JPH02145399A - Ferro-dielectric polymer optical memory - Google Patents

Ferro-dielectric polymer optical memory

Info

Publication number
JPH02145399A
JPH02145399A JP63298252A JP29825288A JPH02145399A JP H02145399 A JPH02145399 A JP H02145399A JP 63298252 A JP63298252 A JP 63298252A JP 29825288 A JP29825288 A JP 29825288A JP H02145399 A JPH02145399 A JP H02145399A
Authority
JP
Japan
Prior art keywords
electrode
light
electrode layer
incident light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63298252A
Other languages
Japanese (ja)
Other versions
JP2810070B2 (en
Inventor
Shuji Motomura
本村 修二
Yoshio Watanabe
好夫 渡辺
Takeo Yamaguchi
剛男 山口
Akio Kojima
小島 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63298252A priority Critical patent/JP2810070B2/en
Publication of JPH02145399A publication Critical patent/JPH02145399A/en
Application granted granted Critical
Publication of JP2810070B2 publication Critical patent/JP2810070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent thermal diffusion in an electrode layer and to make the thicknesswise temperature of a recording layer uniform by so providing a gap at the electrode of incident side that part of incident light is absorbed at the incident side electrode and the remainder is absorbed at the other electrode. CONSTITUTION:In an optical memory of the type for absorbing light to an electrode layer, the electrode layer of the incident light side is formed of flat plates distributed with gaps or aligned with slender flat plates via gaps to absorb part of the incident light to the other electrode layer through the electrode layer of incident light side. Since the light of suitable ratio of the incident light is not absorbed by the electrode, but passed and absorbed by the electrode layer of opposite side, the recording layer can be uniformly heated from both sides, and S/N ratio for writing and reading information is improved. Since the thermal diffusion in the electrode layer can be suppressed, its recording density can be enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光メモリ−カード、光ディスク等に有用な強
誘電性高分子光メモリーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferroelectric polymer optical memory useful for optical memory cards, optical disks, and the like.

[従来の技術] PVD系重合体を記録媒体とした高分子光メモリーは、
すでに知られている。
[Prior art] Polymer optical memory using PVD polymer as a recording medium is
Already known.

これは、PVD系重合体の強誘電性を利用した画期的な
光メモリーで、その記録原理は特開昭59−21509
8及び同59−215097号公報、あるいはIEEE
 Trans、Elcctr、Ins、、El−21(
3)、539(198B)、高分子加工35.418(
1981i)に開示されているように、強誘電性高分子
材料が電界によって分極する性質を利用して、高い電界
を印加して一方向に分極させた該強誘電性高分子材料に
対して、抗電界以下の弱い逆電界を印加した状態で任意
の部分に光ビームを照射加熱して該光照射部のみを選択
的に分極反転せしめることにより書き込みを可能にし、
さらに光または熱による焦電効果を利用して読み出すこ
とができるというものである。
This is a revolutionary optical memory that utilizes the ferroelectric properties of PVD polymers, and its recording principle is based on Japanese Patent Application Laid-Open No. 59-21509.
8 and No. 59-215097, or IEEE
Trans, Elcctr, Ins, El-21 (
3), 539 (198B), Polymer Processing 35.418 (
1981i), utilizing the property of ferroelectric polymer materials to be polarized by an electric field, applying a high electric field to the ferroelectric polymer materials to polarize them in one direction, Enables writing by irradiating and heating an arbitrary part with a light beam while applying a weak reverse electric field less than the coercive electric field and selectively inverting the polarization of only the light irradiated part,
Furthermore, it can be read using the pyroelectric effect caused by light or heat.

この光メモリーにおいては、電界の印加および焦電効果
の検出のために、記録媒体より成る層の上下に電極層を
置く必要があるが、光ビーム照射により発生した熱が電
極層内で容易に拡散してしまうため、記録密度やS/N
比が低下するという問題を有していた。
In this optical memory, it is necessary to place electrode layers above and below the layer consisting of the recording medium in order to apply an electric field and detect the pyroelectric effect, but the heat generated by light beam irradiation is easily absorbed within the electrode layer. Because it is diffused, the recording density and S/N
The problem was that the ratio decreased.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

又、記録層が記録層の厚さ方向に一様には温まらないと
いう問題点もあった。
Another problem was that the recording layer was not heated uniformly in the thickness direction of the recording layer.

