JP2578424B2 - Ferroelectric polymer liquid crystal device - Google Patents

Ferroelectric polymer liquid crystal device

Info

Publication number
JP2578424B2
JP2578424B2 JP62070085A JP7008587A JP2578424B2 JP 2578424 B2 JP2578424 B2 JP 2578424B2 JP 62070085 A JP62070085 A JP 62070085A JP 7008587 A JP7008587 A JP 7008587A JP 2578424 B2 JP2578424 B2 JP 2578424B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer liquid
ferroelectric polymer
stretching
crystal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62070085A
Other languages
Japanese (ja)
Other versions
JPS63235916A (en
Inventor
敏一 大西
健 宮崎
和夫 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62070085A priority Critical patent/JP2578424B2/en
Publication of JPS63235916A publication Critical patent/JPS63235916A/en
Application granted granted Critical
Publication of JP2578424B2 publication Critical patent/JP2578424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強誘電性高分子液晶を用いた液晶素子に関
し、特に薄いフイルム成形が可能で、基板と該強誘電性
高分子液晶層との密着性のよい液晶素子に関する。
Description: TECHNICAL FIELD The present invention relates to a liquid crystal device using a ferroelectric polymer liquid crystal, and more particularly to a liquid crystal device capable of forming a thin film, comprising a substrate and a ferroelectric polymer liquid crystal layer. The present invention relates to a liquid crystal element having good adhesion.

〔従来の技術〕[Conventional technology]

従来、高強度、高弾性繊維などで用いられている高分
子液晶を低分子液晶と同じように表示素子や記憶素子と
しての応用が検討されるようになってきた。高分子液晶
を液晶素子として使用する場合の問題点の1つとして高
分子液晶の配向方向がある。高分子液晶の場合、ポリマ
ーの延伸配向性を利用して高分子液晶を延伸して配向さ
せる方法が特徴的であり、この手法は高分子液晶自身に
力を作用させるため、配向膜を用いる手法など従来低分
子液晶に用いられている方法と比較して高配向性が期待
できる。
Conventionally, application of a polymer liquid crystal used for a high-strength, high-elasticity fiber or the like as a display element or a memory element has been studied similarly to a low-molecular liquid crystal. One of the problems when using a polymer liquid crystal as a liquid crystal element is the orientation direction of the polymer liquid crystal. In the case of polymer liquid crystals, the method of stretching and orienting the polymer liquid crystal using the stretch orientation of the polymer is characteristic. This method uses an alignment film to apply a force to the polymer liquid crystal itself. For example, higher orientation can be expected as compared with methods conventionally used for low-molecular liquid crystals.

近年、液晶素子の応答性やコントラストの向上のため
強誘電性高分子液晶の検討が行われているが、液晶の双
安定状態の実現には低分子の強誘電性液晶の場合と同様
に液晶層の膜厚を十分に薄くする必要がある。
In recent years, ferroelectric polymer liquid crystals have been studied to improve the responsiveness and contrast of liquid crystal devices.However, in order to realize a bistable state of liquid crystals, liquid crystals are used in the same way as low-molecular ferroelectric liquid crystals. It is necessary to make the thickness of the layer sufficiently thin.

延伸配向手法の高分子液晶への適用は、例えば特開昭
61−137133や特開昭61−160847で開示されているが、い
ずれも液晶層厚が厚く前述の強誘電性高分子液晶の双安
定状態を実現することができず、コントラストや応答性
とを十分満足なものが得られていない。
The application of the stretch alignment technique to polymer liquid crystals is described in, for example,
61-137133 and JP-A-61-160847, all of which cannot realize the bistable state of the above-mentioned ferroelectric polymer liquid crystal because the liquid crystal layer thickness is large, and reduce contrast and responsiveness. Sufficient ones have not been obtained.

〔発明の目的〕[Object of the invention]

そこで本発明は強誘電性高分子液晶を延伸して薄層化
することにより良好な双安定状態を有する強誘電性高分
子液晶素子を提供し、特に、これらのことにより、表示
素子,記憶素子として使用良好な強誘電性高分子液晶素
子を提供することを目的としている。
Therefore, the present invention provides a ferroelectric polymer liquid crystal device having a favorable bistable state by stretching and thinning the ferroelectric polymer liquid crystal, and particularly, these devices provide a display device and a storage device. It is an object of the present invention to provide a ferroelectric polymer liquid crystal element which can be used well.

又、本発明の別の目的は、本発明の液晶素子が、例え
ば記録素子に使用された祭、高速応答性,高コントラス
ト及び保存安定性を満足させた記録素子とすることがで
きる強誘電性高分子液晶素子を提供する。
Another object of the present invention is to provide a liquid crystal device of the present invention, which can be used as a recording device, for example, as a ferroelectric material capable of satisfying high-speed response, high contrast, and storage stability. Provide a polymer liquid crystal device.

