JPS6192453A - Optical recording method - Google Patents

Optical recording method

Info

Publication number
JPS6192453A
JPS6192453A JP59213024A JP21302484A JPS6192453A JP S6192453 A JPS6192453 A JP S6192453A JP 59213024 A JP59213024 A JP 59213024A JP 21302484 A JP21302484 A JP 21302484A JP S6192453 A JPS6192453 A JP S6192453A
Authority
JP
Japan
Prior art keywords
recording
recording medium
temperature
electric field
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59213024A
Other languages
Japanese (ja)
Inventor
Yoshiji Ichihara
祥次 市原
Yasuyo Uratani
浦谷 安代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP59213024A priority Critical patent/JPS6192453A/en
Publication of JPS6192453A publication Critical patent/JPS6192453A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To attain high-density recording by using a specific organic amorphous compound as a recording medium, increasing the temperature of the recording medium while applying an electric field in a direction with a tilt angle to the read direction, cooling it and irradiating light on the recording at recording together with the electric field in the reading direction or singly so as to rise the temperature. CONSTITUTION:An organic amorphous compound is used where an isotropy is caused to a refractive index by arranging a dipole with an electric field and the orientation relax temperature of the radical causing the dipole is >=40 deg.C is used as the recording medium. A preparatory processing the same as erasure of recording is executed before recording for the recording medium. In the preparatory processing, electrodes 2a, 2b are provided in a direction with a tile angle theta in the read direction to a part to be recorded on the recording medium 1, an electric field is applied to a direction with a tilt in the reading direction and the recording medium 1 is heated to a temperature more than the orientation relax temperature or over of the polar radical. In the recording of the recording medium 1 subject to preparatory processing, a ray T2 is irradiated on the recording medium 1, the recording part is heated to relax the orientation of the oriented dipole and then cooled and fixed.

Description

【発明の詳細な説明】 (目的) 本発明は、光学的に記録・読み出1.可能な光学的記録
として優れた記録方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objective) The present invention provides optical recording/reading. This invention relates to a recording method that is excellent in terms of possible optical recording.

(発明の背惜) 光記録には、ホトン効果を利用する方法と熱効果を利用
する方法とがある。本発明は、熱効果を利用する記録方
法に関するものである。光記録のためにこれ迄検討され
てきた熱効果としては、同相・気相転移、非晶・結晶転
移、金属・半導体転移、磁気的転移などがある。これら
を記録方法という観点からみると、固梢・気相転移は記
録層に熱によって孔をあける方法であり、非晶・結晶転
移や金属・半導体転移は、転移の前後で記録層の屈折率
や反射率、光吸収係数が変化することを用いた記録方法
である。
(Results of the Invention) There are two methods of optical recording: one that utilizes the photon effect and one that utilizes the thermal effect. The present invention relates to a recording method that utilizes thermal effects. Thermal effects that have been studied for optical recording include in-phase/vapor phase transitions, amorphous/crystalline transitions, metal/semiconductor transitions, and magnetic transitions. Looking at these from the perspective of recording methods, solid-state-to-vapor phase transition is a method that creates holes in the recording layer using heat, while amorphous-to-crystal transition and metal-to-semiconductor transition are methods that change the refractive index of the recording layer before and after the transition. This is a recording method that uses changes in light, reflectance, and light absorption coefficient.

磁気的転移は記録層を形成する磁性体の磁化の向きによ
る光の振動面の回転方向の違いを利用する記録方法であ
る。
Magnetic transition is a recording method that utilizes the difference in the rotational direction of the vibration plane of light depending on the magnetization direction of the magnetic material forming the recording layer.

本発明は双極子の配向状態と無秩序状態における屈折率
の異方性の有無を利用するものである。
The present invention utilizes the presence or absence of refractive index anisotropy in the dipole orientation state and disordered state.

双極子の電界による配向の利用法として従来検討されて
きたものとしては、液晶表示と強誘電体的な物質に圧電
性や焦電性を賦与するだめの分弥処理とがある。後者は
圧電性や焦電性を賦与するために分極処理によって双極
子を配向させるものであって光記録には利用できない。
Examples of methods that have been considered in the past for utilizing orientation of dipoles by an electric field include liquid crystal displays and dielectric treatments that impart piezoelectricity or pyroelectricity to ferroelectric materials. The latter involves orienting dipoles through polarization treatment in order to impart piezoelectricity or pyroelectricity, and cannot be used for optical recording.