上述のとおり、本光メモリーでは記録層を光ビームで照
射加熱して書き込み読み出しを行うものであるが、この
とき、記録層の厚さ方向には温度分布はなるべく均一で
あることが望ましい。入射光により記録層を加熱する方
法としては、記録層に光吸収剤を混合して光を吸収させ
る方法、記録層の内部にあるいは記録層に接して光吸収
層を設ける方法、電極層に光を吸収させる方法などがあ
るが、 ■ 記録層に光吸収剤を混合して光を吸収させる方法の
場合 光吸収剤が均一に混合されているときは、記録層内での
光の減衰量が十分小さくないかぎり、入射光側がその反
対側より高温になる。
As described above, in this optical memory, writing and reading are performed by heating the recording layer by irradiating it with a light beam, and at this time, it is desirable that the temperature distribution be as uniform as possible in the thickness direction of the recording layer. Methods of heating the recording layer with incident light include a method of mixing a light absorbent into the recording layer to absorb light, a method of providing a light absorbing layer inside the recording layer or in contact with the recording layer, and a method of heating the recording layer with light on the electrode layer. There are methods to absorb light, such as: ∎ In the case of a method in which a light absorber is mixed in the recording layer to absorb light, when the light absorber is mixed uniformly, the amount of attenuation of light within the recording layer is Unless it is sufficiently small, the incident light side will be hotter than the opposite side.

記録層の厚さ方向に光吸収剤の濃度を変化させることに
よって、記録層の厚さ方向に温度分布が−様になるよう
に調整することは極めて難しく実用的でない。
It is extremely difficult and impractical to adjust the temperature distribution in the thickness direction of the recording layer to be -like by changing the concentration of the light absorbent in the thickness direction of the recording layer.

■ 記録層の内部にあるいは記録層に接して光吸収層を
設ける方法の場合 光吸収層を記録層内または記録層に接して複数個配置し
、それらの間での光の吸収の割合を調整しておけば、記
録層の厚さ方向に温度分布を−様な形に近づけることは
可能であるが、光吸収層が1層しかない場合は、記録層
の厚さ方向に温度分布を−様な形にすることはできない
■ In the case of a method in which a light absorption layer is provided inside or in contact with the recording layer, multiple light absorption layers are arranged within the recording layer or in contact with the recording layer, and the ratio of light absorption among them is adjusted. If this is done, it is possible to make the temperature distribution in the thickness direction of the recording layer approximate to a - shape, but if there is only one light absorption layer, the temperature distribution in the thickness direction of the recording layer can be made to approximate a - shape. It cannot be made into any shape.

■ 電極層に光を吸収させる方法の場合入射光側の電極
が透明または半透明でないかぎり、記録層の入射光側の
電極に近い側が他の側より高温になる。入射光側の電極
が透明またはわずかに不透明のときは、記録層の入射光
側と反対側の電極に近い側がより高温になる。入射光側
の電極の不透明度が適度であって両側の電極で均等に光
を吸収する場合は記録層の厚さ方向の温度分布を−様な
形にすることができるが、本光メモリーの電極として好
ましい性質を備えた物質の中にはそのような電極は存在
しない。
(2) In the case of a method in which the electrode layer absorbs light, unless the electrode on the incident light side is transparent or translucent, the side of the recording layer closer to the electrode on the incident light side will be hotter than the other side. When the electrode on the incident light side is transparent or slightly opaque, the side of the recording layer closer to the electrode on the side opposite to the incident light side becomes hotter. If the opacity of the electrode on the incident light side is appropriate and the electrodes on both sides absorb light equally, the temperature distribution in the thickness direction of the recording layer can be shaped like -, but this is not the case for this optical memory. There are no such electrodes among the materials that have desirable properties as electrodes.

上記■、■、■の方法のうちでは、■が構成上鏝も簡単
で、かつ光吸収剤や光吸収層に伴う問題が生じることも
ないという長所を持っている。本発明は上記■の方法を
使う場合に、電極層内における熱拡散を防止でき、かつ
記録層の厚さ方向の温度を−様にすることができる強誘
電性高分子光メモリーを提供することを目的とするもの
である。
Among the methods (1), (2), and (2) above, method (2) has the advantage that the structure is simple and there are no problems associated with the light absorbing agent or light absorbing layer. The present invention provides a ferroelectric polymer optical memory that can prevent thermal diffusion within the electrode layer and make the temperature of the recording layer uniform in the thickness direction when using the method (2) above. The purpose is to

[課題を解決するための手段] 本発明者らは、上記の課題を解決するため、従来より研
究を重ねてきた結果、電極層の構造を−様な平板でなく
、それに間隙を設けることが有効であることを見出し、
本発明に至った。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have conducted extensive research and found that the structure of the electrode layer should not be a --like flat plate, but that a gap should be provided between the electrode layers. found to be effective,
This led to the present invention.