〔目的を達するための手段及び作用〕[Means and actions for achieving purpose]

よって本発明は一対の基板間に延伸配向され、延伸配
向後の層厚が0.1〜5μmの強誘電性高分子液晶層を有
することを特徴とする強誘電性高分子液晶素子を提供す
る。
Accordingly, the present invention provides a ferroelectric polymer liquid crystal device having a ferroelectric polymer liquid crystal layer stretched and oriented between a pair of substrates and having a layer thickness of 0.1 to 5 μm after the stretch orientation.

本発明に適用した強誘電性高分子液晶としては具体的
にはN.A.Plati,V.P.Shibaev Pure & Appl.Chem.,57,15
89(1985)に示されるような(1)式のものがあるが、
これに限定されるものではない。
Specific examples of the ferroelectric polymer liquid crystal applied to the present invention include NAPlati, VP Shibaev Pure & Appl. Chem., 57, 15
89 (1985) as shown in equation (1),
It is not limited to this.

また、本発明に用いる強誘電性高分子には、ガラス転
移温度やキユリー温度の調整や自発分極や坑電界の大き
さ等の調整や。素子化における力学的特性の改良のため
に他の高分子や高分子液晶と混合して用いても良い。
In addition, the ferroelectric polymer used in the present invention includes adjustment of glass transition temperature and Curie temperature, adjustment of spontaneous polarization and magnitude of anti-electric field, and the like. It may be used in combination with another polymer or a polymer liquid crystal in order to improve the mechanical characteristics in device fabrication.

又上記記録媒体中に、例えば以下であげる色素を添加
してもよい。
Further, for example, the following dyes may be added to the recording medium.

本発明においては、フイルム状に成形された強誘電性
高分子液晶を延伸した後にこれを基板間にはさんで圧着
しても良いが、強誘電性高分子液晶のみを延伸すると、
液晶配向性が向上すると同時に強誘電性高分子液晶自身
の力学的強度に強い異方性が生じやすく、また、基板と
液晶層との密着性も低下しやすくなる。そこで、強誘電
性高分子液晶と基板とを積層させた後に基板とともに共
延伸することが好ましい。共延伸によって基板と強誘電
性高分子液晶が同一方向に配向し、基板は一種の配向層
的作用が期待できる。また基板と液晶層の密着性が良い
上に、延伸によって液晶層が力学的異方性を示しても基
板上に保持されているので、液晶層が安定した状態の薄
膜として得られる。
In the present invention, after stretching the film-shaped ferroelectric polymer liquid crystal, it may be pressed between the substrates, but if only the ferroelectric polymer liquid crystal is stretched,
At the same time as the liquid crystal alignment is improved, a strong anisotropy is easily generated in the mechanical strength of the ferroelectric polymer liquid crystal itself, and the adhesion between the substrate and the liquid crystal layer is also likely to be reduced. Therefore, it is preferable that the ferroelectric polymer liquid crystal and the substrate are laminated and then co-stretched together with the substrate. By co-stretching, the substrate and the ferroelectric polymer liquid crystal are aligned in the same direction, and the substrate can be expected to function as an alignment layer. In addition, since the liquid crystal layer is held on the substrate even when the liquid crystal layer exhibits mechanical anisotropy due to stretching in addition to good adhesion between the substrate and the liquid crystal layer, the liquid crystal layer can be obtained as a stable thin film.

本発明では、基板上に強誘電性高分子液晶層を積層し
て延伸処理した後、2枚目の基板と圧着させて液晶素子
としても良いし、延伸時での液晶層のさらなる力学的安
定性のために、2枚の基板間に強誘電性高分子液晶が存
在する積層体を延伸しても良い。
In the present invention, a ferroelectric polymer liquid crystal layer is laminated on a substrate, stretched, and then pressure-bonded to a second substrate to form a liquid crystal element, or further mechanical stability of the liquid crystal layer during stretching. For the sake of performance, a laminate in which a ferroelectric polymer liquid crystal exists between two substrates may be stretched.

本発明の液晶素子に用いることのできる基板は、基板
を延伸配向処理をする場合にはプラスチツク等の延伸可
能な基板でなければならないが、延伸しない場合は従来
公知のすべての基板を用いることができる。
The substrate that can be used for the liquid crystal element of the present invention must be a stretchable substrate such as plastic when the substrate is stretched and aligned, but if not stretched, any conventionally known substrate may be used. it can.

本発明において、支持体である基板上に強誘電性高分
子液晶を積層させる手法は、従来用いられている手法が
可能である。
In the present invention, as a method of laminating a ferroelectric polymer liquid crystal on a substrate as a support, a conventionally used method can be used.