前者は′電界による配向の変化を光学的に利用するもの
であるが、記録として利用するためには電界をかけ続け
なければならないので専ら表示用に用いられている。
The former optically utilizes the change in orientation caused by an electric field, but since it is necessary to continue applying an electric field in order to use it for recording, it is used exclusively for display purposes.

本発明者等は、電界による双極子の配向とそれに基〈屈
折部の異方性を光記録に利用すべく鋭意研究した結果本
発明に至ったものである。
The present inventors have arrived at the present invention as a result of intensive research into the orientation of dipoles caused by an electric field and the use of the anisotropy of the refracting portion based thereon for optical recording.

観察方向からみて光学的に等方性のものを直交偏光子の
間に入れて光を通しても何も見えないが、観察方向から
みて光学的異方性を有するものを直交偏光子の間に入れ
、その屈折率楕円体の長軸あるいは短軸を直交偏光子の
軸と一致しないようにすれば光の一部が透過することは
一般に知られている。
If you put something that is optically isotropic when viewed from the viewing direction between crossed polarizers and the light passes through it, you won't see anything, but when you look from the viewing direction, you can put something that is optically anisotropic between crossed polarizers. It is generally known that if the long axis or short axis of the refractive index ellipsoid does not coincide with the axis of the orthogonal polarizer, part of the light will be transmitted.

また、低分子量の液晶の場合には、電界によって分子が
配向し光学的異方性を示すことも一般に知られている。
It is also generally known that in the case of low molecular weight liquid crystals, molecules are oriented by an electric field and exhibit optical anisotropy.

この現象は、液晶表示に利用されているが、表示に利用
するためには通常0.1m+nX001噛程度以上の大
きざの部分の配向の制御が出来ればよく、記録に利用出
来る程度の微細な部分の配向の制御は試みられていない
し、また、この配向を凍結し固定化することも試みられ
ていない。
This phenomenon is used in liquid crystal displays, but in order to use it for display, it is usually only necessary to control the orientation of a part with a size of about 0.1m + nX001 or more, and it is necessary to control the orientation of a part that is small enough to be used for recording. No attempt has been made to control the orientation, nor has there been any attempt to freeze and fix this orientation.

液晶でない通常の物質内に含オれる双極子の電界による
配向とその変化は、誘電緩和現象として研究されている
が、光学的性質との関係で研究されているものけない。
The orientation and change of dipoles contained in ordinary materials other than liquid crystals due to electric fields has been studied as a dielectric relaxation phenomenon, but it has not been studied in relation to optical properties.

通常このような研究はフィルム状の試料を用い、フィル
ムの両面に電極をつけて実験を行なうため、電極を除去
しないと光学的測定が出来ないことと、フィルム面に垂
直方向から見た場合には光学的異方性がないことに由来
するものと思われる。
Usually, such research uses a film sample and conducts experiments with electrodes attached to both sides of the film, so optical measurements cannot be performed unless the electrodes are removed, and when viewed from the direction perpendicular to the film surface, This is thought to be due to the lack of optical anisotropy.

電界による双極子の配向を光記録に利用しようとする場
合、単に電界により双極子が配向し、それによって光学
的異方性が生じるのみでは充分でなく、高密度にかつ高
速変で記録できることが必要である。
When trying to utilize the orientation of dipoles caused by an electric field for optical recording, it is not enough to simply orient the dipoles due to the electric field and thereby produce optical anisotropy; it is also necessary to be able to record with high density and high speed change. is necessary.

(発明の概要) 本発明は、電界によって双極子を配向させることによっ
て屈折率に異方性を生じ、かつ、双極子を生じさせる基
の配向緩和温度が40℃以上である有機非晶性化合物を
記録媒体とし、該記録媒体を読み取り方向に対して傾斜
角をもった方向に電場をかけながら昇温して双極子を配
向せしめた後冷却し、記録時には、鯖み取り方向の電場
と共にあるいは単独に記録部分に光を照射して昇温せし
めることを特徴とする光記録方法を提供するものであっ
て、記録単位面積を極めて小さくすることができ、従っ
て高密度の記録を可能とし、また高速で記録、消去をく
り返すことが可能である。
(Summary of the Invention) The present invention provides an organic amorphous compound that produces anisotropy in the refractive index by orienting dipoles by an electric field, and in which the orientation relaxation temperature of the group that produces the dipole is 40°C or higher. is used as a recording medium, and the recording medium is heated while applying an electric field in a direction with an inclination angle to the reading direction to orient the dipoles, and then cooled. The present invention provides an optical recording method characterized by irradiating light onto a recording area independently to raise its temperature, which allows the recording unit area to be extremely small, thus enabling high-density recording, and Recording and erasing can be repeated at high speed.