すなわち、本発明は、強誘電性高分子膜からなる記録層
と、それを挾む電極層とが基板上に保持されている光メ
モリーにおいて、入射光の一部が入射光側電極で吸収さ
れ、残部が他方の電極で吸収されるように、該二つの電
極層のうちの少くとも入射光側の電極が間隙を有するこ
とを特徴とする強誘電性高分子光メモリーである。
That is, the present invention provides an optical memory in which a recording layer made of a ferroelectric polymer film and an electrode layer sandwiching the recording layer are held on a substrate, in which part of the incident light is absorbed by the electrode on the incident light side. The ferroelectric polymer optical memory is characterized in that at least one of the two electrode layers on the incident light side has a gap so that the remaining portion is absorbed by the other electrode.

以下本発明の構成を図面に基づいて説明する。The configuration of the present invention will be explained below based on the drawings.

第1図は強誘電性高分子光メモリーの構成モデル図であ
る。この図中のlがPVD系重合体からなる記録層であ
る。2は上部電極であり、3が下部電極である。4は下
部電極を支える基板である。レーザー光は基板側もしく
は上部電極側から照射される。
FIG. 1 is a structural model diagram of a ferroelectric polymer optical memory. 1 in this figure is a recording layer made of a PVD polymer. 2 is an upper electrode, and 3 is a lower electrode. 4 is a substrate supporting the lower electrode. Laser light is irradiated from the substrate side or the upper electrode side.

「(注)[上部」 「下部」という表現は、基板を下に
して使う場合に対応させている。しかし、本発明は、基
板を上にしても、あるいは斜めに傾けて使っても、何ら
変わりなく成立する。]上述のとおり、本光メモリーで
は、記録層を光ビームで照射加熱して書き込み読み出し
を行う。入射光により記録層を加熱する方法としては、
記録層に光吸収剤を混合して光を吸収させる方法、記録
層の内部にあるいは記録層に接して光吸収層を設ける方
法、電極層に光を吸収させる方法などがあるが、本発明
はこれらのうち電極層に光を吸収させる方式のものに適
用される。
``(Note) The expressions ``upper'' and ``lower'' correspond to cases where the board is used with the board facing down. However, the present invention can be used with the substrate facing up or tilted diagonally. ] As described above, in this optical memory, writing and reading are performed by heating the recording layer by irradiating it with a light beam. The method of heating the recording layer with incident light is as follows:
There are methods such as mixing a light absorbent into the recording layer to absorb light, providing a light absorbing layer inside the recording layer or in contact with the recording layer, and making an electrode layer absorb light. Among these, it is applied to those in which the electrode layer absorbs light.

電極層に光を吸収させる場合、不透明電極であれば、入
射光側の電極が発熱する。入射光側の電極として透明電
極を、その反対側の電極として不透明電極を使えば、不
透明電極が発熱する。いずれの場合も、2つの電極のう
ち主に片方のみが発熱する。このため記録層内の温度分
布は記録層の厚さ方向に一様ではなくなり、発熱してい
る電極に近い部分が他方の電極に近い部分よりも高温に
なってしまう。この問題を解決するには入射光側の電極
で吸収する光の量と通過する光の量との割合を何らかの
方法で適切な値にして、両側の電極が均等に発熱するよ
うにすれば良い。しかし、入射光側の電極の不透明度を
電極の物質あるいは厚さを変えることによって適当な値
にするのは、好ましくない副作用が生じたりして難しい
When the electrode layer absorbs light, if the electrode is opaque, the electrode on the incident light side generates heat. If a transparent electrode is used as the electrode on the incident light side and an opaque electrode is used as the electrode on the opposite side, the opaque electrode generates heat. In either case, only one of the two electrodes generates heat. For this reason, the temperature distribution within the recording layer is not uniform in the thickness direction of the recording layer, and the portion close to the electrode generating heat becomes hotter than the portion close to the other electrode. To solve this problem, the ratio between the amount of light absorbed by the electrode on the incident light side and the amount of light passing through should be set to an appropriate value in some way so that the electrodes on both sides generate heat equally. . However, it is difficult to adjust the opacity of the electrode on the incident light side to an appropriate value by changing the material or thickness of the electrode because it may cause undesirable side effects.

