or a sphere, but continuous melting becomes possible when it is shaped into a rod or a plate.

加圧成形したものの焼結時間は、2〜4時間にするのが
好ましく、成形物の下部よりの融解は、ハロゲンランプ
を熱源とする赤外線集光加熱炉などによればよい。
The sintering time of the pressure-molded product is preferably 2 to 4 hours, and melting from the bottom of the molded product may be performed using an infrared condensing heating furnace using a halogen lamp as a heat source.

融解物の急速冷却は、金属製の回転双ロールに融解物の
液滴を滴下して厚さを10〜50μ論にすればよい。1
0μ輸未渦にするには、ロールの回転数を速くしなけれ
ばならないので、遠心力で融解物が飛散する割合が多く
なり、50μ卸より厚くすると、試料全体のガラス化が
困難になる。
Rapid cooling of the molten material can be achieved by dropping droplets of the molten material on two rotating metal rolls to a thickness of 10 to 50 microns. 1
In order to create a vortex of 0μ, the number of revolutions of the rolls must be increased, which increases the rate at which the molten material is scattered due to centrifugal force, and if it is thicker than 50μ, it becomes difficult to vitrify the entire sample.

ガラス化粉末の結晶化は、750〜860℃で4〜20
時間実施するのが好ましい。750℃で20時間加熱し
ても十分結晶化せず、860℃で4時間加熱すると、結
晶性の良好な超伝導体粉末が得られる。
The crystallization of vitrified powder is 4-20℃ at 750-860℃.
Preferably, it is carried out for an hour. Even when heated at 750°C for 20 hours, sufficient crystallization did not occur, and when heated at 860°C for 4 hours, a superconductor powder with good crystallinity was obtained.

(実施例) Bi(NOs)s ・5LO1Ca(NO−)2・4f
120.5r(NO+)2、Cu(NO3)2・311
20を[1iL72(SrO・Ca0)172CuOの
擬三成分系(SrO/CaOのモル比1)において、B
io、72/(SrO−CaO)+72/CuOのモル
%が22/40/34となるように配合して、500℃
で熱分解した後、粉砕し、さらに860℃で20時間仮
焼成して粉砕した。この仮焼成材料の粒径は2〜5μ艶
であった。
(Example) Bi(NOs)s ・5LO1Ca(NO-)2・4f
120.5r(NO+)2, Cu(NO3)2・311
B
io, 72/(SrO-CaO)+72/CuO was blended so that the mol% was 22/40/34, and heated at 500°C.
The mixture was thermally decomposed, pulverized, and further calcined at 860° C. for 20 hours and pulverized. The particle size of this pre-fired material was 2 to 5 μm glossy.

その後、仮焼成材料を3mm角、長さ45IIlI11
の棒状に加圧成形して、860℃で焼結し、ハロゲンラ
ンプを熱源とする赤外線集光加熱炉の中につり下げた。
After that, the pre-fired material is made into a 3 mm square with a length of 45IIlI11.
It was press-molded into a rod shape, sintered at 860°C, and suspended in an infrared condensing heating furnace using a halogen lamp as a heat source.

この状態でハロゲンランプを点灯し、その集光を先端部
に当てて先端部より順次融解させ、液滴を3000rp
輸で回転する鋼製双ロールの間に滴下し、急速冷却させ
て薄膜ガラス化させた。
In this state, a halogen lamp is turned on, and the focused light is applied to the tip to melt the droplet sequentially from the tip, and the droplet is heated at 3000 rpm.
It was dropped between two rotating steel rolls and rapidly cooled to form a thin film of vitrification.

この薄slfラスの厚みは約30μ鎮で、X線回折で若
干CaOの結晶が認められただけで、はとんどガラス化
されていた[第2図の(1)1。
The thickness of this thin SLF lath was approximately 30 μm, and although only a few CaO crystals were observed by X-ray diffraction, most of it was vitrified [(1) 1 in Figure 2.

次に、薄膜ガラスを粉砕して、860℃で4時間加熱し
て結晶化し、超伝導体材料とした。この材料の粒径は0
.1−0.5μmで、χ線回折で結晶化が認められた[
第2図の(2)]。
Next, the thin film glass was crushed and crystallized by heating at 860° C. for 4 hours to obtain a superconductor material. The particle size of this material is 0
.. Crystallization was observed by chi-ray diffraction at 1-0.5 μm [
(2) in Figure 2].

以上のようにして調製した超伝導体材料109をヨウ素
40艶8添加アセトン中に超音波照射下に懸濁させてへ
g板を作用極、pt板を対極にして200■で10分間
電解し、電着させた。
The superconductor material 109 prepared as described above was suspended in acetone containing 40% iodine and 8% iodine under ultrasonic irradiation, and electrolyzed at 200 μm for 10 minutes using the Heg plate as the working electrode and the PT plate as the counter electrode. , electrodeposited.

電着物をΔS板より剥離して10mAの電流を流して電
気抵抗を測定したところ、第3図に示すように、86に
で電気抵抗はゼロになった。
When the electrodeposited material was peeled off from the ΔS plate and the electrical resistance was measured by passing a current of 10 mA, the electrical resistance became zero at 86, as shown in FIG.