例えば、強誘電性高分子液晶を加熱溶融して、ネマチ
ツク相や等方性液体のような比較的流動性を有する状態
にした後、支持体である基板上に塗工する手法が考えら
れる。この場合の塗工方法には、加熱溶融された高分子
液晶の粘性や塗工の祭に強い剪断性をかけて、その後延
伸による配向がより効率良く行う点から、例えばブレー
ドコーテイング,ナイフコーテイング,押出しコーテイ
ング等が有効である。
For example, a method in which a ferroelectric polymer liquid crystal is heated and melted to have a relatively fluid state such as a nematic phase or an isotropic liquid, and then applied to a substrate serving as a support may be considered. In this case, the coating method is to apply a high shearing property to the viscosity of the polymer liquid crystal melted by heating and the coating festival, and then to perform the orientation by stretching more efficiently. For example, blade coating, knife coating, Extrusion coating and the like are effective.

一方、強誘電性高分子液晶を適当な溶媒に溶解させた
状態で基板上に塗工し、溶媒を除去することによって
も、基板上に該高分子液晶を積層させることは可能であ
り、この場合、強誘電性高分子液晶溶液の粘度は溶液中
の強誘電性高分子液晶の濃度によって変えることができ
るので、加熱した強誘電性高分子液晶を用いる前述の場
合よりも可能な塗工手法の数は増加するものの、溶媒除
去後の高分子液晶の配向は生じないため、その後の延伸
のみによって配向させなければならず配向処理手段を増
すことによる配向のバリエーシヨンは少なくなるという
短所もある。それぞれの場合によって塗工法を考慮すれ
ばよいが、以上のような基板上への塗工法以外にも圧縮
成形等基板上へ強誘電性高分子液晶を加熱加圧して積層
させたり、Tダイ押し出し法、共押し出し法等によりシ
ート又はフイルム状に成形された強誘電性高分子液晶を
適当な基板とラミネートさせることにより積層させるこ
ともできる。
On the other hand, it is possible to laminate the polymer liquid crystal on the substrate by applying the ferroelectric polymer liquid crystal on a substrate in a state of being dissolved in an appropriate solvent and removing the solvent. In this case, the viscosity of the ferroelectric polymer liquid crystal solution can be changed depending on the concentration of the ferroelectric polymer liquid crystal in the solution. Although the number of the liquid crystal molecules increases, the alignment of the polymer liquid crystal after the removal of the solvent does not occur, so that the alignment must be performed only by the subsequent stretching, and there is also a disadvantage that the variation in the alignment by increasing the number of alignment processing means is reduced. . Coating method may be considered in each case, but in addition to the above-mentioned coating method on the substrate, ferroelectric polymer liquid crystal is heated and pressed on the substrate by compression molding or the like, or T-die extrusion is performed. It can also be laminated by laminating a ferroelectric polymer liquid crystal formed into a sheet or a film by a coextrusion method or the like with an appropriate substrate.

一方基板と強誘電性高分子液晶から成る積層体を延伸
する方法は、従来、高分子の延伸配向に用いられている
手法が適用できる。
On the other hand, as a method of stretching a laminate composed of a substrate and a ferroelectric polymer liquid crystal, a method conventionally used for stretching and orienting a polymer can be applied.

すなわち、一軸延伸(自由幅,一定幅),逐次二軸延
伸,同時二軸延伸が挙げられる。これらの延伸方法の
内、高分子液晶の配向性が最も大きいのは一軸延伸であ
り一軸延伸を行うことが好ましいが、延伸フイルムの力
学的強度を向上させるために、例えば逐次二軸延伸で、
2軸の延伸比率を極端に変えて一軸延伸に近い逐次二軸
延伸を行っても良い。
That is, examples include uniaxial stretching (free width, constant width), sequential biaxial stretching, and simultaneous biaxial stretching. Of these stretching methods, the highest orientation of the polymer liquid crystal is uniaxial stretching, and it is preferable to perform uniaxial stretching.However, in order to improve the mechanical strength of the stretched film, for example, in sequential biaxial stretching,
Sequential biaxial stretching close to uniaxial stretching may be performed by extremely changing the biaxial stretching ratio.

本発明では延伸率の範囲を10〜1500%で行うとより好
ましく、さらに好ましくは20〜500%である。但しこの
延伸率とはもとの長さに対する延伸処理をした後、安定
状態にした時の伸びた長さの比である。又、二軸延伸の
場合は、2軸の延伸比が1:1から1:50が好ましい。延伸
の具体的な工法には、例えば一軸延伸の場合には、表面
速度の異なる2対の回転ロール間に強誘電性高分子液晶
と基板との積層体を通過させる工法が挙げられる。
In the present invention, the stretching ratio is more preferably set in the range of 10 to 1500%, and further preferably 20 to 500%. However, this stretching ratio is the ratio of the stretched length when the film is stretched to its original length and then brought into a stable state. In the case of biaxial stretching, the biaxial stretching ratio is preferably from 1: 1 to 1:50. As a specific method of stretching, for example, in the case of uniaxial stretching, a method of passing a laminate of a ferroelectric polymer liquid crystal and a substrate between two pairs of rotating rolls having different surface speeds can be mentioned.