また、電極層として使われる物質の熱伝導率は大変大き
いため、電極層で光が吸収されることによって発生した
熱の中のかなりの部分が電極内を急速に拡散し、そのた
め記録層の温度上昇が損なわれまた高温領域が不必要に
拡がり記録密度の低下をきたすという問題が存在する。
Furthermore, since the thermal conductivity of the material used as the electrode layer is very high, a considerable portion of the heat generated by absorption of light in the electrode layer rapidly diffuses within the electrode, causing the temperature of the recording layer to rise. There is a problem in that the increase in recording density is impaired and the high temperature region unnecessarily expands, resulting in a decrease in recording density.

本発明者らは、入射光側の電極層を一様な平板にせず、
間隙を分布させた平板にするか、あるいは細長い平板を
間隙を置いて並べた形にして、入射光の一部が入射光側
の電極層を通過して他方の電極層で吸収されるようにす
ることによって、上記の問題を解決できることを見出し
た。(第2図、第3図、第4図) このとき入射光と反対側の電極層は一様な厚さの平板で
あっても構わないが、入射光側の電極層と同じく間隙を
有する平板にする方が、その電極層内の熱拡散を減らす
観点から望ましい。
The present inventors did not make the electrode layer on the incident light side a uniform flat plate,
Either use a flat plate with distributed gaps, or arrange elongated flat plates with gaps so that part of the incident light passes through the electrode layer on the incident light side and is absorbed by the other electrode layer. We have found that the above problem can be solved by doing this. (Figures 2, 3, and 4) At this time, the electrode layer on the side opposite to the incident light may be a flat plate with a uniform thickness, but it has gaps like the electrode layer on the incident light side. A flat plate is preferable from the viewpoint of reducing thermal diffusion within the electrode layer.

後者の場合、画電極層間の電界が記録層面に垂直になる
ように、上方または下方から見て両側の電極が重なって
いる部分が均等に密に分布しているような配置にしてお
く方が好ましい。例えば、両側の電極層を細長い平板を
並べた形にした場合、それら両側の平板のなす角が直角
または直角に近い角度になるように配置するのが好まし
い(第5図)。なお、下部電極層で吸収される光と下部
電極層を通過する光の量の割合が光の照射位置によって
大きく変らないようにするためには、入射位置によらず
入射光のビーム幅内に電極層内の間隙がほぼ同数個存在
するように、電極層内の間隙は微少な間隙が微少な間隔
をおいて一様に分布するように作るのが望ましい。例え
ば、第2図および第5図に示すような細長い平板からな
る電極の場合、平板間の距離(Ll+L2)を入射光ビ
ームめe−1半径以下にすることが望ましく、またそれ
よりさらに短くしてe−+半径内に入る平板数がさらに
増えるようにすればより望ましい。また、板の幅と間隙
の幅との比(Ll/L2)は、電極および記録層物質の
光吸収率を考慮して、入射光が上下両電極に均等に吸収
されるような値にしておく必要がある。このような条件
を満たすLlとL2の値としては、入射光ビームの6−
1半径が3μ園1記録層の光吸収率が01下部電極に当
たった光は下部電極ですべて吸収され、上部電極の板幅
と間隙幅は等しいという条件の場合に、L+=0.1μ
m、L2−0.2μ讃を一例として挙げることができる
。また、第3図および第4図に示すような、多数個の穴
の空いた電極の場合、穴の大きさは入射光ビームのe 
4半径を半径とする円がその中に完全に含まれることが
ないだけ充分小さく、穴と穴との間隔は入射光ビームの
e−1半径を半径とする円がどの穴にも触れないことが
ないだけ充分小さいことが望ましい(第6図)。
In the latter case, it is better to arrange the electrodes so that the overlapping parts of both sides are evenly and densely distributed when viewed from above or below so that the electric field between the picture electrode layers is perpendicular to the recording layer surface. preferable. For example, when the electrode layers on both sides are arranged in the form of long and thin flat plates, it is preferable that the flat plates on both sides form a right angle or an angle close to a right angle. In addition, in order to prevent the ratio of the amount of light absorbed by the lower electrode layer and the amount of light passing through the lower electrode layer from changing significantly depending on the irradiation position of the light, it is necessary to It is desirable that the gaps in the electrode layer be created so that the number of gaps in the electrode layer is approximately the same, and the gaps in the electrode layer are uniformly distributed at small intervals. For example, in the case of electrodes made of elongated flat plates as shown in Figures 2 and 5, it is desirable that the distance between the plates (Ll+L2) be less than or equal to the e-1 radius of the incident light beam, and even shorter. It is more desirable if the number of flat plates falling within the e-+ radius is further increased. In addition, the ratio of the width of the plate to the width of the gap (Ll/L2) is set to a value that allows the incident light to be absorbed equally by both the upper and lower electrodes, taking into account the light absorption rate of the electrode and recording layer material. It is necessary to keep it. The values of Ll and L2 that satisfy these conditions are 6-
1 Radius is 3μ Garden 1 Light absorption rate of recording layer is 01 All the light that hits the lower electrode is absorbed by the lower electrode, and the plate width of the upper electrode and the gap width are equal, then L+ = 0.1μ
m, L2-0.2μ can be cited as an example. In addition, in the case of an electrode with many holes as shown in FIGS. 3 and 4, the size of the holes is determined by the e of the incident light beam.
4 radius is sufficiently small that it cannot be completely contained within it, and the spacing between the holes is such that a circle with radius e-1 of the incident light beam does not touch any of the holes. It is desirable that it be small enough so that there is no damage (Figure 6).

