JPS6192454A - Optical recording method - Google Patents

Optical recording method

Info

Publication number
JPS6192454A
JPS6192454A JP59213025A JP21302584A JPS6192454A JP S6192454 A JPS6192454 A JP S6192454A JP 59213025 A JP59213025 A JP 59213025A JP 21302584 A JP21302584 A JP 21302584A JP S6192454 A JPS6192454 A JP S6192454A
Authority
JP
Japan
Prior art keywords
recording
recording medium
electric field
orientation
reading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59213025A
Other languages
Japanese (ja)
Inventor
Yoshiji Ichihara
祥次 市原
Yasuyo Uratani
浦谷 安代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP59213025A priority Critical patent/JPS6192454A/en
Publication of JPS6192454A publication Critical patent/JPS6192454A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material

Abstract

PURPOSE:To attain high-density recording by forming optical isotropy to a recording medium in the reading direction, applying an electric field to the recording part in a direction with a tile angle in the read direction, irradiating the light for heating the medium thereby decreasing a recording unit area. CONSTITUTION:An organic amorphous compound is used as the recording medium, where an anisotropy is caused in the refractive index by applying an electric field to orient a dipole and the orientation relax temperature of the radial causing the dipole is >=40 deg.C. In recording, electrodes 2a, 2b are provided in a direction having a tile angle theta to the read direction L of the recording medium L, an electric field is applied to a direction with a tilt in the reading direction and a ray T is irradiated. In reading the recording, orthogonal polarizers 3a, 3b are placed at both sides of the recording medium 1, and the ray L is received by an analyzer 4 through the polarizer 3a, the recording medium and the polarizer 3b. In erasing the recording, the entire recording medium 1 is heated to the orientation relax temperature of the polar radical or the orientation is relaxed by irradiating the light on the erased part only.

Description

【発明の詳細な説明】 (目的) 本発明は、光学的に記録・読み出し可能な光学的記録と
して俊れた記録方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objective) The present invention relates to a recording method that is excellent for optical recording that can be recorded and read out optically.

(発明の背景) 光記録には、ホトン効果を利用する方法と熱効果を利用
する方法とがある。本発明は、熱効果を利用する記録方
法に関するものである。光記録のためにこれ迄検討され
てきた熱効果としては、固相・気゛相転移、非晶・結晶
転移、金属・半導体転移、磁気的転移などがある。これ
らを記録方法という観点からみると、固相・気相転移は
記録層に熱によって孔をあける方法であり、非晶・結晶
転移や金属・半導体転移は、転移の前後で記録層の屈折
率や反射率、光吸収係数が変化することを用いた記録方
法である。
(Background of the Invention) There are two types of optical recording: methods that utilize the photon effect and methods that utilize the thermal effect. The present invention relates to a recording method that utilizes thermal effects. Thermal effects that have been studied so far for optical recording include solid phase/vapor phase transition, amorphous/crystalline transition, metal/semiconductor transition, and magnetic transition. From the perspective of recording methods, solid phase/vapor phase transition is a method of creating holes in the recording layer using heat, while amorphous/crystal transition and metal/semiconductor transition are methods that change the refractive index of the recording layer before and after the transition. This is a recording method that uses changes in light, reflectance, and light absorption coefficient.

磁気的転移は記録層を形成する磁性体の磁化の向きによ
る光の振動面の回転方向の違いを利用する記録方法であ
る。
Magnetic transition is a recording method that utilizes the difference in the rotational direction of the vibration plane of light depending on the magnetization direction of the magnetic material forming the recording layer.

本発明は双極子の配向状態と無秩序状態における屈折率
の異方性の有無を利用するものである。
The present invention utilizes the presence or absence of refractive index anisotropy in the dipole orientation state and disordered state.

双極子の電界による配向の利用法として従来検討されて
きたものとしては、液晶表示と強誘電体的な1質に圧電
性や焦電性を賦与するだめの分極処理とがある。後者は
圧に性や焦電性を賦与するために分極処理によって双極
子を配向させるものであって光記録には利用できない。
Examples of methods that have been studied in the past to utilize orientation of dipoles by an electric field include liquid crystal displays and polarization treatments that impart piezoelectricity or pyroelectricity to a ferroelectric substance. The latter method involves orienting dipoles through polarization treatment in order to impart pressure properties and pyroelectricity, and cannot be used for optical recording.

前者は電界による配向の変化を光学的に利用するもので
あるが、記録として利用するだめには、電界をかけ続け
なければならないので専ら表示用に用いられている。
The former optically utilizes the change in orientation caused by an electric field, but in order to use it for recording, it is necessary to continue applying an electric field, so it is used exclusively for display purposes.

本発明者等は、電界による双極子の配向とそれに鳩く屈
折率の異方性を光記録に利用すべく鋭意研究した結果本
発明に至ったものである。
The present inventors have arrived at the present invention as a result of intensive research aimed at utilizing the orientation of dipoles caused by an electric field and the anisotropy of the refractive index associated therewith for optical recording.

観察方向からみて光学的に等方性のものを直交偏光子の
間に入れて光を通しても何も見えないが、観察方向から
みて光学的異方性を有するものを直交偏光子の間に入れ
、その屈折率楕円体の長軸あるいは短軸を直交偏光子の
鴫と一致しないようにすれ・′ば光の一部が透過するこ
とは一般に知られている。
If you put something that is optically isotropic when viewed from the viewing direction between crossed polarizers and the light passes through it, you won't see anything, but when you look from the viewing direction, you can put something that is optically anisotropic between crossed polarizers. It is generally known that if the major axis or minor axis of the refractive index ellipsoid does not coincide with the axis of the orthogonal polarizer, part of the light will be transmitted.

また、低分子量の液晶の場合には、電界によって分子が
配向し光学的異方性を示すことも一般に知られている。
It is also generally known that in the case of low molecular weight liquid crystals, molecules are oriented by an electric field and exhibit optical anisotropy.

この現象は、液晶表示に利用されているが、表示に利用
するためには通常0.1mmX0.1陽程度以上の大き
さの部分の配向の制御が出来ればよく、記録に利用出来
る程度の微細な部分の配向の制御は試みられていないし
、また、この配向を凍結し固定化することも試みられて
いない。
This phenomenon is used in liquid crystal displays, but in order to use it in displays, it is usually only necessary to be able to control the orientation of a region larger than 0.1 mm x 0.1 mm, which is fine enough to be used for recording. No attempt has been made to control the orientation of this portion, nor has there been any attempt to freeze and fix this orientation.

液晶でない通常の物質内に含まれる双極子の電界による
配向とその変化は、誘電緩和現象として研究されている
が、光学的性質との関係で研究されているものはない。
The orientation and change of dipoles contained in ordinary materials that are not liquid crystals due to electric fields has been studied as a dielectric relaxation phenomenon, but nothing has been studied in relation to optical properties.

通常このような研究はフィルム状の試料を用い、フィル
ムの両面に電極をつけて実験を行なうため、電極を除去
しないと光学的測定が出来ないことと、フィルム面に垂
直方向から見た場合には光学的異方性がないことに由来
するものと思われる。
Usually, such research uses a film sample and conducts experiments with electrodes attached to both sides of the film, so optical measurements cannot be performed unless the electrodes are removed, and when viewed from the direction perpendicular to the film surface, This is thought to be due to the lack of optical anisotropy.

電界による双極子の配向を光記録に利用しようとする場
合、単に電界により双極子が配向し、それによって光学
的異方性が生じるのみでは充分でなく、高密度にかつ高
速度で記録できることが必要である。
When trying to utilize the orientation of dipoles caused by an electric field for optical recording, it is not enough to simply orient the dipoles by the electric field and thereby produce optical anisotropy; it is also necessary to be able to record with high density and high speed. is necessary.

(発明の概要) 本発明は、電界によって双極子を配向させることにより
屈折率に異方性を生じ、かつ、双極子を生じさせる基の
配向緩和温度が40℃以上である有機非晶性化合物を記
録媒体とし、該記録媒体を読み取り方向に対して光学的
に等方性とした後、記録部分に読み取り方向に対して傾
斜角をもった方向に電場をかけると共に光を照射して昇
温せしめることによって、読み取り方向に対して傾斜す
る方向に双極子を配向せしめ、次いで冷却固化すること
を特徴とする光記録方法であって、記録単位面積を極め
て小さくすることができ、従って高密度の記録を可能と
し、また、高速で記録、消去をくり返すことが可能でち
る。
(Summary of the Invention) The present invention provides an organic amorphous compound that produces anisotropy in the refractive index by orienting dipoles by an electric field, and in which the orientation relaxation temperature of the group that produces the dipole is 40°C or higher. is used as a recording medium, and after making the recording medium optically isotropic with respect to the reading direction, an electric field is applied to the recording part in a direction at an angle with respect to the reading direction, and the temperature is increased by irradiating light. This optical recording method is characterized by aligning the dipoles in a direction oblique to the reading direction, and then cooling and solidifying the recording unit area. It is possible to record data, and it is also possible to repeatedly record and erase data at high speed.

(発明の詳細な説明) 本発明に用いうる記録材料は、記録をする温度において
電界により容易にその方向を変え得るような双極子を含
み、双極子の配向によって生じた光学的異方性が少なく
とも40℃未満、好ましくは50℃未満では緩和せず、
そのガラス転移温度が50℃以上、好ましくは60℃以
上の有機非晶性化合物が用いられる。
(Detailed Description of the Invention) The recording material that can be used in the present invention includes a dipole whose direction can be easily changed by an electric field at the recording temperature, and the optical anisotropy caused by the orientation of the dipole is does not relax at least below 40°C, preferably below 50°C;
An organic amorphous compound whose glass transition temperature is 50°C or higher, preferably 60°C or higher is used.

このような有機非晶性化合物としては、主鎖又;ま側鎖
に極性基を有し、双凌子モーメントの大きな高分子化合
物が一通して2す、極性基(大きな双極子モーメントを
有する去)として(・よ芳香環、複素環、−CN 、−
COO)l、(COO)nM  (Mは金属元素)等を
用いることができる。
Among such organic amorphous compounds, there are polymer compounds that have polar groups in the main chain or side chains and have a large dipole moment. ) as (・yo aromatic ring, heterocycle, -CN, -
COO)l, (COO)nM (M is a metal element), etc. can be used.

このような材料として各種のオリゴマーやポリマー、σ
IJえばポリカーボネート、ポリスチレン、スチレン・
アクリロニトリルコポリマー、ポリアクリロニトリル等
がある。
Such materials include various oligomers, polymers, σ
IJ includes polycarbonate, polystyrene, styrene, etc.
Examples include acrylonitrile copolymer and polyacrylonitrile.

また、このヱウな物質中の双極子の配向に伴って配向す
る低分子の双極子を有する・物質が含まれていても、全
体として前述の温度特性を有する物質であればよい。
Further, even if a substance having a low-molecular dipole that is oriented along with the orientation of the dipole in this wonderful substance is included, it is sufficient if the substance has the above-mentioned temperature characteristics as a whole.

光を照射した際それを熱に変えるために、記録層中に記
録に使用する波長の光を吸収する物質を適当な濃度で溶
解させておくか記録層に、妾して光を吸収し熱に変える
層を設ける必要がちる。このような記録層をコーティン
グ等によって基板上に形成してもよい。
In order to convert light into heat when irradiated with light, a substance that absorbs light at the wavelength used for recording is dissolved in the recording layer at an appropriate concentration, or it is placed in the recording layer to absorb light and generate heat. It is necessary to provide a layer to change the Such a recording layer may be formed on the substrate by coating or the like.

これ等有機非晶性化合物を円盤状、テープ状、線状に成
形あるいは他の基材表面にコーティングすることによっ
て記録媒体とする。
A recording medium is produced by molding these organic amorphous compounds into a disc, tape, or line, or by coating the surface of another base material.

記録媒体は、記録前に消去操作と同様の読み取り方向に
対して光学的に等方性となるような処理がなされる。
Before recording, the recording medium is processed to become optically isotropic with respect to the reading direction, similar to the erasing operation.

読み取り方向とは、記録の読み取りの際に照射する光の
方向を意味し、第2図において光線りの方向を意味する
The reading direction means the direction of light irradiated when reading a record, and means the direction of the light beam in FIG. 2.

従って、読み取り方向に対して光学的に等方性を有する
とは、第1図の光線りの方向からみて光学的に等方性で
あって、光線りは複屈折現象が生じないことを意味する
Therefore, having optical isotropy with respect to the reading direction means that it is optically isotropic when viewed from the direction of the light beam in Figure 1, and the light beam does not exhibit birefringence. do.

読み取り方向に対して光学的に等方性とする手段として
は、記録媒体を加熱して極性基の配向緩和温度以上とす
ることによって、双極子の配向を消去するか、ちるいは
、読み取り方向と同一方向に電界をかけながら昇温する
ことによって読み取9方向と司一方向に双極子を配向さ
せることによって行なうことができる。
To make the recording medium optically isotropic in the reading direction, the dipole orientation can be erased by heating the recording medium to a temperature higher than the orientation relaxation temperature of the polar groups, or the recording medium can be made optically isotropic in the reading direction. This can be done by increasing the temperature while applying an electric field in the same direction as the reading direction and aligning the dipoles in one direction.

読み取り方向に対して等方性にされた記録媒体は、急冷
して固定化される。
The recording medium made isotropic with respect to the reading direction is rapidly cooled and fixed.

記録は、第1図に示すように、記録媒体1の読み取り方
向りに対して傾斜角θをもつ方向に電極2a、2bを設
け、読み取り方向に対して傾斜する方向に電場をかける
と共に光線Tを照射する。
For recording, as shown in FIG. 1, electrodes 2a and 2b are provided in a direction having an inclination angle θ with respect to the reading direction of the recording medium 1, and an electric field is applied in a direction inclined with respect to the reading direction. irradiate.

これによって、光線Tで照射された部分が昇温し、有機
非晶性化合物中の極性基の配向緩和温度以上となって、
かけられた電界によって有機化合物の双極子がその方向
に配向する。次いでこれを急冷すれば双極子の配向は固
定され、記録は保存される。
As a result, the temperature of the part irradiated with the light beam T rises to a temperature higher than the orientation relaxation temperature of the polar group in the organic amorphous compound,
The applied electric field orients the dipoles of the organic compound in that direction. If this is then rapidly cooled, the orientation of the dipoles is fixed and the record is preserved.

電場の傾斜角θは、5°以上、好ましくは10゜以上で
ある。
The inclination angle θ of the electric field is 5° or more, preferably 10° or more.

また、光線を照射して双極子を配向させる部分の温度は
、記録する状態における有機化合物の極性基の配向が緩
和する湛度以上、好ましくは有機化合物のガラス転移点
以上に加熱される。
Further, the temperature of the portion where the dipole is irradiated with the light beam is heated to a temperature higher than the temperature at which the orientation of the polar groups of the organic compound is relaxed in the recording state, preferably higher than the glass transition point of the organic compound.

こうして記録された記録を読み取るには、第2図に示す
ように、記録媒体1の両側に直交偏光子3a、3bをお
き、光線Lt−41光子3a、記録媒木1及び偏光子3
bを通して検光子4で受光することによって、双極子の
配向の有無、あるいは配向の方向の違いによって生じる
透過光の強弱の変化によって記録を読み取ることができ
るほか、反射光を用いることも出来る。
In order to read the records recorded in this way, as shown in FIG.
By receiving light through the analyzer 4 through b, it is possible to read the record based on changes in the intensity of the transmitted light caused by the presence or absence of dipole orientation or the difference in the direction of orientation, and it is also possible to use reflected light.

読み取りのために入射する光の偏光方向は、電界をかけ
る方向を記録面に投影した方向から5゜以上ずれて1の
ることが必要で、45°の角度をなすことが最も好まし
い。検光子4側の偏光子3bの方向はこの偏光方向に対
し直交していることが必要である。記録光は、偏光であ
る必要はない。
The polarization direction of the incident light for reading needs to be shifted by 5 degrees or more from the direction in which the electric field is applied to the recording surface, and most preferably at an angle of 45 degrees. The direction of the polarizer 3b on the analyzer 4 side needs to be orthogonal to this polarization direction. The recording light does not need to be polarized.

記録を消去するときは、記録媒体1全体を極性基の配向
緩和温度以上に加熱するか、あるいは、消去部分のみに
光を当てて配向を緩和させることによって読み取シ方向
に対して光学的に等方性とする。
When erasing a record, the entire recording medium 1 is heated to a temperature higher than the orientation relaxation temperature of the polar group, or light is applied only to the erased portion to relax the orientation so that the recording medium 1 is optically equidistant in the reading direction. Directional.

また、光を当てると共に読み取シ方向の′直昇をかける
ことによって双極子を読み取り方向に配向させることに
よっても消去させることができる。
It can also be erased by directing the dipoles in the reading direction by exposing them to light and applying a direct rise in the reading direction.

実施例 ポリスチレン、スチレン−アクリロニトリルコポリマー
、ポリアクリロニトリル、ポリカーボネート、及びポリ
メチルメタクリレートつ5種類のポリマーの薄膜を基板
上に成形し、薄膜面の垂線に対し30〜60°の角度で
電界をかけながらそのガラス転移温度(Tg )ないし
Tg−1−25℃の温度に昇温後冷却した後冷却した。
Example Thin films of five types of polymers, polystyrene, styrene-acrylonitrile copolymer, polyacrylonitrile, polycarbonate, and polymethyl methacrylate, were formed on a substrate, and an electric field was applied at an angle of 30 to 60 degrees to the normal to the film surface. The temperature was raised to a temperature between the glass transition temperature (Tg) and Tg-1 to 25°C, and then cooled.

与えた電界の強さは、ポリスチレンの場合1000Kv
/σ、スチレン・アクリロニトリルコポリマーとポリメ
チルメタクリレートの場合900 Kv / cm 、
ポリアクリロニトリルの場合1900 KV/crns
  ポリカーボネートの場合880 K’i/anであ
る。このようにして屈折率の異方性をもたせた部分と異
方性を賦与しなかった部分について直交偏光子間で透過
光の明るさの比を求めたところポリスチレンでは9.5
倍、スチレン・アクリロニトリルコポリマーでは3.8
倍、ポリアクリロニトリルでは2.0倍、ポリカーボネ
ートでdlo、2倍、ポリメチルメタクリレートでは1
.3倍であった。主鎖あるいは側鎖にフエニル基やフェ
ニレン基を有するものが、比較的低電圧で光の強さの比
も大きく利用しやすいが、池のものでも充分利用可能で
ある。このようにして光学的異方性をもたせたものを、
・$公的にTg以上迄昇昇温たところ、加熱された部分
のみ光学的異方性をなくすることが出来た。また、光学
的異方性をもたせた部分全体を加熱し、光学的異方性を
なくすることも可能であった。さらに、これらを再現性
よく繰返すことが出来たつ
The strength of the applied electric field is 1000 Kv for polystyrene.
/σ, 900 Kv/cm for styrene-acrylonitrile copolymer and polymethyl methacrylate,
1900 KV/crns for polyacrylonitrile
In the case of polycarbonate, it is 880 K'i/an. In this way, the ratio of the brightness of transmitted light between orthogonal polarizers was determined for the part with refractive index anisotropy and the part without anisotropy, and it was 9.5 for polystyrene.
times, 3.8 times for styrene-acrylonitrile copolymer
2.0 times for polyacrylonitrile, dlo for polycarbonate, 2 times, and 1 for polymethyl methacrylate.
.. It was three times as much. Those having a phenyl group or phenylene group in the main chain or side chain are relatively low voltage and have a large light intensity ratio, so they are easy to use, but Ike ones can also be used satisfactorily. The material that has optical anisotropy in this way is
・When we officially raised the temperature to above Tg, we were able to eliminate optical anisotropy only in the heated portion. It was also possible to eliminate optical anisotropy by heating the entire portion that had optical anisotropy. Furthermore, we were able to repeat these steps with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、記録媒体に記碌する方法を示す説明図、第2
図は読み取りをする方法を示す説明図である。 1:記録媒体 2・電極 L゛読み取り方向 特許出願人  三菱油化株式会社 代理人 弁理士 古 川 秀 利 (+e<’Iタリノ 第1図 第2図
Figure 1 is an explanatory diagram showing the method of recording on a recording medium,
The figure is an explanatory diagram showing a reading method. 1: Recording medium 2 / Electrode L reading direction Patent applicant Mitsubishi Yuka Co., Ltd. Agent Patent attorney Hidetoshi Furukawa (+e<'I Tarino Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 電界によつて双極子を配向させることにより屈折率に異
方性を生じかつ双極子を生じさせる基の配向緩和温度が
40℃以上である有機非晶性化合物を記録媒体とし、該
記録媒体を読み取り方向に対して光学的に等方性とした
後、記録部に読み取り方向に対して傾斜角をもつた方向
に電場をかけると共に光を照射して昇温せしめることに
よつて、読み取り方向に対して傾斜する方向に双極子を
配向せしめ、次いで冷却固化することを特徴とする光記
録方法。
The recording medium is an organic amorphous compound that produces anisotropy in the refractive index by orienting the dipoles by an electric field and has an orientation relaxation temperature of 40° C. or higher for the group that produces the dipoles. After making it optically isotropic with respect to the reading direction, the recording section is made to be optically isotropic in the reading direction by applying an electric field in a direction at an angle to the reading direction and irradiating light to raise the temperature. An optical recording method characterized by orienting dipoles in a direction tilted to the opposite direction, and then cooling and solidifying the dipoles.
JP59213025A 1984-10-11 1984-10-11 Optical recording method Pending JPS6192454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213025A JPS6192454A (en) 1984-10-11 1984-10-11 Optical recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213025A JPS6192454A (en) 1984-10-11 1984-10-11 Optical recording method

Publications (1)

Publication Number Publication Date
JPS6192454A true JPS6192454A (en) 1986-05-10

Family

ID=16632259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213025A Pending JPS6192454A (en) 1984-10-11 1984-10-11 Optical recording method

Country Status (1)

Country Link
JP (1) JPS6192454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070704A1 (en) * 2004-12-28 2006-07-06 Kyoto University High density information recording/reproducing/erasing method, and medium and apparatus used therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070704A1 (en) * 2004-12-28 2006-07-06 Kyoto University High density information recording/reproducing/erasing method, and medium and apparatus used therein

Similar Documents

Publication Publication Date Title
KR100424738B1 (en) Liquid crystal optical storage medium with gray scale
Ichimura et al. Photo‐optical liquid crystal cells driven by molecular rotors
US5353247A (en) Optical mass storage system and memory cell incorporated therein
JP2001201634A (en) Method of imparting optical anisotropy to polymer film, device therefor and optically anisotropic medium
JPS63216791A (en) Laser optical writing and reading method, device thereof and multilayer laser optical data disk
EP0205187B1 (en) Optical disc memory with liquid crystal
EP0349731B1 (en) Optical modulation device using polymer liquid crystal
JPH04228132A (en) Information storage medium and method for recording and holding using the medium
JPS5935989A (en) Information recording medium
JPS6192454A (en) Optical recording method
US6743465B2 (en) Magnetic optical member with a polymer substrate
JPS6192453A (en) Optical recording method
JPS62231437A (en) Optical recording medium and optical recording method
JPWO2003024586A1 (en) Molecular orientation control method and molecular orientation control device
JP3141299B2 (en) Recording method and recording device
JPH0671829B2 (en) Method of manufacturing optical recording medium
JPH03284988A (en) Reversible recording medium
US5267224A (en) Liquid crystal memory device including an organic ferroelectric layer
Yaroshchuk et al. Free and stimulated orientation of liquid crystals on azobenzene polymer films
Furumi et al. Surface-assisted orientational control of discotic liquid crystals by light
JPS62112295A (en) Optical recording system
JPS61115251A (en) Optical recording medium
JP2632920B2 (en) Recording method, recording medium and recording device
JP2003030851A (en) Method for reading information
JP3054785B2 (en) How to delete records