延伸する際の強誘電性高分子液晶層の温度は、一般の
高分子の場合と同様にガラス転移温度以上の温度等方性
液体への転移温度以下で行うことが可能であり、この際
は、SmC相で行い、延伸直後にガラス転移点以下に急
冷して構造固定を行うことが好ましい。また延伸による
SmC相のモノドメイン化のために延伸時にフイルム面
に垂直な方向に電界を印加して自発分極の方向を一定に
そろえる方法も可能である。
The temperature of the ferroelectric polymer liquid crystal layer at the time of stretching can be performed at a temperature equal to or higher than the glass transition temperature and equal to or lower than the transition temperature to the isotropic liquid as in the case of the general polymer. , SmC * phase, and quenching immediately below the glass transition point immediately after stretching to fix the structure. Also by stretching
In order to make the SmC * phase monodomain, a method of applying an electric field in a direction perpendicular to the film surface at the time of stretching to uniformly align the direction of spontaneous polarization is also possible.

一方、高分子液晶によっては、高配向性の点からガラ
ス転移点以下の温度で延伸する、いわゆる冷延伸を行っ
た場合の方が良い場合もある。
On the other hand, depending on the polymer liquid crystal, it may be better to perform so-called cold stretching in which stretching is performed at a temperature equal to or lower than the glass transition point from the viewpoint of high orientation.

本発明の強誘電性高分子液晶素子は、従来の液晶素子
と同様に透明電極やマトリツクス電極等の電極材料と組
み合わせることにより、メモリーやデイスプレイなどに
用いることができる。強誘電性高分子液晶素子を用いる
場合には、従来の低分子の強誘電性液晶素子の場合と同
様に、液晶層の厚みを小さくして双安定性状態を形成さ
せることが必要であり、さらに液晶素子に与える光,
熱,電界に対する感度を向上させるために、液晶層は薄
膜状態であることが好ましい。強誘電性高分子液晶層の
延伸処理後の厚みはメモリーの読み出しや、表示に対す
るコントラストの必要性から0.1μm〜5μmが適当で
ある。
The ferroelectric polymer liquid crystal device of the present invention can be used for a memory or a display by combining it with an electrode material such as a transparent electrode or a matrix electrode as in the conventional liquid crystal device. When using a ferroelectric polymer liquid crystal device, it is necessary to reduce the thickness of the liquid crystal layer to form a bistable state, as in the case of the conventional low-molecular ferroelectric liquid crystal device. Further, the light to be given to the liquid crystal element,
In order to improve the sensitivity to heat and an electric field, the liquid crystal layer is preferably in a thin film state. The thickness of the ferroelectric polymer liquid crystal layer after the stretching treatment is suitably from 0.1 μm to 5 μm from the necessity of reading the memory and the contrast for display.

本発明の液晶素子の1実施例断面図を第1図及び別の
実施例断面図を第3図に示す。図中、符号1は基板、2
は電極、3は接着層、4及び4′は基板、5は強誘電性
高分子層、15はストライプ状電極、16は偏光ガラスを表
わしている。
FIG. 1 is a sectional view of one embodiment of the liquid crystal device of the present invention, and FIG. 3 is a sectional view of another embodiment. In the drawing, reference numeral 1 denotes a substrate, 2
Represents an electrode, 3 represents an adhesive layer, 4 and 4 'represent a substrate, 5 represents a ferroelectric polymer layer, 15 represents a striped electrode, and 16 represents a polarizing glass.

本発明の液晶素子を例えば光カード等の情報記録媒体
や表示素子として用いる際は延伸配向によって一定方向
に配向された強誘電性高分子液晶層にレーザー光照射
や、サーマルヘツドによって液晶層を加熱したり、電界
を印加することにより、強誘電性高分子液晶層の配向状
態や自発分極の方向などを変化させることにより記録を
行い、これを強誘電性液晶層の配向状態の光学的特性
(光透過率や複屈折率)の差や、強誘電性の有無による
電気的特性(圧電性,焦電性)の差によって、情報の読
み出しや表示を行うことができる。
When the liquid crystal element of the present invention is used as an information recording medium such as an optical card or a display element, for example, the ferroelectric polymer liquid crystal layer oriented in a certain direction by stretching orientation is irradiated with a laser beam, or the liquid crystal layer is heated by a thermal head. Or by applying an electric field to change the orientation state of the ferroelectric polymer liquid crystal layer and the direction of spontaneous polarization. Information can be read or displayed by a difference in light transmittance or birefringence) or a difference in electrical characteristics (piezoelectricity or pyroelectricity) depending on the presence or absence of ferroelectricity.