(比較例) 実施例での仮焼成材料を融解、ガラス化せずに同一条件
で電気泳動法により電着させ、電気抵抗を測定したとこ
ろ、86にでは絶縁状態であった。
(Comparative Example) When the pre-fired material in Example was electrodeposited by electrophoresis under the same conditions without being melted or vitrified, and the electrical resistance was measured, it was found that No. 86 was in an insulating state.

(発明の効果) 以上のように、本発明は、超伝導体原料を一旦融解して
、急冷によりガラス化し、そのガラス化物を粉砕、結晶
化して超伝導体材料を調製するのであるから、粉末材料
のslI!li!時間は短くなり、組成も均質になる。
(Effects of the Invention) As described above, in the present invention, a superconductor material is prepared by melting a superconductor raw material, vitrifying it by rapid cooling, and crushing and crystallizing the vitrified material. Material slI! li! The time will be shorter and the composition will be more homogeneous.

また、ガラス化させたものを粉砕したものは、粒径が微
細であるので、短時間に結晶化でき、均質に結晶化され
、電着物もち密になる。このため、電着後の焼成や焼結
を省略しても、超伝導性を示す。
Further, since the vitrified material is crushed and has a fine particle size, it can be crystallized in a short period of time, and is uniformly crystallized, so that the electrodeposited material becomes dense. Therefore, it exhibits superconductivity even if baking and sintering after electrodeposition are omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、BiOslz  (SrO ・CaO)+7
2CuOの擬三成分系(SrO/CaOのモル比1)に
おいて、急速冷却によりガラス化する組成の範囲を示す
図である,、第2図は、実施例におけるガラス化したも
のとそのガラス化物を結晶化させたもののX線回折図で
ある。 第3図は、 実施例で結晶化させたものの電気 抵抗と温度との関係を示すグラフである。
Figure 1 shows BiOslz (SrO ・CaO)+7
Figure 2 shows the range of compositions that can be vitrified by rapid cooling in a quasi-ternary system of 2CuO (SrO/CaO molar ratio 1). It is an X-ray diffraction diagram of a crystallized product. FIG. 3 is a graph showing the relationship between electrical resistance and temperature of the crystallized material in the example.

Claims (5)

【特許請求の範囲】[Claims] (1)融解後急速冷却によりガラス化するように配合し
たBi、Sr、CaおよびCuの塩または酸化物を適当
な組成比に混合し、750〜860℃で仮焼成、粉砕し
た後、加圧成形して750〜860℃で焼結し、その後
、その焼結体を回転冷却ロールの上部に配置して下部よ
り融解しながら、その液滴をロール間に滴下して急速冷
却することにより薄膜ガラス化し、しかる後に、微粉砕
して750〜860℃で加熱して結晶化し、この結晶化
粉末を溶媒中に懸濁して電気泳動法により電極に電着さ
せることを特徴とする酸化物系超伝導体の作製方法。
(1) Salts or oxides of Bi, Sr, Ca, and Cu that are blended to vitrify by rapid cooling after melting are mixed in an appropriate composition ratio, calcined at 750 to 860°C, pulverized, and then pressurized. The sintered body is formed and sintered at 750 to 860°C, and then the sintered body is placed on the top of a rotating cooling roll, and while melting from the bottom, the droplets are dropped between the rolls for rapid cooling to form a thin film. The oxide-based superorganism is vitrified, then finely pulverized and crystallized by heating at 750 to 860°C, and the crystallized powder is suspended in a solvent and electrodeposited on an electrode by electrophoresis. Method for making conductors.
(2)仮焼成を2〜20時間行うことを特徴とする特許
請求の範囲第1項に記載の酸化物系超伝導体の作製方法
(2) The method for producing an oxide-based superconductor according to claim 1, wherein the pre-calcination is performed for 2 to 20 hours.
(3)仮焼結前に450〜550℃に加熱してBi、S
r、CaおよびCuの塩の粉末を熱分解することを特徴
とする特許請求の範囲第1項に記載の酸化物系超伝導体
の作製方法。
(3) Bi, S is heated to 450-550℃ before temporary sintering.
2. The method for producing an oxide superconductor according to claim 1, which comprises thermally decomposing powders of salts of r, Ca, and Cu.
(4)焼結を2〜4時間行うことを特徴とする特許請求
の範囲第1項に記載の酸化物系超伝導体の作製方法。
(4) The method for producing an oxide-based superconductor according to claim 1, characterized in that sintering is performed for 2 to 4 hours.
(5)薄膜ガラス化の厚さを10〜50μmにすること
を特徴とする特許請求の範囲第1項に記載の酸化物系超
伝導体の作製方法。
(5) The method for producing an oxide superconductor according to claim 1, characterized in that the thickness of the thin film vitrification is 10 to 50 μm.
JP30023488A 1988-11-28 1988-11-28 Production of oxide-based superconductor Pending JPH02145423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30023488A JPH02145423A (en) 1988-11-28 1988-11-28 Production of oxide-based superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30023488A JPH02145423A (en) 1988-11-28 1988-11-28 Production of oxide-based superconductor

Publications (1)

Publication Number Publication Date
JPH02145423A true JPH02145423A (en) 1990-06-04

Family

ID=17882327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30023488A Pending JPH02145423A (en) 1988-11-28 1988-11-28 Production of oxide-based superconductor

Country Status (1)

Country Link
JP (1) JPH02145423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002583A (en) * 1997-01-31 1999-12-14 Citizen Watch Co., Ltd. Portable computer provided with removable battery pack
US6078496A (en) * 1994-09-06 2000-06-20 Citizen Watch Co., Ltd Portable computer with hinged detachable battery pack
US7448747B2 (en) 2001-01-17 2008-11-11 Silverbrook Research Pty Ltd Personal digital assistant terminal with internal printer and a receptacle for receiving a cartridge containing at least one ink

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535378B1 (en) 1994-06-09 2003-03-18 Citizen Watch Co., Ltd. Portable computer with detachable battery pack
US6078496A (en) * 1994-09-06 2000-06-20 Citizen Watch Co., Ltd Portable computer with hinged detachable battery pack
US6002583A (en) * 1997-01-31 1999-12-14 Citizen Watch Co., Ltd. Portable computer provided with removable battery pack
US7572003B2 (en) 2001-01-17 2009-08-11 Silverbrook Research Pty Ltd Personal digital assistant incorporating a print roll cartridge storing ink and print media
US7591553B2 (en) 2001-01-17 2009-09-22 Silverbrook Research Pty Ltd Personal digital assistant with internal printer having capping mechanism
US7458678B2 (en) 2001-01-17 2008-12-02 Silverbrook Research Pty Ltd Personal digital assistant (PDA) body defining a print roll cartridge bay
US7465109B2 (en) 2001-01-17 2008-12-16 Silverbrook Research Pty Ltd Compact personal digital assistant having in-built printer
US7556370B2 (en) 2001-01-17 2009-07-07 Silverbrook Research Pty Ltd Personal digital assistant with print cartridge dock
US7448747B2 (en) 2001-01-17 2008-11-11 Silverbrook Research Pty Ltd Personal digital assistant terminal with internal printer and a receptacle for receiving a cartridge containing at least one ink
US7572004B2 (en) 2001-01-17 2009-08-11 Silverbrook Research Pty Ltd Print engine with chassis ink channels between printhead and cartridge
US7448746B2 (en) 2001-01-17 2008-11-11 Silverbrook Research Pty Ltd Personal digital assistant with internal printer and a body section connected through a hinge joint
US7708399B2 (en) 2001-01-17 2010-05-04 Silverbrook Research Pty Ltd Print engine assembly with dual motor assemblies
US7722186B2 (en) 2001-01-17 2010-05-25 Silverbrook Research Pty Ltd Personal digital assistant incorporating a printer
US7887180B2 (en) 2001-01-17 2011-02-15 Silverbrook Research Pty Ltd Hinged personal digital assistant (PDA) with internal printer
US7901069B2 (en) 2001-01-17 2011-03-08 Kia Silverbrook Print engine assembly with dual motor assemblies
US7934829B2 (en) 2001-01-17 2011-05-03 Silverbrook Research Pty Ltd Mobile computing device incorporating printer and print media roll
US7954940B2 (en) 2001-01-17 2011-06-07 Silverbrook Research Pty Ltd Personal digital assistant having printhead
US7984986B2 (en) 2001-01-17 2011-07-26 Silverbrook Research Pty Ltd Hand held personal digital assistant having an internal printer

Similar Documents

Publication Publication Date Title
JPH02145423A (en) Production of oxide-based superconductor
WO1989010800A1 (en) Process for preparing a barium titanate film
JP2540639B2 (en) Method for manufacturing bismuth-based superconductor
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JPH01219014A (en) Production of dielectric material powder
Gorokhovskii et al. Synthesis of glass-ceramic materials in the BaO–PbO–B2O3–Al2O3–TiO2 system
JP2555706B2 (en) Manufacturing method of Bi-based superconducting oxide powder containing lead and sintered body thereof
JPH0354103A (en) Production of oxide superconductor
US4906608A (en) Method for preparing superconductors ceramic composition
JPS63315572A (en) Production of superconductor
DE3803530A1 (en) Superconductor and process for the production thereof
JPH03115159A (en) Production of bi-based superconductor
JP3157184B2 (en) Manufacturing method of high-density oxide superconductor
JPH0524863B2 (en)
JP2545443B2 (en) Method for manufacturing oxide superconductor
JPH0443860B2 (en)
JPH0624975B2 (en) Method for producing titanate powder
JPH02120234A (en) Production of oxide superconductor
JP3444930B2 (en) Manufacturing method of oxide superconductor
JPS63265812A (en) Manufacture of ba2ycu3o7-x compound
JPH0859342A (en) Production of high temperature superconductor
JPH01239054A (en) Production of oxide superconductor
JP2004269309A (en) Oxide superconductor and its manufacturing method
JPH01278449A (en) Production of oxide superconductor
JPH0575713B2 (en)