(発明の詳細な説明) 本発明に用いられる記録材料は、記録をする温度におい
て電界により容易にその方向を変え得るような双極子を
含み、双極子の配向によって生じた光学的異方性が少な
くとも40℃未滴、好ましくは50℃未満では緩和せず
、そのガラス転移温度が50℃以上、好ましくVi60
℃以上の有機非晶性化合物が用いられる。
(Detailed Description of the Invention) The recording material used in the present invention contains a dipole whose direction can be easily changed by an electric field at the recording temperature, and the optical anisotropy caused by the orientation of the dipole is It does not relax at least 40°C, preferably below 50°C, and its glass transition temperature is 50°C or higher, preferably Vi60.
An organic amorphous compound having a temperature of ℃ or higher is used.

このような有機非晶性化合物としては、主鎖又は側鎖に
極性基を有し、双極−7・モーメントの大きな高分子化
合物が適しており、陰性基(大きな双極子モーメントを
有する基)としては芳香環、複素環、−CN−1−CO
OH,−4−COO)、M (Mは金属元素)等を用い
ることができる。
As such an organic amorphous compound, a polymer compound having a polar group in the main chain or side chain and a large dipole moment is suitable, and a polymer compound having a large dipole moment as a negative group (a group having a large dipole moment) is suitable. is aromatic ring, heterocycle, -CN-1-CO
OH, -4-COO), M (M is a metal element), etc. can be used.

このような材料として各種のオリゴマーやポリマー、例
えばポリカーボネート、ポリスチレン、スチレン・アク
リロニトリルコポリマー、ポリアクリロニトリル等があ
る。
Such materials include various oligomers and polymers, such as polycarbonate, polystyrene, styrene-acrylonitrile copolymers, and polyacrylonitrile.

また、このような物質中の双極子の配向に伴って配向す
る低分子の双極子を有する物質が含まれていても、全体
として前述の温度特性を有する物質であればよい。
Further, even if a substance having a low-molecular dipole that is oriented along with the orientation of the dipole in such a substance is included, it is sufficient that the substance has the above-mentioned temperature characteristics as a whole.

光を照射した際それを熱に変えるために、記録層中に記
録に使用する波長の光を吸収する物質を適当な濃度で溶
解させておくか記録層に接して光を吸収し熱に変える層
を設ける必要がある。このような記録層をコーティング
等によって基板上に形成してもよい。
In order to convert light into heat when it is irradiated, a substance that absorbs light at the wavelength used for recording is dissolved in the recording layer at an appropriate concentration, or when it comes into contact with the recording layer, it absorbs the light and converts it into heat. It is necessary to provide layers. Such a recording layer may be formed on the substrate by coating or the like.

これ等有機非晶性化合物を円盤状、テープ状、線状に成
形あるいは他の基材表面にコーティングすることによっ
て記録媒体とする。
A recording medium is produced by molding these organic amorphous compounds into a disc, tape, or line, or by coating the surface of another base material.

記録媒体は、記録を行なう前に記録の消去操作と同じ予
備処理操作が行なわれる。
Before recording is performed on the recording medium, a preprocessing operation similar to the erasing operation of the recording is performed.

予備処理は、第1図に示すように、記録媒体1の記録す
べき部分に、読み取り方向に対して傾斜角θをもった方
向に電極2a、2bを設け、読み取り方向に対して傾斜
する方向に電場をかけると共に記録媒体1を極性基の配
向緩和温度以上の温度に加熱する。
As shown in FIG. 1, in the preliminary processing, electrodes 2a and 2b are provided on the portion of the recording medium 1 to be recorded in a direction having an inclination angle θ with respect to the reading direction. An electric field is applied to the recording medium 1, and the recording medium 1 is heated to a temperature higher than the orientation relaxation temperature of the polar group.

本発明において着、み取り方向とけ、記録を読み取る際
に照射する光の方向を意味し、第3図の光線りの方向を
意味する。
In the present invention, "printing" and "cutting direction" mean the direction of light irradiated when reading a record, and mean the direction of the light beam in FIG. 3.

電場の傾斜角θは5°以上、好ましくけ10゜以上が使
用される。
The inclination angle θ of the electric field is 5° or more, preferably 10° or more.

また、記録媒体1の加温は、極性基の配向の緩和温叩μ
上とされた恒温槽中で処理することによって記録媒体1
を全体的に昇温することも可能であるが、も理後急冷し
て双極子の配向を固定するためKけ、第1図に示すよう
に、記録媒体lの記録すべき部分に微少な電極2a、2
bを当てると共に熱線T1 を照射し、記録すべき部分
を局部的に熱線Tl によって極性基の配向緩和温度以
上に昇温せしめ、この熱線TIの照射位置と電極位置を
走行づせる方法が好ましい。
In addition, the heating of the recording medium 1 is performed by heating the orientation of polar groups with a relaxation temperature μ
Recording medium 1 is processed by processing it in a constant temperature bath.
It is possible to raise the temperature of the entire recording medium, but in order to fix the orientation of the dipoles by rapidly cooling it after processing, it is possible to heat the recording medium as a whole to fix the orientation of the dipoles, as shown in Figure 1. Electrodes 2a, 2
A preferred method is to apply heat ray T1 at the same time as irradiation with heat ray T1, to locally raise the temperature of the area to be recorded to a temperature higher than the orientation relaxation temperature of the polar group by means of heat ray Tl, and to run the irradiation position of this heat ray TI and the electrode position.

予備処理された記録媒体lに記録するときは、第2図(
イ)に示すように、記録媒体lに光線T2 を照射し、
記録部を昇8プせることにより、配向くれた双極子の配
向を緩和せしめた後冷却固定化する。
When recording on a preprocessed recording medium l, the procedure shown in Fig. 2 (
As shown in b), the recording medium l is irradiated with the light beam T2,
By raising the recording section, the orientation of the oriented dipoles is relaxed and then cooled and fixed.

また、記録を高速にするためには、第2図←)に示すよ
うに光T2 を照射すると共に績み取り方向と同一の方
向に電極3a、3bを設け、Pみ取り方向に電界を付与
して、記録媒体1の双極子を読み取り方向に配向させる
のが好ましい。
In addition, in order to increase the recording speed, as shown in Figure 2 ←), light T2 is irradiated and electrodes 3a and 3b are provided in the same direction as the reading direction, and an electric field is applied in the P reading direction. Preferably, the dipoles of the recording medium 1 are oriented in the reading direction.

これ等の操作によって、昇温された部分け、双極子の配
向が緩和し、あるいは、読み取り方向に配向することに
より、記録部は、読み取り方向に対して光学的に等方性
となり、傾斜角θをもつ方向に配向した他の部分に対し
て光学的に異質の部分が形成され、これを急冷すること
によって記録が固定化される、 記録時の昇温は、双極子を発生させる極性基の配向が緩
和し得る温度以と、好ましくは有機化合物のガラス転移
点以上に加熱される。
Through these operations, the orientation of the heated portions and dipoles is relaxed or oriented in the reading direction, so that the recording part becomes optically isotropic with respect to the reading direction, and the tilt angle A region that is optically different from other regions oriented in the direction of θ is formed, and recording is fixed by rapidly cooling this region. It is heated to a temperature below which the orientation of the organic compound can be relaxed, and preferably above the glass transition point of the organic compound.

こうして記録された記録を請み取るには、第3図に示す
ように、記録媒体1の両側に直交偏光子4a、4bをお
き、光線りを偏光子4a、記録媒体1及び偏光子4bを
通して検光子5で受光することによって、双極子の配向
の有無、あるいは配向の方向の違いによって生じる透過
光の強弱の変化によって記録を読み取ることができるほ
か、反射光を利用することも出来る。
In order to obtain the records recorded in this way, as shown in FIG. By receiving the light with the analyzer 5, it is possible to read the record based on changes in the intensity of the transmitted light caused by the presence or absence of dipole orientation or the difference in the direction of orientation, and it is also possible to use reflected light.

貌み堰りのために入射する光の偏光方向は、電界をかけ
る方向を記録面に投影した方向から5゜以上ずれている
ことが必要で、45°の角度をなすことが最も好ましい
。検光子5側の偏光子4bの方向はこの偏光方向に対し
直交していることか必要である。記録光は、偏光である
必要はない。
The polarization direction of the incident light for the purpose of dipping must be deviated by at least 5° from the direction in which the electric field is applied to the recording surface, most preferably at an angle of 45°. It is necessary that the direction of the polarizer 4b on the side of the analyzer 5 is orthogonal to this polarization direction. The recording light does not need to be polarized.

実施例 ポリスチレン、スチレン−アクリロニトリルコポリマー
、ポリアクリロニトリル、ポリカーボネート、及びポリ
メチルメタクリレートの5種翻のポリマーの薄膜を基板
上に成形し、薄嘆面の垂線に対し30〜60’の角度で
電界をかけながらそのガラス転移温flf (Tg )
  ないしTg+25℃の温度に昇温後冷却した後冷却
した。与えた電界の強さに、ポリスチレンの場合100
0 KV/m、スチレン・アクリロニトリルコポリマー
とポリメチルメタクリレートの場合900 KV/l’
In %ポリアクリロニトリルの場合1900Kv/C
1ポリカーボネートの場合880 KV/に肩である。
EXAMPLE Thin films of five types of polymers, polystyrene, styrene-acrylonitrile copolymer, polyacrylonitrile, polycarbonate, and polymethyl methacrylate, were formed on a substrate, and an electric field was applied at an angle of 30 to 60' with respect to the normal to the thin plane. While its glass transition temperature flf (Tg)
The temperature was raised to a temperature between Tg and 25° C., and then cooled. In the case of polystyrene, the strength of the applied electric field is 100
0 KV/m, 900 KV/l' for styrene-acrylonitrile copolymer and polymethyl methacrylate
1900Kv/C for In% polyacrylonitrile
1 polycarbonate, it should be 880 KV/.

このようにして屈折率の異方性をもたせた部分と異方性
を賦与しなかった部分について直交偏光子間で透過光の
明るさの比を求めたところポリスチレンでij 9.5
倍、スチレン・アクリロニトリルコポリマーでは3.8
倍、ポリアクリロニトリルでは2゜0倍、ポリカーボネ
ートで[10,2倍、ポリメチルメタクリレートでij
 1.3倍であった。主鎖あるいは側鎖にフェニル基や
フェニレン基を有するものが、比較的低電圧で光の強さ
の比も大きく利用しやすいが、他のものでも充分利用可
能である。このようにして光学的異方性をもたせたもの
を、部分的にTg以七迄昇温したとこみ、加湿≧ねた部
分のみ光学的異方性をなくすることが出来た。オタ、光
学的異方性をもたせた部分全体を+JOFJsL、光学
的異方性をなくすることも可能であった。さらPc、こ
れらを再現性よく繰返すことが出来た。
The ratio of the brightness of transmitted light between orthogonal polarizers was determined for the part with refractive index anisotropy and the part without anisotropy in this way, and it was found to be ij 9.5 for polystyrene.
times, 3.8 times for styrene-acrylonitrile copolymer
2 times for polyacrylonitrile, 10,2 times for polycarbonate, ij for polymethyl methacrylate
It was 1.3 times. Those having a phenyl group or phenylene group in the main chain or side chain are easy to use because of their relatively low voltage and large light intensity ratio, but other types are also fully usable. By partially raising the temperature of the material that had been imparted with optical anisotropy to a temperature above Tg, it was possible to eliminate the optical anisotropy only in the portion where the humidity was higher than or equal to the wet temperature. It was also possible to eliminate the optical anisotropy by adding +JOFJsL to the entire optically anisotropic part. Furthermore, Pc was able to repeat these steps with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、予備処理の方法を示す説明図(縦断面図)、
第2図(イ)、(ロ)は記録する方法を示す説明図(縦
断面図)第3図は、記録を読み則るときの説明図(糸断
面図)である。 l:記録媒体 θ:傾斜角 L:光線 特許出願人  三菱油化株式会社 代理人 弁理士 古 川 秀 利 (ほか1名) 第1図 第2図
FIG. 1 is an explanatory diagram (longitudinal cross-sectional view) showing the pretreatment method;
FIGS. 2A and 2B are explanatory diagrams (longitudinal cross-sectional view) showing the recording method, and FIG. 3 is an explanatory diagram (thread cross-sectional view) when reading the recording. l: Recording medium θ: Inclination angle L: Light beam Patent applicant Mitsubishi Yuka Co., Ltd. agent Patent attorney Hidetoshi Furukawa (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 電界によつて双極子を配向させることにより屈折率に異
方性を生じかつ双極子を生じさせる基の配向緩和温度が
40℃以上である有機非晶性化合物を記録媒体とし、該
記録媒体を読み取り方向に対して傾斜角をもつた方向に
電場をかけながら昇温して双極子を配向せしめた後冷却
し、記録時には、読み取り方向の電場と共にあるいは単
独に記録部分に光を照射して昇温せしめることを特徴と
する光記録方法。
The recording medium is an organic amorphous compound that produces anisotropy in the refractive index by orienting the dipoles by an electric field and has an orientation relaxation temperature of 40° C. or higher for the group that produces the dipoles. The temperature is raised while applying an electric field in a direction at an angle to the reading direction to orient the dipoles, and then cooled. During recording, light is irradiated onto the recording area together with the electric field in the reading direction or alone. An optical recording method characterized by heating.
JP59213024A 1984-10-11 1984-10-11 Optical recording method Pending JPS6192453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213024A JPS6192453A (en) 1984-10-11 1984-10-11 Optical recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213024A JPS6192453A (en) 1984-10-11 1984-10-11 Optical recording method

Publications (1)

Publication Number Publication Date
JPS6192453A true JPS6192453A (en) 1986-05-10

Family

ID=16632243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213024A Pending JPS6192453A (en) 1984-10-11 1984-10-11 Optical recording method

Country Status (1)

Country Link
JP (1) JPS6192453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0271900A2 (en) * 1986-12-17 1988-06-22 Canon Kabushiki Kaisha Device, method and apparatus for optical modulation
EP0295145A2 (en) * 1987-06-11 1988-12-14 Canon Kabushiki Kaisha Recording method and recording apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0271900A2 (en) * 1986-12-17 1988-06-22 Canon Kabushiki Kaisha Device, method and apparatus for optical modulation
EP0295145A2 (en) * 1987-06-11 1988-12-14 Canon Kabushiki Kaisha Recording method and recording apparatus

Similar Documents

Publication Publication Date Title
EP0306925B1 (en) Recording method and recording apparatus
EP0153729B1 (en) Optical recording medium
KR19980703738A (en) Liquid crystal optical storage medium having gray scale
US5936691A (en) Method of preparing alignment layer for use in liquid crystal devices using in-situ ultraviolet exposure
JP2001201634A (en) Method of imparting optical anisotropy to polymer film, device therefor and optically anisotropic medium
EP0205187B1 (en) Optical disc memory with liquid crystal
JPS63216791A (en) Laser optical writing and reading method, device thereof and multilayer laser optical data disk
JPS6192453A (en) Optical recording method
EP0349731B1 (en) Optical modulation device using polymer liquid crystal
JPS5935989A (en) Information recording medium
US6743465B2 (en) Magnetic optical member with a polymer substrate
JPS6192454A (en) Optical recording method
US4853911A (en) Optical disc memory system utilizing a smectic chiral liquid crystal
JP2578424B2 (en) Ferroelectric polymer liquid crystal device
US4855976A (en) Information writing method for an optical disc memory system utilizing a smectic chiral liquid crystal
JPH0671829B2 (en) Method of manufacturing optical recording medium
JP3141299B2 (en) Recording method and recording device
US5623475A (en) Method of inscribing and readout of information in an information storage layer
Yaroshchuk et al. Free and stimulated orientation of liquid crystals on azobenzene polymer films
US5267224A (en) Liquid crystal memory device including an organic ferroelectric layer
JPH0481814B2 (en)
JP2632920B2 (en) Recording method, recording medium and recording device
Nesrullaev et al. Thermooptic data storage in the chiral ferroelectric smectic C* phase of liquid crystals
JPS62112295A (en) Optical recording system
Baba et al. Fabrication and Patterning of Submierometer-Thick Optical Polarizing Films for 800 nm Using Stretched Silver Island Multilayers