本発明の液晶素子は、基板間に延伸配向された強誘電
性高分子液晶を有する素子であり、強誘電性高分子液晶
層の厚みが十分薄いために強誘電性高分子液晶が良好な
双安定性状態を形成することができ、しかも強誘電性高
分子液晶層の光熱や電界に対する感度が向上するために
強誘電性を示さない高分子液晶を用いるよりも素子のコ
ントラストが良好で応答速度も大きい。
The liquid crystal device of the present invention is a device having a ferroelectric polymer liquid crystal stretched and aligned between substrates. Since the thickness of the ferroelectric polymer liquid crystal layer is sufficiently small, the ferroelectric polymer liquid crystal has a favorable bilayer. A stable state can be formed, and the sensitivity of the ferroelectric polymer liquid crystal layer to photothermal and electric fields is improved. Is also big.

以下実施例でさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples.

〔実施例1〜3〕 (第1図参照) 以下の構造式で示されるポリメタクリレートを主鎖と
した側鎖型強誘電性高分子液晶 をジクロロエタンに溶解させ以下の構造式で示される色
を0.1wt%添加した。これを100μm厚のポリエチレンテ
レフタレート(PET)4基板上にスピンコート法でコー
テイングを行い、ジクロロエタンを除去して、PET基板
上に8μmの液晶フイルム層5を作成した。この液晶フ
イルム層の上に100μm厚のPETフイルム4′を積層し
て、約85℃のヒートロールを通過させて2枚のPETフイ
ルム基板間に強誘電性高分子液晶層を有する積層体を得
た。
[Examples 1 to 3] (See FIG. 1) Side chain type ferroelectric polymer liquid crystal having polymethacrylate represented by the following structural formula as a main chain Dissolved in dichloroethane and represented by the following structural formula Was added at 0.1 wt%. This was coated on a 100 μm thick polyethylene terephthalate (PET) 4 substrate by spin coating to remove dichloroethane, thereby forming an 8 μm liquid crystal film layer 5 on the PET substrate. A 100 μm thick PET film 4 ′ is laminated on this liquid crystal film layer and passed through a heat roll at about 85 ° C. to obtain a laminate having a ferroelectric polymer liquid crystal layer between two PET film substrates. Was.

得られた積層体を強誘電性高分子液晶がSmC相を示
す環境下で表面速度の異なる2対のローラ間を通過させ
て自由幅の一軸延伸を行った。
The obtained laminate was passed through a pair of rollers having different surface velocities under an environment in which the ferroelectric polymer liquid crystal exhibited an SmC * phase to perform uniaxial stretching with a free width.

延伸後の積層体を高分子液晶のガラス転移点以下に急
冷して強誘電性高分子液晶層をSmC(強誘電性相)で
固定した。
The laminated body after stretching was rapidly cooled to a temperature lower than the glass transition point of the polymer liquid crystal, and the ferroelectric polymer liquid crystal layer was fixed with SmC * (ferroelectric phase).

次にスタンパーでプレグルーブをつけたウオレツトサ
イズの1.5mm厚のポリカーボネート基板1上にITO膜2を
蒸着し、その上に延伸して得られた強誘電性高分子液晶
層5を有する積層体6をウオレツトサイズに切断したも
のを接着し第1図に示すような構成の光カードを作成し
た。
Next, a laminated body having a ferroelectric polymer liquid crystal layer 5 obtained by evaporating an ITO film 2 on a polycarbonate substrate 1 having a thickness of 1.5 mm and having a pregroove with a stamper, and extending the ITO film 2 thereon. 6 was cut into a wallet size and bonded to produce an optical card having a configuration as shown in FIG.

得られた光カードを第2図で示す記録装置で情報の書
き込みを行った。
Information was written on the obtained optical card by the recording device shown in FIG.

プレグルーブをモニターする半導体レーザー(λ=83
0nm)12の光を光カードに照射し、同時に膜厚に応じて
出力を調整して光カードの強誘電性液晶層を室温からSm
Cを示す温度まで加熱する。半導体レーザー光の照射
光の中心に針電極7を配置し針電極7に記録情報に応
じ、±15Vのパルス電圧を印加することにより、光カー
ドのITO膜と針電極間に電界を形成し強誘電性高分子液
晶層の自発分極を反転させることにより情報の記録を行
った。
Semiconductor laser monitoring pre-groove (λ = 83
0nm) 12 light is irradiated on the optical card, and at the same time, the output is adjusted according to the film thickness to change the ferroelectric liquid crystal layer of the optical card from room temperature
Heat to the temperature indicated by C * . The needle electrode 7 is arranged at the center of the irradiation light of the semiconductor laser light, and a pulse voltage of ± 15 V is applied to the needle electrode 7 in accordance with the recorded information, thereby forming an electric field between the ITO film of the optical card and the needle electrode, thereby increasing the strength. Information was recorded by reversing the spontaneous polarization of the dielectric polymer liquid crystal layer.