このような電極層を作る方法としては、金、白金、銀、
銅、鉛、亜鉛、アルミニウム、ニッケル、タンタル、チ
タン、コバルト、ニオブ、パラジウム、スズ等の各種金
属を蒸着、CVD。
Methods for making such electrode layers include gold, platinum, silver,
Vapor deposition and CVD of various metals such as copper, lead, zinc, aluminum, nickel, tantalum, titanium, cobalt, niobium, palladium, and tin.

スパッタリング等により製膜し、イオンビームや電子ビ
ームを使用しであるいはエツチング等によりストライブ
状、メツシュ状等に加工する方法が挙げられるが、本発
明は、特にこれらの電極材料および電極層作成方法に限
定されるものではない。
Examples include a method of forming a film by sputtering or the like and processing it into a stripe shape, mesh shape, etc. using an ion beam or an electron beam or by etching, etc., but the present invention particularly focuses on these electrode materials and electrode layer forming methods. It is not limited to.

次に電極層以外の部分に2いて記す。Next, the portions other than the electrode layer will be described.

記録層を構成するPVDM重合体には種々の化合物が報
告されているが1、本記録媒体においては強誘電性を有
し、かつ誘電ヒステリシス測定で矩形を示すようなもの
が望ましく、たとえばふり化ビニリデンのホモ重合体、
及びふり化ビニリデンを50ff! ffi%以上含む
ふっ化ビニリデン共重合体である。該共重合体としては
ふり化ビニリデンと三ふ・フ化エチレン、六ふっ化プロ
ピレン、三ふっ化塩化エチレン等との共重合体等を挙げ
ることができる。また、ポリシアン化ビニリデン、シア
ン化ビニリデン及び酢酸ビニル共重合体等も挙げられる
が、これらの中でも弗化ビニリデン及び三弗化エチレン
共重合体[以下P (VDF−TrFE)と略す]、が
最も好ましい。
Various compounds have been reported for the PVDM polymer constituting the recording layer1, but in this recording medium, it is desirable to use one that has ferroelectricity and exhibits a rectangular shape when measured with dielectric hysteresis. vinylidene homopolymer,
And 50ff of vinylidene fluoride! It is a vinylidene fluoride copolymer containing ffi% or more. Examples of the copolymer include copolymers of vinylidene fluoride and ethylene trifluoride, propylene hexafluoride, ethylene trifluoride chloride, and the like. Also included are polyvinylidene cyanide, vinylidene cyanide, and vinyl acetate copolymers, but among these, vinylidene fluoride and ethylene trifluoride copolymer [hereinafter abbreviated as P (VDF-TrFE)] is the most preferred. .

該記録層のPVD系重合体膜を製膜する方法としては浸
漬コーティング、スプレーコーティング、スピナーコー
ティング、ブレードコーティング、ローラコーティング
、カーテンコーティング等の溶液塗布法によって形成す
ることができる。この中でも浸漬コーティングやスピナ
ーコーティングによるものが該PVD系重合体膜を均一
な膜厚に形成する上に、超薄膜が得られる点からも好ま
しい。
The PVD polymer film of the recording layer can be formed by a solution coating method such as dip coating, spray coating, spinner coating, blade coating, roller coating, or curtain coating. Among these methods, dip coating or spinner coating is preferable because the PVD polymer film can be formed to a uniform thickness and an ultra-thin film can be obtained.

電極の支持体材料としては、ポリエチレン、ポリエチレ
ンテレフタレート、ポリプロピレン、ポリスチレン、ポ
リ塩化ビニル、ポリカーボネート、ポリビニルアルコー
ル、ポリビニルアセテート、ポリアミド、ポリイミド、
ポリオレフィン、アクリル樹脂、フェノール樹脂、エポ
キシ樹脂及び上記の誘導体等の各種プラスチックやガラ
ス、石英板、セラミックなどが好適であるが、照射光に
対して透明であることが望ましく、又電極との絶縁を兼
ねているものであることが好ましいが、電極同様本発明
は特にこれらに限定されるものではない。
Support materials for the electrode include polyethylene, polyethylene terephthalate, polypropylene, polystyrene, polyvinyl chloride, polycarbonate, polyvinyl alcohol, polyvinyl acetate, polyamide, polyimide,
Various plastics such as polyolefin, acrylic resin, phenol resin, epoxy resin, and the above derivatives, glass, quartz plates, ceramics, etc. are suitable, but it is desirable that they are transparent to irradiated light, and that they are insulated from the electrodes. Although it is preferable that the electrodes also serve as electrodes, the present invention is not particularly limited thereto.

照射光源は量産性及び価格的にも半導体レーザー(LD
)が最適と考えられる。LD光の照射方向は上部・下部
何れの電極側からでも構わない。
The irradiation light source is a semiconductor laser (LD) in terms of mass production and cost.
) is considered optimal. The direction of irradiation of the LD light may be from either the upper or lower electrode side.

又、この他、必要に応じて電極層上にさらに保護層を設
けることもできる。この保護層は、上部電極層及び記録
層の保護を目的として各種高分子材料などから形成され
る。
In addition to this, a protective layer can be further provided on the electrode layer if necessary. This protective layer is formed from various polymeric materials for the purpose of protecting the upper electrode layer and the recording layer.

[実施例] 次に実施例をもって本発明を具体的に説明するが、本発
明はこの実施例のみに限定されるものではない。
[Example] Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例 厚さ約1+esのポリスチレン基板上に、下部電極とし
てクロムを厚さ 0.1μ霞で蒸着した後、下部電極を
幅0.5μ−のストライブが1.0μ−間隔で並んだ形
に加工した。この上にP (VDF−Tr−FE)膜を
厚さ 1.0μ曽で塗布して記録層を形成した。さらに
この上に上部電極としてクロムを厚さ 0.1μmで蒸
着した後、下部電極のストライブと直角な方向に幅1.
0μ−のストライブを 1.Oμm間隔で並べた形に加
工した。
Example: On a polystyrene substrate with a thickness of about 1+es, chromium was vapor-deposited as a lower electrode to a thickness of 0.1μ, and then the lower electrode was formed into stripes of 0.5μ- width arranged at 1.0μ-intervals. processed. A P (VDF-Tr-FE) film was applied thereon to a thickness of 1.0 μm to form a recording layer. Furthermore, after evaporating chromium to a thickness of 0.1 μm as an upper electrode on top of this, a width of 1.0 μm is applied in a direction perpendicular to the stripes of the lower electrode.
0 μ-stripe 1. It was processed into a shape arranged at 0 μm intervals.

さらにその上に保護層としてポリエチレン膜を厚さ0.
5mで塗布した。その後、該P (VDF−TrFE)
膜に 100vの電圧をかけてポーリング処理を施した
。さらに、25vの逆電界をかけながら、発振波長83
0n−の半導体レーザー(以下LDと略す)を用いて基
板側から強度6.Omw。
Furthermore, a polyethylene film with a thickness of 0.0 mm is applied as a protective layer on top of this.
It was applied at 5 m. Then, the P (VDF-TrFE)
The membrane was subjected to poling treatment by applying a voltage of 100V. Furthermore, while applying a reverse electric field of 25V, the oscillation wavelength was 83V.
Using a 0n- semiconductor laser (hereinafter abbreviated as LD), an intensity of 6. Omw.

e−1半径6.0μmのガウスビームを40μs間照射
することにより画電極層を加熱して情報を記録した。そ
の後、LD光強度を0.16mVに弱めて10kllz
でチョッピングしながら再度LD光を照射して記録層を
加熱し電極間に生じる焦電電流を計測して、記録した情
報の読み出し操作を行ったところ、S/N比が45dB
であり、記録された領域(分極が反転した領域)の大き
さが直径3.5μ−であった。
Information was recorded by heating the picture electrode layer by irradiating a Gaussian beam with e-1 radius of 6.0 μm for 40 μs. After that, reduce the LD light intensity to 0.16 mV and
While chopping with the LD light, the recording layer was heated again by LD light, the pyroelectric current generated between the electrodes was measured, and the recorded information was read out, and the S/N ratio was 45 dB.
The size of the recorded region (region where the polarization was reversed) was 3.5 μm in diameter.

比較例 厚さ約l■のポリスチレン基板上に、下部電極としてク
ロムを厚さ 0.1μIで蒸着し、その上にP (VD
F−TrFE)膜を厚さ 1.0μnで塗布して記録層
を形成した。さらにその上に上部電極としてクロムを厚
さ0.1μmで蒸着し、さらにその上に保護層としてポ
リエチレン膜を厚さ0,51で塗布した。その後、該P
 (VDF−TrFE)膜に100Vの電圧をかけてポ
ーリング処理を施した。さらに、25Vの逆電界をかけ
ながら、発振波長830nsの半導体レーザー(以下L
Dと略す)を用いて基板側から強度6.Osw。
Comparative Example On a polystyrene substrate with a thickness of about 1, chromium was deposited as a lower electrode to a thickness of 0.1μI, and P (VD
A recording layer was formed by applying an F-TrFE film to a thickness of 1.0 μm. Furthermore, chromium was vapor-deposited thereon to a thickness of 0.1 μm as an upper electrode, and a polyethylene film was further applied thereon to a thickness of 0.51 μm as a protective layer. Then, the P
A voltage of 100 V was applied to the (VDF-TrFE) film to perform poling treatment. Furthermore, while applying a reverse electric field of 25 V, a semiconductor laser (hereinafter referred to as L) with an oscillation wavelength of 830 ns was applied.
Strength 6. Osw.

eo−半径e、oμmのガウスビームを600μS岡照
射することにより画電極層を加熱して情報を記録した。
Information was recorded by heating the picture electrode layer by irradiating it with a Gaussian beam of radius e and oμm for 600 μS.

その後、LD光強度を0.18mVに弱めて10kll
zでチョッピングしながら再度り光を照射して記録層を
加熱し電極間に生じる焦電電流を計測して、記録した情
報の読み出し操作を行ったところ、S/N比が35dB
であり、記録された領域(分極が反転した領域)の大き
さが直径1O10μ鴎であった。
After that, reduce the LD light intensity to 0.18mV to 10kll.
While chopping with z, we irradiated the recording layer with light again to heat the recording layer, measured the pyroelectric current generated between the electrodes, and read out the recorded information, and found that the S/N ratio was 35 dB.
The size of the recorded region (region where the polarization was reversed) was 1010 μm in diameter.

[発明の効果] 照射光が入射する側の電極層が微小な間隙を有する構造
をしているため、入射光のうち適当な割合の光がその電
極層で吸収されずに通過して反対側の電極層で吸収され
るので、それらの間にはさまれている記録層を両側から
均等に加熱することができ、情報の書き込み読み出しの
S/N比が向上する。又、電極層が−様な厚さの平板か
ら成る場合に比べて、電極層内の熱拡散を抑えることが
できるため、記録密度を高めることができる。
[Effect of the invention] Since the electrode layer on the side where the irradiated light enters has a structure with minute gaps, a suitable proportion of the incident light passes through the electrode layer without being absorbed by the electrode layer and reaches the opposite side. Since the energy is absorbed by the electrode layer, the recording layer sandwiched between them can be heated evenly from both sides, improving the S/N ratio when reading and writing information. Furthermore, compared to the case where the electrode layer is made of a flat plate having a uniform thickness, thermal diffusion within the electrode layer can be suppressed, so that the recording density can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は強誘電性高分子光メモリーの構成モデル図、 第2〜5図は本発明の強誘電性高分子光メモビームとの
関係を示す図。 l・・・記録層、2・・・上部電極、3・・・下部電極
、4・・・基板。 オ五図 第3図 第2図 第4図
FIG. 1 is a structural model diagram of a ferroelectric polymer optical memory, and FIGS. 2 to 5 are diagrams showing the relationship with the ferroelectric polymer optical memo beam of the present invention. 1... Recording layer, 2... Upper electrode, 3... Lower electrode, 4... Substrate. Figure 5 Figure 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 強誘電性高分子膜からなる記録層と、それを挾む電極層
とが基板上に保持されている光メモリーにおいて、入射
光の一部が入射光側電極で吸収され、残部が他方の電極
で吸収されるように、該二つの電極層のうちの少くとも
入射光側の電極が間隙を有することを特徴とする強誘電
性高分子光メモリー。
In an optical memory in which a recording layer made of a ferroelectric polymer film and an electrode layer sandwiching the recording layer are held on a substrate, part of the incident light is absorbed by the electrode on the incident light side, and the remainder is absorbed by the other electrode. 1. A ferroelectric polymer optical memory characterized in that at least one of the two electrode layers on the side of incident light has a gap so that light is absorbed by the incident light.
JP63298252A 1988-11-28 1988-11-28 Ferroelectric polymer optical memory Expired - Fee Related JP2810070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63298252A JP2810070B2 (en) 1988-11-28 1988-11-28 Ferroelectric polymer optical memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63298252A JP2810070B2 (en) 1988-11-28 1988-11-28 Ferroelectric polymer optical memory

Publications (2)

Publication Number Publication Date
JPH02145399A true JPH02145399A (en) 1990-06-04
JP2810070B2 JP2810070B2 (en) 1998-10-15

Family

ID=17857215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63298252A Expired - Fee Related JP2810070B2 (en) 1988-11-28 1988-11-28 Ferroelectric polymer optical memory

Country Status (1)

Country Link
JP (1) JP2810070B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212416A (en) * 1981-06-10 1982-12-27 Thomson Csf Liquid crystal display with two kinds of addressing modes
JPS61292236A (en) * 1985-06-14 1986-12-23 Semiconductor Energy Lab Co Ltd Write and erasure system for optical disc memory device
JPS62188037A (en) * 1986-02-13 1987-08-17 Central Glass Co Ltd Optical information recording card

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212416A (en) * 1981-06-10 1982-12-27 Thomson Csf Liquid crystal display with two kinds of addressing modes
JPS61292236A (en) * 1985-06-14 1986-12-23 Semiconductor Energy Lab Co Ltd Write and erasure system for optical disc memory device
JPS62188037A (en) * 1986-02-13 1987-08-17 Central Glass Co Ltd Optical information recording card

Also Published As

Publication number Publication date
JP2810070B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
JPH02145399A (en) Ferro-dielectric polymer optical memory
JPH11133449A (en) Optical device
JP2780782B2 (en) Ferroelectric polymer optical memory
JPS63293729A (en) Ferroelectric high-polymer memory
JP2930955B2 (en) Ferroelectric polymer optical memory
US5637370A (en) Information storage device
JPS58158056A (en) Laser recording medium and its manufacture
DE4409851C2 (en) Method for writing and reading information in an information storage layer
JP2725806B2 (en) Ferroelectric polymer optical recording medium
JP2758400B2 (en) Ferroelectric polymer optical recording medium
JP2758401B2 (en) Ferroelectric polymer optical recording medium
JPS58186981A (en) Input/output conversion element
JPS639040A (en) Optical information recording medium
JPS61105792A (en) Ferroelectric high-polymer memory
JPH01166390A (en) Ferroelectric high polymer memory
JP2742266B2 (en) Organic reversible optical recording medium
JPH02257492A (en) Ferroelectric high-polymer optical recording medium
JP2923036B2 (en) Information recording medium
JPH01132158A (en) Image optical memory device, optical recording and manufacture of optical memory
JPH0155119B2 (en)
JPS6192453A (en) Optical recording method
JPH06243519A (en) Three-dimensional optical memory consisting of ferroelectric high-polymer film
JPH03225322A (en) Recording medium
JP2001305992A (en) Optical substrate for display element and method for manufacturing the same, as well as liquid crystal display element using the same, and method for manufacturing the same
JPH0224851A (en) Optical recording medium consisting of ferroelectric high polymer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees