JPH0224851A - Optical recording medium consisting of ferroelectric high polymer - Google Patents

Optical recording medium consisting of ferroelectric high polymer

Info

Publication number
JPH0224851A
JPH0224851A JP63172610A JP17261088A JPH0224851A JP H0224851 A JPH0224851 A JP H0224851A JP 63172610 A JP63172610 A JP 63172610A JP 17261088 A JP17261088 A JP 17261088A JP H0224851 A JPH0224851 A JP H0224851A
Authority
JP
Japan
Prior art keywords
recording layer
light
recording
thickness
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63172610A
Other languages
Japanese (ja)
Inventor
Shuji Motomura
本村 修二
Akio Kojima
小島 明夫
Takeo Yamaguchi
剛男 山口
Yoshio Watanabe
好夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63172610A priority Critical patent/JPH0224851A/en
Publication of JPH0224851A publication Critical patent/JPH0224851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Credit Cards Or The Like (AREA)

Abstract

PURPOSE:To allow high sensitivity and high density recording by consisting a recording layer of a vinylidene polymer and a light absorbent which absorbs light and converts the same to heat and specifying the thickness of the recording layer. CONSTITUTION:This optical vinylidene polymer consisting of a ferroelectric high polymer is formed by crimping the recording layer 1 with an upper electrode 3 and a lower electrode 2 and supporting the lower electrode 2 on a substrate 4. The recording layer 1 is heated and recording is executed by absorbing irradiation light in the recording layer 1. The recording layer 1 is formed on the vinylidene polymer and the light absorbent which absorbs light and converts the same to heat. The thickness of the recording layer 1 is set in the range expressed by equation I when the thickness of the recording layer 1 is designated as Dmum and the irradiation time of the irradiation light for recording 1 bit as tns. The dispersion of the heat generated in the recording layer 1 is decreased and the high sensitivity and high density recording is executed in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は、ビニリデン系重合体(以下PVD系重合体と
記す)を記録層として用いた強誘電性高分子光可逆記録
媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferroelectric polymer optically reversible recording medium using a vinylidene polymer (hereinafter referred to as PVD polymer) as a recording layer.

[従来の技術] PVD系重合体を記録媒体とした高分子光メモリーは、
すでに知られている。
[Prior art] Polymer optical memory using PVD polymer as a recording medium is
Already known.

これは、PVD系重合体の強誘電性を利用した画期的な
先メモリーで、その記録原理は特開昭59−21509
8及び同59−215097号公報、あるいはIEEE
Trans、EIcctr、Ins、、 El−21(
3)、539(1986)、高分子加工35.418(
19H)に開示されているように、強誘電性高分子材料
が電界によって分極する性質を利用して、高い電界を印
加して一方向に分極させた該強誘電性高分子材料に対し
て、抗電界以下の弱い逆電界を印加した状態で任意の部
分に光ビームを照射加熱して該光照射部のみを選択的に
分極反転せしめることにより書き込みを可能にし、さら
に光または熱による焦電効果を111用して読み出すこ
とができるというものである。
This is an innovative memory that utilizes the ferroelectric properties of PVD polymers, and its recording principle is based on Japanese Patent Application Laid-Open No. 59-21509.
8 and No. 59-215097, or IEEE
Trans, EIcctr, Ins, El-21 (
3), 539 (1986), Polymer Processing 35.418 (
19H), taking advantage of the property of ferroelectric polymer materials to be polarized by an electric field, applying a high electric field to the ferroelectric polymer materials to polarize them in one direction, Writing is possible by irradiating and heating an arbitrary part with a light beam while applying a weak reverse electric field that is less than the coercive electric field, and selectively inverting the polarization of only the light irradiated part.Additionally, writing is enabled by the pyroelectric effect caused by light or heat. can be read using 111.

この光メモリーにおいては、電界の印加および焦電効果
の検出のために、記録媒体より成る層の上下に電極層を
置く必要があるが、光ビーム照射により発生した熱が電
極層内で容易に拡散してしまうため、記録密度やS/N
比が低下するという問題を6″していた。
In this optical memory, it is necessary to place electrode layers above and below the layer consisting of the recording medium in order to apply an electric field and detect the pyroelectric effect, but the heat generated by light beam irradiation is easily absorbed within the electrode layer. Because it is diffused, the recording density and S/N
The problem was that the ratio decreased with 6".

[発明が解決しようとする課題] 本発明は、PVD重合体から成る光記録媒体において、
記録層の厚さを適切に選ぶことによって、高感度高記録
密度の強誘電性高分子光記録媒体を提供しようとするも
のである。
[Problems to be Solved by the Invention] The present invention provides an optical recording medium made of a PVD polymer,
The present invention aims to provide a ferroelectric polymer optical recording medium with high sensitivity and high recording density by appropriately selecting the thickness of the recording layer.

〔課題を解決するためのf段] すなわち、本発明の構成は、照射光を吸収させることに
よって記録層を加熱する方式の光記録媒体において、上
記記録層が、ビニリデン系重合体、および、光を吸収し
て熱に変換する光吸収剤から成り、かつ、厚さが下記の
範囲内にあることを特徴とする強誘電性高分子光記録媒
体、 0.15 10g1o  (L+10.0)  <  
D<   0.5 10g+u  (L+10.O) 
 +  1.0ただし、 D=記録層の厚さ(μff1)、 telビット記録するための光照射時間(n S)であ
る。
[F-stage for solving the problem] That is, the structure of the present invention is that in an optical recording medium of a type in which a recording layer is heated by absorbing irradiated light, the recording layer is made of a vinylidene polymer and a light-emitting material. A ferroelectric polymer optical recording medium comprising a light absorbing agent that absorbs and converts into heat, and having a thickness within the following range: 0.15 10g1o (L+10.0) <
D< 0.5 10g+u (L+10.O)
+1.0 However, D=thickness of the recording layer (μff1), light irradiation time for recording tel bits (nS).

上記記録層の厚さが電極(以下光源側の電極を第一電極
、記録層を挾んでその反対側の電極を第二電極と呼ぶ)
における熱拡散および記録層内の温度に及ぼす影響を整
理すると次のようになる。
The thickness of the recording layer is the electrode (hereinafter, the electrode on the light source side is called the first electrode, and the electrode on the opposite side across the recording layer is called the second electrode).
The effects on thermal diffusion and the temperature within the recording layer can be summarized as follows.

(+)記録層の厚さが厚くなると、記録層内で吸収され
る光の全が増え、記録層を突き抜けて第二電極で吸収さ
れる光の量が減るため、第二電極の温度が上がらず、第
二電極層内で拡散する熱量が減る。
(+) As the thickness of the recording layer increases, the total amount of light absorbed within the recording layer increases, and the amount of light that penetrates the recording layer and is absorbed by the second electrode decreases, so the temperature of the second electrode increases. The amount of heat diffused within the second electrode layer is reduced.

(2)記録層の厚さが厚くなると、記録層内に保持され
る熱量の割合が、第一および第二電極層内を伝導する熱
量に対して、相対的に増える。
(2) As the thickness of the recording layer increases, the proportion of the amount of heat retained within the recording layer increases relative to the amount of heat conducted within the first and second electrode layers.

(3)上記(1)、(2)の効果は、記録層の厚さがあ
る値に達した後は、それ以上記録層を厚くしてもあまり
増えない。
(3) The effects of (1) and (2) above do not increase much even if the recording layer is made thicker after the thickness of the recording layer reaches a certain value.

(4)記録層の厚さが厚くなりすぎると、記録層内の熱
容量が増えるため、記録層内の温度が充分上がらなくな
る。
(4) If the thickness of the recording layer becomes too thick, the heat capacity within the recording layer will increase, making it difficult to raise the temperature within the recording layer sufficiently.

(5)記録層の厚み方向には温度分布はなるべく均一で
あることが望ましいが、記録層の厚さが厚くなりすぎる
と、記録層の途中で光が大部分吸収されてしまい、記録
層内の入射光と反対側部分に光が到達しなくなり、その
部分の温度が充分上がらなくなる。
(5) It is desirable that the temperature distribution be as uniform as possible in the thickness direction of the recording layer, but if the thickness of the recording layer becomes too thick, most of the light will be absorbed in the middle of the recording layer. The light will no longer reach the part on the opposite side from the incident light, and the temperature of that part will not rise sufficiently.

以上(1)〜(5)に示したように、記録層の厚さがあ
る値に達するまでは、記録層を厚くするほど電極による
熱拡散効果が少なくなり好都合であるが、ある値を越え
ると逆に好ましくない影響が強くなってくる。従って最
適な記録層の厚さが存在するが、その厚さは、光の照射
時間および記録層の物性値(光吸収係数、熱伝導度、比
熱など)によって異なる。入射光のエネルギー密度を2
めで記録に必要な照射時間を減らすと、熱伝導の影響が
減るので最適な記録層の厚さは減る。この記録媒体の場
合、最適な厚さは上記の式を満たすことが見出された。
As shown in (1) to (5) above, until the thickness of the recording layer reaches a certain value, the thicker the recording layer, the less the thermal diffusion effect caused by the electrodes, which is advantageous, but beyond a certain value. On the contrary, the undesirable effects become stronger. Therefore, there is an optimum recording layer thickness, but the thickness varies depending on the light irradiation time and the physical properties of the recording layer (light absorption coefficient, thermal conductivity, specific heat, etc.). The energy density of the incident light is 2
By reducing the exposure time required for optical recording, the optimal recording layer thickness decreases because the effects of thermal conduction are reduced. For this recording medium, the optimum thickness was found to satisfy the above formula.

以下本発明の構成を図面に基づいて説明する。The configuration of the present invention will be explained below based on the drawings.

第1図は本発明の強誘電性高分子光記録媒体の構成モデ
ル図である。この図中の1が該光記録媒体の記録層であ
るPVD系重合体膜がら成る部分である。2は下部電極
であり、3が上部電極である。また4は下部電極2を支
持する基板である。
FIG. 1 is a structural model diagram of the ferroelectric polymer optical recording medium of the present invention. 1 in this figure is a portion consisting of a PVD polymer film which is the recording layer of the optical recording medium. 2 is a lower electrode, and 3 is an upper electrode. Further, 4 is a substrate that supports the lower electrode 2.

記録層を構成するPVD系重合体には種々の化合物が報
告されているが、本記録媒体においては強誘電性を有し
、がっ誘電ヒステリシスイー1定で矩形を示すようなも
のが望ましく、たとえばぶつ化ビニリデンのホモ重合体
、及びふっ化ビニリデンを50重量%以上含むぶつ化ビ
ニリデン共重合体である。該共重合体としてはふっ化ビ
ニリデンと三ふっ化エチレン、六ふっ化プロピレン、三
ふり化塩化エチレン等との共重合体等を挙げる二占がで
きる。また、ポリシアン化ビニリデン、シアン化ビニリ
デン及び酢酸ビニル共重合体等も挙げられるが、これら
の中でも弗化ビニリデン及び三弗化エチレン共重合体[
以下P (VDF−TrFE)と略す]が最も好ましい
Various compounds have been reported for the PVD polymer constituting the recording layer, but in this recording medium, it is desirable to use one that has ferroelectricity and exhibits a rectangular shape with a constant dielectric hysteresis. Examples include vinylidene butylene homopolymers and vinylidene butylidene copolymers containing 50% by weight or more of vinylidene fluoride. Examples of such copolymers include copolymers of vinylidene fluoride and ethylene trifluoride, propylene hexafluoride, ethylene chloride trifluoride, and the like. Also included are polyvinylidene cyanide, vinylidene cyanide and vinyl acetate copolymers, among which vinylidene fluoride and ethylene trifluoride copolymers [
Hereinafter abbreviated as P (VDF-TrFE)] is most preferable.

該記録層のPVD系重合体膜を製造する方法としては浸
漬コーティング、スプレーコーティング、スピナーコー
ティング、ブレードコーティング、ローラコーティング
、カーテンコーティング等の溶液塗布法によって形成す
ることができる。この中でも浸漬コーティングやスピナ
ーコーティング、ローラーコーティング等によるものが
PVD系重合体膜を均一な膜厚に形成する上に、超薄膜
が得られる点からも好ましい。
The PVD polymer film of the recording layer can be formed by a solution coating method such as dip coating, spray coating, spinner coating, blade coating, roller coating, curtain coating, or the like. Among these, methods such as dip coating, spinner coating, and roller coating are preferable because they form a PVD polymer film with a uniform thickness and also provide an ultra-thin film.

該記録層の中でPVD系重合体は本記録媒体の基礎とも
いうべき強誘電性を表わす部分であるため、該光吸収剤
には該PVD系重合体の強誘電性を妨げるように以下の
特性が適宜要求される。
In the recording layer, the PVD polymer is a part that exhibits ferroelectricity, which can be called the basis of this recording medium, so the light absorber contains the following to prevent the ferroelectricity of the PVD polymer. characteristics are required accordingly.

■)照射光、特に半導体レーザー光波長付近に吸収を持
つこと、 2)導電性が低いこと、 3)熱的に安定であること、 特に1の条件を満たすものであることが望ましい。この
ような光吸収剤としては、先ず有機物ではシアニン類、
ピリジニウム類、ビリリウム類、キノリウム類、ローダ
ミン類等のポリメチン系化合物、ポリフィリン類、クロ
ロフィル類、クラウンエーテル類、フタロシアニン類、
スクワリリウム類、チアフルバレン類、ジチオール類等
の金属錯体化合物、アゾ化合物、スピロ化合物、フルオ
レノン系化合物、フルギド系化合物、イミダゾール系化
合物、ペリレン系化合物、フタロペリノン系化合物、フ
ェロセン系化合物、フェナジン系化合物、フェノチアジ
ン系化合物、フェノキサジン系化合物、ポリエン系化合
物、インジゴ系化合物、キノン系化合物、キナクリドン
系化合物、キノフタロン系化合物、ジフェニルアミン系
化合物、トリフェニルアミン系化合物、ジフェニルメタ
ン系化合物、トリフェニルメタン系化合物、アクリジン
系化合物、アクリジノン系化合物、カルボスチリル系化
合物、クマリン系化合物等が挙げられる。さらに具体的
には当該染顔、料のうちでもフタロシアニン類及びジオ
チール系ニッケル錯体が好ましい。
2) It should have absorption near the wavelength of irradiated light, especially semiconductor laser light, 2) It should have low electrical conductivity, and 3) It should be thermally stable. In particular, it is desirable that it satisfies condition 1. As such light absorbers, organic substances such as cyanines,
Polymethine compounds such as pyridiniums, birylliums, quinoliums, rhodamines, porphyrins, chlorophylls, crown ethers, phthalocyanines,
Metal complex compounds such as squaliriums, thiafulvalenes, dithiols, azo compounds, spiro compounds, fluorenone compounds, fulgide compounds, imidazole compounds, perylene compounds, phthaloperinone compounds, ferrocene compounds, phenazine compounds, phenothiazines -based compounds, phenoxazine-based compounds, polyene-based compounds, indigo-based compounds, quinone-based compounds, quinacridone-based compounds, quinophthalone-based compounds, diphenylamine-based compounds, triphenylamine-based compounds, diphenylmethane-based compounds, triphenylmethane-based compounds, acridine-based compounds compounds, acridinone compounds, carbostyril compounds, coumarin compounds, and the like. More specifically, among the dyes and materials, phthalocyanines and diothyl-based nickel complexes are preferred.

′5該光吸収剤をPVD系重合体中に添加することによ
り、照射に対する光吸収効率が改善されるが、その値は
111当りの吸光度に換算して少なくともlX104以
上、メモリーとしての実用性を考えるとIXII)5以
上になるようにその添加量を調節せねばならない。しか
しながら、該光吸収剤の含有量が多くなる程、上記吸光
度が向上する代わりに当該記録層膜の絶縁性が減少する
ために、メモリーの性能としてはノイズ成分の上昇、安
定性の低下という事態が生じてくる。従って該光吸収剤
はPVD系重合体に対して重量比にして50vt%以下
であることが望ましく、さらに具体的には15vt96
であることが望ましい。
'5 By adding the light absorber into the PVD polymer, the light absorption efficiency against irradiation is improved, but the value is at least lX104 or more in terms of absorbance per 111, which is not practical as a memory. Considering this, the amount added must be adjusted so that it becomes 5 or more. However, as the content of the light absorber increases, the absorbance improves, but the insulation of the recording layer decreases, resulting in an increase in noise components and a decrease in stability in terms of memory performance. will arise. Therefore, it is desirable that the amount of the light absorbent be 50vt% or less based on the weight of the PVD polymer, and more specifically, 15vt% or less.
It is desirable that

光照射に敏感に反応し高密度の記録を可能にするために
は、該記録層は電極層内での熱の拡散に抗して熱を保持
できるよう充分に厚くなければならない。一方、厚すぎ
ると記録層の厚さ方向に温度が不均一になり低温領域が
残ってしまい好ましくない。このため、記録する際の光
照射時間に合った最適な記録層の厚さにすることが望ま
しい。
In order to respond sensitively to light irradiation and enable high-density recording, the recording layer must be thick enough to retain heat against diffusion within the electrode layer. On the other hand, if it is too thick, the temperature will become non-uniform in the thickness direction of the recording layer and a low temperature region will remain, which is not preferable. For this reason, it is desirable that the thickness of the recording layer be optimally suited to the light irradiation time during recording.

本強誘電性高分子記録媒体が光メモリーとして機能する
ためには記録層を挾む電極の少なくとも一方が照射光に
対してできる限り透明であることが望ましく、特に本発
明では下部電極2に透明電極又は半透明電極を採用する
ことが好ましい。勿論下部電極2及び上部電極3の両方
が透明であっても良く、また上部電極3のみが透明であ
っても構わない。
In order for the present ferroelectric polymer recording medium to function as an optical memory, it is desirable that at least one of the electrodes sandwiching the recording layer be as transparent as possible to the irradiated light. It is preferable to employ electrodes or semi-transparent electrodes. Of course, both the lower electrode 2 and the upper electrode 3 may be transparent, or only the upper electrode 3 may be transparent.

本発明で採用される透明電極とはスズをドープした酸化
インジウム(ITO)や酸化スズ、アンドープの酸化イ
ンジウム等の蒸着、CVD1スパツタリング膜等が挙げ
られ、半透明電極には金、白金、銀、銅、鉛、亜鉛、ア
ルミニウム、ニッケル、タンタル、チタン、コバルト、
ニオブ、パラジウム、スズ等の各種金属の蒸着、CVD
、スパッタリング膜等が挙げられるが本発明は特にこれ
らに限定されるものではない。
The transparent electrode employed in the present invention includes tin-doped indium oxide (ITO), tin oxide, vapor deposition of undoped indium oxide, etc., CVD1 sputtering film, etc. The semi-transparent electrode includes gold, platinum, silver, etc. Copper, lead, zinc, aluminum, nickel, tantalum, titanium, cobalt,
Vapor deposition and CVD of various metals such as niobium, palladium, and tin
, sputtering film, etc., but the present invention is not particularly limited to these.

またこれらの電極の支持体材料としては、ポリエチレン
、ポリエチレンテレフタレート、ポリプロピレン、ポリ
スチレン、ポリ塩化ビニル、ポリカーボネート、ポリビ
ニルアルコール、ポリビニルアセテート、ポリアミド、
ポリイミド、ポリオレフィン、アクリル樹脂、フェノー
ル樹脂、エポキシ樹脂及び上記の誘導体等の各種プラス
チックやガラス、石英板、セラミックなどが好適である
が、電極同様照射光に対して透明であることが望ましく
、又電極との絶縁を兼ねているものであることが好まし
いが、電極同様本発明は特にこれらに限定されるもので
はない。
Support materials for these electrodes include polyethylene, polyethylene terephthalate, polypropylene, polystyrene, polyvinyl chloride, polycarbonate, polyvinyl alcohol, polyvinyl acetate, polyamide,
Various plastics such as polyimide, polyolefin, acrylic resin, phenol resin, epoxy resin, and the above derivatives, glass, quartz plate, ceramic, etc. are suitable, but like the electrode, it is desirable that they are transparent to irradiated light, and the electrode Although it is preferable that the material also serves as insulation from the electrode, the present invention is not particularly limited thereto, as is the case with the electrode.

照射光源は量産性及び価格的には半導体レーザー(LD
)が最適と考えられる。LD光の照射方向は上部・下部
向れの電極側からでも構わないが、その際に少なくとも
光源側の電極は照射光に対して透明であることが望まし
い。
The irradiation light source is a semiconductor laser (LD) in terms of mass production and cost.
) is considered optimal. The direction of irradiation of the LD light may be from the upper or lower electrode side, but in this case, it is desirable that at least the electrode on the light source side is transparent to the irradiated light.

第2図には上部電極3上に保護層5を設けた例を示した
が、この保護層5は記録層をキズ、ホコリ、汚れ等から
の保護及び記録層の保存安定性の向上等を目的として、
各種高分子材料やシランカップリング剤、ガラスなどか
ら形成される。
FIG. 2 shows an example in which a protective layer 5 is provided on the upper electrode 3. This protective layer 5 protects the recording layer from scratches, dust, dirt, etc., and improves the storage stability of the recording layer. as a goal,
It is formed from various polymer materials, silane coupling agents, glass, etc.

[実施例] 以下実施例によって本発明を具体的に説明するが本発明
はこれら実施例のみに限定されるものではない。
[Examples] The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 厚さ約1IIlのITO蒸着ポリスチレン基板上に、光
吸収係数がlX106m”1になるように色素を分散さ
せたP (VDF−TrFE)膜をスピンコード法によ
り厚さ 2,5μ傷で塗布して記録層1を形成した。
Example 1 On an ITO-deposited polystyrene substrate with a thickness of about 1 IIl, a P (VDF-TrFE) film with a dye dispersed therein so as to have a light absorption coefficient of 1×106 m”1 was formed with a scratch of 2.5 μm in thickness by a spin-coding method. The recording layer 1 was formed by coating.

この試料の上部電極としてクロムを厚さ 0.1Bts
で蒸着した後に該P (VDF−TrFE)膜に200
Vの電圧をかけてポーリング処理を施した。さらに40
Vの逆電界をかけながら、発振波長8300厘の半導体
レーザー(以下LDと略す)を用いて照射光強度1.8
+w%、e−’半径2.5μ量のガウスビームで照射点
における記録層の中心部温度が100℃になるまで下部
電極側からP (VDF−TrFE)層を加熱して情報
を記録した。
The upper electrode of this sample was made of chromium with a thickness of 0.1Bts.
The P (VDF-TrFE) film was evaporated with 200
A poling process was performed by applying a voltage of V. 40 more
While applying a reverse electric field of V, the irradiation light intensity was 1.8 using a semiconductor laser (hereinafter abbreviated as LD) with an oscillation wavelength of 8300 rin.
Information was recorded by heating the P (VDF-TrFE) layer from the lower electrode side with a Gaussian beam of +w% and e-' radius of 2.5 μm until the temperature of the center of the recording layer at the irradiation point reached 100° C.

(−(7)後、LD光強度を0.16sWl:弱めテ1
0k Hzでチョッピングしながら再度P (VDF−
TrFE)層にLD光を照射して電極間に生じる焦電電
流を計測して記録した情報の読み出し操作を行ったとこ
ろ、記録された領域(分極が反転した領域)の大きさが
直径3.1μ■であることが判明した。なお、記録に要
した光照射時間は、8μsであった。
(-After (7), reduce the LD light intensity by 0.16sWl: Te1
P again while chopping at 0kHz (VDF-
When the pyroelectric current generated between the electrodes was measured by irradiating the LD light on the (TrFE) layer and the recorded information was read out, the size of the recorded area (the area where the polarization was reversed) was 3.5 mm in diameter. It turned out to be 1μ■. Note that the light irradiation time required for recording was 8 μs.

実施例2 記録層の厚さを1.0μmにして実施例1と同じ方法で
作成し 1oovの電圧をかけてポーリング処理を施し
た光メモリーに、逆電界の強さが25Vである点を除い
て実施例1と同じ方法で情報を記録した。
Example 2 An optical memory was prepared in the same manner as in Example 1 with a recording layer thickness of 1.0 μm, and subjected to a poling process by applying a voltage of 1 oov, except that the strength of the reverse electric field was 25 V. Information was recorded in the same manner as in Example 1.

以ド実施例1と同様の方法により情報を読み出したとこ
ろ、記録された領域(分極が反転した領域)の大きさが
直径3.4μIであることが判明した。なお、記録に要
した光照射時間は13μsであった。
When the information was read out using the same method as in Example 1, it was found that the size of the recorded area (the area where the polarization was reversed) was 3.4 μI in diameter. Note that the light irradiation time required for recording was 13 μs.

実施例3 実施例2と同じ光メモリーに、25Vの逆電界をかけな
がら、発振波長830nmのLDを用いて照射点におけ
る記録層の中心部温度が100℃になるまで照射光強度
1.6mW、e−’半径1.5μ―のガウスビームで下
部電極側からP (VDF−TrFE)層を加熱して情
報を記録した。
Example 3 The same optical memory as in Example 2 was irradiated with a light intensity of 1.6 mW using an LD with an oscillation wavelength of 830 nm while applying a reverse electric field of 25 V until the temperature of the center of the recording layer at the irradiation point reached 100°C. Information was recorded by heating the P (VDF-TrFE) layer from the lower electrode side using a Gaussian beam with a radius of 1.5 μ.

以下実施例1と同様の方法により情報を読み出したとこ
ろ、記録された領域(分極が反転した領域)の大きさが
直径1.8μmであることが判明した。なお、記録に要
した光照射時間は、1.69μsであった。
Information was then read out using the same method as in Example 1, and it was found that the size of the recorded area (the area where the polarization was reversed) was 1.8 μm in diameter. Note that the light irradiation time required for recording was 1.69 μs.

比較例 記録層の厚を0.5μ謂にして実施例1と同じ方法で作
成し50Vの電圧をかけてポーリング処理を施した光メ
モリーに、逆電界の強さが12Vである点を除いて実施
例1と同じ方法で情報を記録した。
Comparative Example An optical memory was prepared in the same manner as in Example 1 with a recording layer thickness of 0.5 μm, and subjected to a poling process by applying a voltage of 50 V, except that the strength of the reverse electric field was 12 V. Information was recorded in the same manner as in Example 1.

以下実施例1と同様の方法により情報を読み出したとこ
ろ、記録された領域(分極が反転した領域)の大きさが
直径5.2μ−であることが判明した。なお、記録に要
した光照射時間は107μsであった。
Information was then read out using the same method as in Example 1, and it was found that the size of the recorded area (the area where the polarization was reversed) was 5.2 μm in diameter. Note that the light irradiation time required for recording was 107 μs.

[発明の効果] 以上説明したように、本発明を利用することにより、そ
の強誘電性高分子光記録媒体において発生した熱の拡散
を低下せしめて該光記録媒体の感度を増大させることが
でき、半導体レーザーのような低パワーの照射光に対し
ても極めて鋭敏に反応して書き込み読み出し及び消去と
いう一連の動作をスムーズに行うことができる。
[Effects of the Invention] As explained above, by utilizing the present invention, it is possible to reduce the diffusion of heat generated in the ferroelectric polymer optical recording medium and increase the sensitivity of the optical recording medium. It reacts extremely sensitively to low-power irradiation light such as that of a semiconductor laser, and can perform a series of operations such as writing, reading, and erasing smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の強誘電性高分子光記録
媒体の具体的構成の説明図である。 ■・・・記録層、2・・・下部電極、3・・・上部電極
、4・・・基板、5・・・保護層。
FIGS. 1 and 2 are explanatory diagrams of the specific structure of the ferroelectric polymer optical recording medium of the present invention. ■... Recording layer, 2... Lower electrode, 3... Upper electrode, 4... Substrate, 5... Protective layer.

Claims (1)

【特許請求の範囲】 照射光を吸収させることによって記録層を加熱する方式
の光記録媒体において、上記記録層が、ビニリデン系重
合体、および、光を吸収して熱に変換する光吸収剤から
成り、かつ、厚さが下記の範囲内にあることを特徴とす
る強誘電性高分子光記録媒体、 0.15log_1_0(t+10.0)<D<0.5
log_1_0(t+10.0)+1.0ただし、 D:記録層の厚さ(μm)、 t:1ビット記録するための光照射時間(nS)である
[Claims] In an optical recording medium of a type in which a recording layer is heated by absorbing irradiated light, the recording layer is made of a vinylidene polymer and a light absorbing agent that absorbs light and converts it into heat. A ferroelectric polymer optical recording medium having a thickness within the following range: 0.15log_1_0(t+10.0)<D<0.5
log_1_0(t+10.0)+1.0 where D: thickness of the recording layer (μm), t: light irradiation time (nS) for recording 1 bit.
JP63172610A 1988-07-13 1988-07-13 Optical recording medium consisting of ferroelectric high polymer Pending JPH0224851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172610A JPH0224851A (en) 1988-07-13 1988-07-13 Optical recording medium consisting of ferroelectric high polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172610A JPH0224851A (en) 1988-07-13 1988-07-13 Optical recording medium consisting of ferroelectric high polymer

Publications (1)

Publication Number Publication Date
JPH0224851A true JPH0224851A (en) 1990-01-26

Family

ID=15945064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172610A Pending JPH0224851A (en) 1988-07-13 1988-07-13 Optical recording medium consisting of ferroelectric high polymer

Country Status (1)

Country Link
JP (1) JPH0224851A (en)

Similar Documents

Publication Publication Date Title
JPH0613238B2 (en) Optical information recording medium
US4908294A (en) Optical information recording medium
JPH0224851A (en) Optical recording medium consisting of ferroelectric high polymer
Terao et al. Sn-Te-Se Phase Change Recording Film For Optical Disks
JP2725806B2 (en) Ferroelectric polymer optical recording medium
JP2930955B2 (en) Ferroelectric polymer optical memory
US5326678A (en) High dielectric polymeric optical recording medium
JP2780782B2 (en) Ferroelectric polymer optical memory
JP2742266B2 (en) Organic reversible optical recording medium
US7892721B2 (en) Storage medium
JP2758400B2 (en) Ferroelectric polymer optical recording medium
JP2783816B2 (en) Ferroelectric polymer optical recording medium
JP2630381B2 (en) Optical information recording medium
CA2076723A1 (en) Coated material and the use thereof
JP2758401B2 (en) Ferroelectric polymer optical recording medium
JPH02155690A (en) Optical recording medium of ferroelectric maclomolecule
JPS63299990A (en) Ferroelectric polymer memory
JPH03225322A (en) Recording medium
JPH05128841A (en) Ferroelectric high-polymer optical recording medium
JP2810070B2 (en) Ferroelectric polymer optical memory
JPH0243090A (en) Optical recording medium
JPH0155119B2 (en)
JPH0319147A (en) Optical recording medium and optical recording method
JPS63133329A (en) Optical recording medium
JPH02257492A (en) Ferroelectric high-polymer optical recording medium