強誘電性高分子液晶層が有する双安定状態によって記
録された情報は針電極に電圧を与えないで、半導体レー
ザーの出力を0.1mwに落として照射し、双安定状態に帰
因する透過光の複屈折の差を検出することにより良好な
再生コントラストで読み出しを行うことができた。この
光カードは、既に情報が記録されている場合でも前述と
同様の記録方法を行うことにより情報の書き換えを行う
ことが可能である。
The information recorded in the bistable state of the ferroelectric polymer liquid crystal layer is irradiated with the output of the semiconductor laser lowered to 0.1 mw without applying a voltage to the needle electrode, and the transmitted light attributed to the bistable state is irradiated. By detecting the difference in birefringence, reading could be performed with good reproduction contrast. This optical card can rewrite information even when information is already recorded by performing the same recording method as described above.

3種類の延伸率(100,200,300%)に対して得られた
高分子液晶層の厚さと再生コントラスト及び記録応答性
を表1に示した。
Table 1 shows the thickness, reproduction contrast, and recording responsiveness of the obtained polymer liquid crystal layer for three types of stretching ratios (100, 200, and 300%).

〔実施例4〜6〕 実施例1で光吸収性色素を添加しなかった以外は同様
の手法で得たPETと強誘電性高分子液晶からなる積層体
6を実施例1と同様に一軸延伸を行い、この両面に1.5m
m厚の偏光ガラス16上に偏光方向と同方向にストライプ
状のITO膜15を設けた基板をITO膜が直交するように(第
3図(b)参照)接着1、第3図(a)に示すような液
晶素子を得た。得られた積層体をバツクライト光源20を
有する透明な抵抗発熱体ステージ21上に載せて強誘電性
高分子液晶層をSmCまで加熱しマトリツクス構成され
たITO膜間に電圧を印加することにより、第4図に示す
ような構成のデイスプレイを得た。ITO膜に印加する電
圧は10Vで行った。表示のコントラスト及び応答性を表
2に示した。
[Examples 4 to 6] A laminate 6 composed of PET and a ferroelectric polymer liquid crystal obtained in the same manner as in Example 1 except that no light-absorbing dye was added was uniaxially stretched in the same manner as in Example 1. 1.5m on both sides
Adhesion 1 and FIG. 3 (a) on a polarizing glass 16 having a thickness of m and a substrate provided with a stripe-shaped ITO film 15 in the same direction as the polarization direction so that the ITO films are orthogonal to each other (see FIG. 3 (b)). Thus, a liquid crystal element as shown in FIG. The obtained laminate is placed on a transparent resistance heating element stage 21 having a backlight light source 20, the ferroelectric polymer liquid crystal layer is heated to SmC *, and a voltage is applied between the matrix-structured ITO films. A display having a configuration as shown in FIG. 4 was obtained. The voltage applied to the ITO film was 10 V. Table 2 shows the contrast and response of the display.

〔実施例7,8〕 実施例1〜3および実施例4〜6で延伸率5%の一軸
延伸を行った以外は各実施例と同様に行った。その結果
をそれぞれ実施例7及び8として表1及び表2に示す。
[Examples 7, 8] The procedures were performed in the same manner as in Examples 1 to 3 and Examples 4 to 6 except that uniaxial stretching was performed at a stretching ratio of 5%. The results are shown in Tables 1 and 2 as Examples 7 and 8, respectively.

〔比較例1,2〕 実施例1〜3および実施例4〜6で一軸延伸を行わな
かった以外は実施例1〜3および実施例4〜6と同様に
行った結果をそれぞれ比較例1及び2として表1及び表
2に示す。
[Comparative Examples 1 and 2] Comparative examples 1 and 2 were performed in the same manner as in Examples 1 to 3 and Examples 4 to 6 except that uniaxial stretching was not performed in Examples 1 to 3 and Examples 4 to 6, respectively. 2 are shown in Tables 1 and 2.

〔効果の説明〕 本発明は一対の基板間に延伸配向された強誘電性高分
子液晶を有する強誘電性液晶素子であり、強誘電性高分
子液晶層が容易に配向された薄膜状態(厚さ0.1〜5μ
m)で得られるために強誘電性高分子液晶が良好な双安
定状態を示すため、この液晶素子を記録あるいは表示素
子に用いると、再生あるいは表示コントラスト比が良好
でしかも記録,表示の応答性の向上と保存安定性を実現
することができる。
[Explanation of Effect] The present invention is a ferroelectric liquid crystal device having a ferroelectric polymer liquid crystal stretched and aligned between a pair of substrates, and a thin film state (thickness) in which the ferroelectric polymer liquid crystal layer is easily aligned. 0.1 ~ 5μ
m), the ferroelectric polymer liquid crystal exhibits a good bistable state because it can be obtained in (m). Therefore, when this liquid crystal element is used for a recording or display element, the reproduction or display contrast ratio is good and the responsiveness of recording and display is high. And storage stability can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明実施例1の光カードの断面図、 第2図は本発明実施例1の光カードの記録再生装置の概
略図、 第3図(a)は本発明実施例2の表示素子の断面図、 第3図(b)は、本発明実施例2の偏光ガラス基板上に
設けたストライプ状電極の方向と偏光方向との関係及び
2枚の偏光ガラス基板の積層方向を示す構成図、 第4図は、本発明実施例2の表示装置の概略図である。 1は基板、2は電極、3は接着層、4,4′は基板、5は
強誘電性高分子液晶層、6は4,4′及び5層の積層、7
は針電極、8はパルス電圧発生装置、9は光カード、10
は移動ステージ、11は光強度検出器、12は半導体レーザ
ー、13は偏光子、14は検光子、15はストライプ状電極、
16は偏光ガラス、17,17′は偏光ガラスの偏光方向を示
す矢印、18は電圧発生装置、19は抵抗発熱体用電源、20
はバツクライト、21は透明ステージ、22は表示素子、23
は透明抵抗発熱体を示す。
FIG. 1 is a sectional view of an optical card according to the first embodiment of the present invention, FIG. 2 is a schematic diagram of a recording / reproducing apparatus for the optical card according to the first embodiment of the present invention, and FIG. FIG. 3 (b) is a cross-sectional view of the device, and FIG. 3 (b) is a configuration showing the relationship between the direction of the stripe-shaped electrodes provided on the polarizing glass substrate and the polarization direction and the laminating direction of the two polarizing glass substrates of Example 2 of the present invention FIG. 4 is a schematic diagram of a display device according to Embodiment 2 of the present invention. 1 is a substrate, 2 is an electrode, 3 is an adhesive layer, 4,4 'is a substrate, 5 is a ferroelectric polymer liquid crystal layer, 6 is a laminate of 4, 4' and 5 layers, 7
Is a needle electrode, 8 is a pulse voltage generator, 9 is an optical card, 10
Is a moving stage, 11 is a light intensity detector, 12 is a semiconductor laser, 13 is a polarizer, 14 is an analyzer, 15 is a striped electrode,
16 is a polarizing glass, 17 and 17 ′ are arrows indicating the polarizing direction of the polarizing glass, 18 is a voltage generator, 19 is a power supply for a resistance heating element, 20
Is a backlight, 21 is a transparent stage, 22 is a display element, 23
Indicates a transparent resistance heating element.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−72784(JP,A) 特開 昭63−109419(JP,A) 特開 昭62−227122(JP,A) 特開 昭61−160847(JP,A) 特開 昭61−137133(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-72784 (JP, A) JP-A-63-109419 (JP, A) JP-A-62-227122 (JP, A) JP-A-61-227 160847 (JP, A) JP-A-61-137133 (JP, A)

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に、延伸配向された層厚0.1〜5μ
mの強誘電性高分子液晶層を有することを特徴とする強
誘電性高分子液晶素子。
1. A stretch-oriented layer having a thickness of 0.1 to 5 μm on a substrate.
m. A ferroelectric polymer liquid crystal device comprising a m ferroelectric polymer liquid crystal layer.
【請求項2】一対の基板間に延伸配向された層厚0.1〜
5μmの強誘電性高分子液晶層を有することを特徴とす
る特許請求の範囲第1項記載の強誘電性高分子液晶素
子。
2. A layer stretched and oriented between a pair of substrates having a thickness of 0.1 to 0.1.
2. The ferroelectric polymer liquid crystal device according to claim 1, further comprising a 5 μm ferroelectric polymer liquid crystal layer.
【請求項3】前記基板がプラスチック基板であることを
特徴とする特許請求の範囲第1項記載の強誘電性高分子
液晶素子。
3. The ferroelectric polymer liquid crystal device according to claim 1, wherein said substrate is a plastic substrate.
【請求項4】前記延伸を、強誘電性高分子液晶層と基板
とを延伸することによって行う特許請求の範囲第1項記
載の強誘電性高分子液晶素子。
4. The ferroelectric polymer liquid crystal device according to claim 1, wherein said stretching is performed by stretching a ferroelectric polymer liquid crystal layer and a substrate.
【請求項5】前記延伸を、基板上に強誘電性高分子液晶
層をブレードコーティング、ナイフコーティング又は押
出しコーティングのうちのいずれかの手段を用いて積層
し、該基板と強誘電性高分子液晶層を共延伸することに
よって行う特許請求の範囲第4項記載の強誘電性高分子
液晶素子。
5. The stretching is performed by laminating a ferroelectric polymer liquid crystal layer on a substrate by using any one of blade coating, knife coating, and extrusion coating. The ferroelectric polymer liquid crystal device according to claim 4, wherein the ferroelectric polymer liquid crystal device is formed by co-stretching the layers.
【請求項6】前記延伸が一軸延伸である特許請求の範囲
第1項記載の強誘電性高分子液晶素子。
6. The ferroelectric polymer liquid crystal device according to claim 1, wherein said stretching is uniaxial stretching.
【請求項7】前記一軸延伸の延伸率が10〜1500%である
特許請求の範囲第6項記載の強誘電性高分子液晶素子。
7. The ferroelectric polymer liquid crystal device according to claim 6, wherein the stretching ratio of said uniaxial stretching is 10 to 1500%.
【請求項8】前記一軸延伸の延伸率が20〜500%である
特許請求の範囲第6項記載の強誘電性高分子液晶素子。
8. The ferroelectric polymer liquid crystal device according to claim 6, wherein the stretching ratio of said uniaxial stretching is 20 to 500%.
【請求項9】前記延伸が逐次二軸延伸又は同時二軸延伸
である特許請求の範囲第1項記載の強誘電性高分子液晶
素子。
9. The ferroelectric polymer liquid crystal device according to claim 1, wherein said stretching is sequential biaxial stretching or simultaneous biaxial stretching.
【請求項10】前記二軸延伸の延伸比が1:1〜1:50であ
る特許請求の範囲第9項記載の強誘電性高分子液晶素
子。
10. The ferroelectric polymer liquid crystal device according to claim 9, wherein the stretching ratio of said biaxial stretching is 1: 1 to 1:50.
【請求項11】前記延伸時に同時に電界を印加すること
を特徴とする特許請求の範囲第1項記載の強誘電性高分
子液晶素子。
11. The ferroelectric polymer liquid crystal device according to claim 1, wherein an electric field is applied simultaneously with said stretching.
【請求項12】前記延伸処理を強誘電性高分子液晶のガ
ラス転移点以上の温度範囲で行うことを特徴とする特許
請求の範囲第1項記載の強誘電性高分子液晶素子。
12. The ferroelectric polymer liquid crystal device according to claim 1, wherein said stretching is performed in a temperature range not lower than the glass transition point of the ferroelectric polymer liquid crystal.
JP62070085A 1987-03-24 1987-03-24 Ferroelectric polymer liquid crystal device Expired - Fee Related JP2578424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070085A JP2578424B2 (en) 1987-03-24 1987-03-24 Ferroelectric polymer liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070085A JP2578424B2 (en) 1987-03-24 1987-03-24 Ferroelectric polymer liquid crystal device

Publications (2)

Publication Number Publication Date
JPS63235916A JPS63235916A (en) 1988-09-30
JP2578424B2 true JP2578424B2 (en) 1997-02-05

Family

ID=13421346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070085A Expired - Fee Related JP2578424B2 (en) 1987-03-24 1987-03-24 Ferroelectric polymer liquid crystal device

Country Status (1)

Country Link
JP (1) JP2578424B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599917B2 (en) * 1987-06-30 1997-04-16 出光興産株式会社 Manufacturing method of liquid crystal optical element
JP2586529B2 (en) * 1987-11-30 1997-03-05 セイコーエプソン株式会社 Liquid crystal display
JP2571623B2 (en) * 1989-06-02 1997-01-16 出光興産株式会社 Liquid crystal material alignment method
JP2848853B2 (en) * 1989-07-03 1999-01-20 出光興産株式会社 Liquid crystal display device
DE19532408A1 (en) * 1995-09-01 1997-03-06 Basf Ag Polymerizable liquid crystalline compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372784A (en) * 1986-09-17 1988-04-02 Idemitsu Kosan Co Ltd Ferroelectric polymer liquid crystal

Also Published As

Publication number Publication date
JPS63235916A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
JP2637469B2 (en) Polymer liquid crystal device
WO2010092926A1 (en) Laminate optical body, optical film, liquid crystal display device using said optical film, and method for manufacturing laminate optical body
JP2008181091A (en) Optical laminate and liquid crystal panel using the same
JP2024022690A (en) Optical laminates, image display devices and glass composites
JP2578424B2 (en) Ferroelectric polymer liquid crystal device
JPS63151927A (en) Method for orienting ferroelectric liquid crystal
US5231525A (en) Apparatus for orienting a liquid crystal material using a shear force and electric field
US5110623A (en) Method of orienting a liquid crystal material, apparatus therefor, and liquid crystal device oriented thereby
JPH01304424A (en) Liquid crystal display element
JPH08334757A (en) Liquid crystal display device, polarization phase difference composite film and their production
JPS58176623A (en) Electrooptic device
JP2004012929A (en) Polarizer and its manufacturing method, and liquid crystal display device
JP3296014B2 (en) Optical element and operation method thereof
JP2001183526A (en) Elliptically polarizing plate, method of producing the same, and liquid crystal display device using the same
JP2009258606A (en) Polarizing plate and liquid crystal display device using the same
JPS6017719A (en) Liquid crystal display device
JP3291373B2 (en) Liquid crystal display manufacturing method
JPH10170920A (en) Liquid crystal display element and its production
JPH02217820A (en) Ferroelectric high-polymer liquid crystal element
JP3263509B2 (en) Liquid crystal display manufacturing method
JPS63280221A (en) Production of ferroelectric liquid crystal display element
JPS63172787A (en) Liquid crystal recording material and recording method
JPH02253229A (en) Production of liquid crystal element
JPS62170937A (en) Liquid crystal electrooptical element
JPS6192453A (en) Optical recording method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees