JPH10170920A - Liquid crystal display element and its production - Google Patents

Liquid crystal display element and its production

Info

Publication number
JPH10170920A
JPH10170920A JP32661496A JP32661496A JPH10170920A JP H10170920 A JPH10170920 A JP H10170920A JP 32661496 A JP32661496 A JP 32661496A JP 32661496 A JP32661496 A JP 32661496A JP H10170920 A JPH10170920 A JP H10170920A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
crystal display
alignment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32661496A
Other languages
Japanese (ja)
Inventor
Midori Tsukane
みどり 塚根
Hirobumi Wakemoto
博文 分元
Yoshio Iwai
義夫 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32661496A priority Critical patent/JPH10170920A/en
Publication of JPH10170920A publication Critical patent/JPH10170920A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal display element that has good orientability and a wide visual field angle, and a process for producing the same. SOLUTION: Liquid crystal is held between a pair of substrates 8a and 8b and active elements 4 are arranged for every pixel on one of these substrates. A pair or more of wire-shaped pixel electrodes 7 and common electrodes 6 are formed on the substrates 8a, 8b within the pixels in such a manner that at least the pixel electrodes 7 are arranged on the substrate 8a having these active elements 4. The substrate surfaces are provided with such voltage impressing means that generate electric fields in the horizontal direction to the substrate surface when voltage is applied between the electrodes 6, 7. The surface of the one substrate 8b has controlled liquid crystal orientability. The surface of the other substrate 8a having the large difference in level by the electrodes has the nature to annihilate the liquid crystal orienting power at the temp. lower than the nematic-isotropic transition point of the liquid crystals. The orientation state of the liquid crystal molecules spreads from the one substrate 8b side having the orientability by an annealing treatment. The orientation homogeneous even near to the stepped parts is obtd. at the other substrate 8a as well having the differences in level of wirings.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、視野角の広いア
クティブマトリクス型液晶表示素子およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix type liquid crystal display device having a wide viewing angle and a method for manufacturing the same.

【0002】[0002]

【従来の技術】液晶表示素子は、薄型で軽量、かつ低消
費電力のディスプレイ素子であり、テレビやビデオなど
の画像表示装置や、ワープロ、パソコンなどのOA機器
に広く用いられている。液晶表示素子のなかでも、アレ
イ基板上に多数のスイッチング素子を配置したアクティ
ブマトリクス型液晶表示素子の大部分は、液晶の配向方
位がほぼ90捻れたツイストネマチック(TN)モード
を表示に用いており、高速応答や高精細が可能なディス
プレイとして開発が進んでいる。
2. Description of the Related Art Liquid crystal display devices are thin, lightweight, and low power consumption display devices, and are widely used in image display devices such as televisions and videos and OA equipment such as word processors and personal computers. Among the liquid crystal display elements, most of the active matrix type liquid crystal display elements in which a number of switching elements are arranged on an array substrate use a twisted nematic (TN) mode in which the orientation direction of the liquid crystal is twisted almost 90. It is being developed as a display capable of high-speed response and high definition.

【0003】しかしながら、TNモードの液晶表示素子
は、液晶の旋光性を用いて表示しているために、パネル
を見る角度によって色調やコントラストが異なるという
大きな欠点がある。これらの欠点を解決するために位相
差フィルムを用いて補償する方法や、画素内に複数の異
なる配向領域を有する画素分割法や配向分割法等が用い
られている。しかしながら、TNモードではいまだに良
好な表示が得られる視野角範囲は陰極線管(CRT)に
比べて狭く、CRTと同等以上の表示性能を実現するに
は至っていない。
[0003] However, the TN mode liquid crystal display element has a major drawback that the color tone and contrast differ depending on the angle at which the panel is viewed, since the display is performed using the optical rotation of the liquid crystal. In order to solve these drawbacks, a compensation method using a retardation film, a pixel division method having a plurality of different orientation regions in a pixel, an orientation division method, and the like are used. However, in the TN mode, the viewing angle range in which good display is still obtained is narrower than that of a cathode ray tube (CRT), and display performance equal to or higher than that of a CRT has not been realized.

【0004】よりCRTに近い視野角特性を実現するた
めに、液晶分子を基板面にほぼ水平な方向で動かし、電
界制御複屈折効果により光透過率をコントロールする表
示方式がある。例えば櫛形電極を基板上に形成する方法
がR.A.Soref によって提案されている(J.Appl.Phys.45,
5446(1974)) 。この方式によれば、常に液晶分子をほぼ
横(短軸方向)から眺める形となり、見る方向が異なっ
ても屈折率の差が殆ど無い状態となり、コントラストの
視角依存性を極めて小さくすることが可能となる。
In order to achieve a viewing angle characteristic closer to that of a CRT, there is a display system in which liquid crystal molecules are moved in a direction substantially horizontal to the substrate surface, and light transmittance is controlled by an electric field control birefringence effect. For example, a method of forming a comb electrode on a substrate has been proposed by RASoref (J. Appl. Phys. 45,
5446 (1974)). According to this method, the liquid crystal molecules are always viewed almost from the side (shorter axis direction), and there is almost no difference in the refractive index even when the viewing direction is different, so that the viewing angle dependency of the contrast can be extremely reduced. Becomes

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記し
た液晶分子を基板面にほぼ水平に動かす方法では、従来
のTNモードでは透明電極であった画素電極および共通
電極が線状に存在するため、段差部分が増え、しかもそ
れらの電極が画素内に存在する。したがって、従来の布
によるラビング法では、段差部の陰になる部分で、ラビ
ング処理されにくくなり配向不良になりやすいという問
題があった。
However, according to the above-described method of moving the liquid crystal molecules substantially horizontally on the substrate surface, the pixel electrode and the common electrode, which were transparent electrodes in the conventional TN mode, exist in a linear shape. The parts are increased, and those electrodes are present in the pixel. Therefore, in the conventional rubbing method using a cloth, there is a problem that rubbing is difficult to be performed in a portion shadowed by the step portion, and alignment failure is likely to occur.

【0006】したがって、この発明の目的は、このよう
な従来の問題点に鑑みて、配向性が良好で視野角の広い
液晶表示素子およびその製造方法を提供することであ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a liquid crystal display device having good orientation and a wide viewing angle, and a method of manufacturing the same, in view of such conventional problems.

【0007】[0007]

【課題を解決するための手段】請求項1記載の液晶表示
素子は、一対の基板間に液晶が狭持され、基板の一方に
各画素ごとにアクティブ素子を配置し、このアクティブ
素子を有する基板上に少なくとも画素電極が配置される
ように一対以上の線状の画素電極と共通電極を画素内の
基板上に形成し、電極間に電圧が印加された際に、基板
面に対して水平方向に電界が生じるような電圧印加手段
を設けた液晶表示素子であって、一方の基板の表面が制
御された液晶配向性を有し、電極による段差が大きい他
方の基板の表面が液晶のネマティック−アイソトロピッ
ク転移点より低い温度で液晶配向力を消失する性質を有
することを特徴とする。
According to a first aspect of the present invention, there is provided a liquid crystal display device wherein a liquid crystal is sandwiched between a pair of substrates, an active element is arranged for each pixel on one of the substrates, and the active element is provided on the substrate. A pair of or more linear pixel electrodes and a common electrode are formed on a substrate in a pixel so that at least the pixel electrode is disposed thereon, and when a voltage is applied between the electrodes, the pixel electrode extends in a horizontal direction with respect to the substrate surface. A liquid crystal display element provided with voltage applying means for generating an electric field, wherein the surface of one substrate has a controlled liquid crystal orientation, and the surface of the other substrate having a large step due to the electrode has a nematic liquid crystal. It is characterized in that it has the property that the liquid crystal alignment force disappears at a temperature lower than the isotropic transition point.

【0008】このように、電極間に電圧が印加された際
に、基板面に対して水平方向に電界が生じるようにし
て、液晶分子を基板に水平な方向に動かすモードで、画
素内に配線段差を有する場合でも、一方の基板が制御さ
れた液晶配向性を有し、他方の基板がN−I点(ネマテ
ィック−アイソトロピック転移点)以下で液晶配向力を
消失する性質を有することで、アニール処理により、配
向性を有する一方の基板側から液晶分子の配向状態が広
がり、配線段差のある他方の基板でも段差部近傍まで均
一なホモジニアス配向が得られ、コントラストが高く、
視野角が広くなる。
As described above, when a voltage is applied between the electrodes, an electric field is generated in the horizontal direction with respect to the substrate surface, and the liquid crystal molecules are moved in the horizontal direction with respect to the substrate. Even when there is a step, one of the substrates has a controlled liquid crystal alignment property, and the other substrate has a property of losing the liquid crystal alignment force below the NI point (nematic-isotropic transition point). Due to the annealing treatment, the alignment state of the liquid crystal molecules spreads from one of the substrates having alignment properties, and even on the other substrate having a wiring step, uniform homogeneous alignment can be obtained up to the vicinity of the step, high contrast,
The viewing angle becomes wider.

【0009】請求項2記載の液晶表示素子は、請求項1
において、他方の基板表面にガラス転移温度が液晶のネ
マティック−アイソトロピック転移点以下の熱可塑性ポ
リマーの膜を形成した。このように、他方の基板表面に
Tg(ガラス転移温度)が液晶のネマティック−アイソ
トロピック転移点以下の熱可塑性ポリマーの膜を形成し
たので、N−I点以下で液晶配向力を消失する材料とし
て特に効果がある。すなわち、熱可塑性ポリマーはTg
以上の温度では、分子鎖のミクロブラウン運動によりゴ
ム弾性状態となって液晶配向力が消失するため、Tgを
液晶分子が配向し始めるN−I点以下とすることにより
熱可塑性ポリマーが配向力が消失した状態で配向する。
The liquid crystal display device according to the second aspect is the first aspect.
In the above, a film of a thermoplastic polymer having a glass transition temperature equal to or lower than the nematic-isotropic transition point of the liquid crystal was formed on the other substrate surface. As described above, since a film of a thermoplastic polymer having a Tg (glass transition temperature) equal to or lower than the nematic-isotropic transition point of the liquid crystal is formed on the surface of the other substrate, as a material that loses the liquid crystal alignment force below the NI point. Especially effective. That is, the thermoplastic polymer is Tg
At the above temperature, the liquid crystal alignment force disappears due to the rubber elastic state due to the micro-Brownian motion of the molecular chain. Therefore, by setting the Tg to be equal to or lower than the NI point at which the liquid crystal molecules start to be aligned, the alignment force of the thermoplastic polymer is reduced. Orient in the state where it disappeared.

【0010】請求項3記載の液晶表示素子は、請求項2
において、熱可塑性ポリマーのガラス転移温度が50℃
以上にした。このように、熱可塑性ポリマーのガラス転
移温度が50℃以上にしたので、液晶表示素子が通常使
用される環境でのパネル温度40℃よりも高く、配向安
定性が良好となる。請求項4記載の液晶表示素子は、請
求項2において、熱可塑性ポリマーが形状記憶効果を有
するポリウレタンの膜である。このように、熱可塑性ポ
リマーが形状記憶効果を有するポリウレタンの膜である
ので、Tg以下の温度で非常に良好な状態で保持され
る。すなわち、形状記憶効果を有するポリウレタンは、
ソフトセグメントとハードセグメントからなるため部分
結晶化しており、そのため配向膜として用いた場合に、
液晶で溶解や膨潤することもなく、また電圧保持率の低
下もないため、信頼性が高い。
The liquid crystal display device according to the third aspect is the second aspect.
, The glass transition temperature of the thermoplastic polymer is 50 ° C.
That's it. As described above, since the glass transition temperature of the thermoplastic polymer is 50 ° C. or higher, the panel temperature is higher than 40 ° C. in an environment where the liquid crystal display element is normally used, and the alignment stability is good. According to a fourth aspect of the present invention, in the liquid crystal display element according to the second aspect, the thermoplastic polymer is a polyurethane film having a shape memory effect. As described above, since the thermoplastic polymer is a polyurethane film having a shape memory effect, it is maintained in a very good state at a temperature of Tg or less. That is, polyurethane having a shape memory effect is
Because it is composed of a soft segment and a hard segment, it is partially crystallized, so when it is used as an alignment film,
Since the liquid crystal does not dissolve or swell, and the voltage holding ratio does not decrease, the reliability is high.

【0011】請求項5記載の液晶表示素子は、請求項1
において、制御された液晶配向性を有する基板表面にポ
リイミドを形成した。このように、制御された液晶配向
性を有する基板表面にポリイミドを形成したので、基板
表面の配向規制力が強くなり、反対側の基板へ配向が広
がっていく。請求項6記載の液晶表示素子は、請求項1
において、他方の基板は配向処理されていない。このよ
うに、他方の基板は配向処理されていないので、アニー
ル処理により配向処理された反対側の基板界面からホモ
ジニアスの配向状態が広がり均一な配向が得られる。ま
た、一方の基板のみ配向処理を施せばよいため、工数が
削減できてコストダウンにつながる。
The liquid crystal display device according to the fifth aspect is the first aspect.
, Polyimide was formed on the surface of the substrate having a controlled liquid crystal orientation. As described above, since polyimide is formed on the surface of the substrate having controlled liquid crystal orientation, the alignment regulating force on the substrate surface is increased, and the orientation is spread to the opposite substrate. The liquid crystal display device according to the sixth aspect is the first aspect.
In the above, the other substrate is not subjected to the alignment treatment. As described above, since the other substrate has not been subjected to the orientation treatment, the homogeneous orientation state is spread from the interface of the opposite substrate that has been subjected to the orientation treatment by the annealing treatment, and uniform orientation can be obtained. In addition, since it is only necessary to perform the alignment treatment on one of the substrates, the number of steps can be reduced, leading to a cost reduction.

【0012】請求項7記載の液晶表示素子の製造方法
は、一方の基板の表面が制御された液晶配向性を有する
ように形成し、他方の基板の表面が液晶のネマティック
−アイソトロピック転移点より低い温度で液晶配向力を
消失する性質を有するように形成した後、一対の基板間
に液晶を封入した液晶パネルを液晶のネマティック−ア
イソトロピック転移点以上に温度を上げた後に冷却する
過程で、表面が制御された液晶配向性を有している一方
の基板の温度が、他方の基板の温度以下となるように制
御しながら冷却することを特徴とする。
According to a seventh aspect of the present invention, there is provided a method of manufacturing a liquid crystal display device, wherein one substrate has a surface having a controlled liquid crystal orientation, and the other substrate has a surface having a liquid crystal nematic-isotropic transition point. After forming to have the property of losing the liquid crystal alignment force at a low temperature, in the process of cooling the liquid crystal panel in which the liquid crystal is sealed between a pair of substrates after raising the temperature above the nematic-isotropic transition point of the liquid crystal, It is characterized in that cooling is performed while controlling the temperature of one substrate having a controlled liquid crystal orientation to be equal to or lower than the temperature of the other substrate.

【0013】このように、表面が制御された液晶配向性
を有している一方の基板の温度が、他方の基板の温度以
下となるように制御しながら冷却することにより、一方
の基板界面からネマティック相が出現し始め、反対側の
基板界面に向かってその配向が広がっていくため、反対
側の基板が配向性を持たなくても均一な配向が得られ
る。
As described above, by cooling while controlling the temperature of one substrate having a liquid crystal alignment property whose surface is controlled to be equal to or lower than the temperature of the other substrate, the surface of one substrate can be cooled from the interface of one substrate. Since the nematic phase begins to appear and its orientation spreads toward the interface of the opposite substrate, uniform orientation can be obtained even if the opposite substrate does not have orientation.

【0014】[0014]

【発明の実施の形態】この発明の第1の実施の形態の液
晶表示素子を図1および図2に基づいて説明する。図1
はこの発明の第1の実施の形態の液晶表示素子の平面
図、図2はその断面図である。一対のガラス基板8a,
8b間に液晶(図示せず)が狭持され、基板8aにはゲ
ート1、ソース電極2、ドレイン電極3が形成され各画
素ごとに薄膜トランジスタ素子(アクティブ素子)4を
配置している。また、画素内の基板8a上に少なくとも
一対以上の線状の画素電極7と、引出し電極5で短絡さ
れている共通電極6を形成し、電極6,7間に電圧が印
加された際に、基板8a面に対して水平方向に電界が生
じるような電圧印加手段を設けている。画素電極7は、
共通電極6に平行にかつ15μm隔ててドレイン電極3
と接続されている。また、基板8a上にポリスチレン配
向膜9aを形成し、基板8bにポリイミド配向膜9bを
形成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A liquid crystal display device according to a first embodiment of the present invention will be described with reference to FIGS. FIG.
FIG. 1 is a plan view of a liquid crystal display device according to a first embodiment of the present invention, and FIG. 2 is a sectional view thereof. A pair of glass substrates 8a,
A liquid crystal (not shown) is sandwiched between 8b, and a gate 1, a source electrode 2, and a drain electrode 3 are formed on a substrate 8a, and a thin film transistor element (active element) 4 is arranged for each pixel. Also, at least a pair of linear pixel electrodes 7 and a common electrode 6 short-circuited by the extraction electrode 5 are formed on the substrate 8a in the pixel, and when a voltage is applied between the electrodes 6 and 7, Voltage applying means for generating an electric field in the horizontal direction with respect to the surface of the substrate 8a is provided. The pixel electrode 7
Drain electrode 3 parallel to common electrode 6 and separated by 15 μm
Is connected to Further, a polystyrene alignment film 9a is formed on the substrate 8a, and a polyimide alignment film 9b is formed on the substrate 8b.

【0015】すなわち、上記のように電極が形成された
ガラス基板8a上に、固形分濃度4重量%のポリスチレ
ン溶液をオフセット印刷し、170℃で1時間加熱して
ポリスチレン配向膜9aを形成した。このときのポリス
チレン配向膜9aの膜厚は約800Åであった。このポ
リスチレン配向膜9aのTg(ガラス転移温度)は98
℃である。この基板8aをレーヨン布を用い、電極配線
に平行な方向と約5゜の角度をなすような方向10にラ
ビング処理を行った。
That is, a polystyrene solution having a solid content of 4% by weight was offset-printed on the glass substrate 8a on which the electrodes were formed as described above, and heated at 170 ° C. for 1 hour to form a polystyrene alignment film 9a. At this time, the thickness of the oriented polystyrene film 9a was about 800 °. The Tg (glass transition temperature) of this polystyrene alignment film 9a is 98
° C. Using a rayon cloth, the substrate 8a was subjected to a rubbing process in a direction 10 at an angle of about 5 ° with a direction parallel to the electrode wiring.

【0016】もう一方の透明なガラス基板8bには、固
形分濃度6重量%のポリイミドワニス(例えばオプトマ
ーAL−1054:日本合成ゴム株式会社製)をオフセ
ット印刷し、170℃で1時間加熱してポリイミド配向
膜9bを形成した。このときのポリイミド配向膜9bの
膜厚は約800Åであった。基板8bを電極を有する基
板8aと貼り合わせたときにホモジニアス配向となるよ
うな方向にラビング処理を行った。
On the other transparent glass substrate 8b, a polyimide varnish having a solid content of 6% by weight (for example, Optmer AL-1054: manufactured by Nippon Synthetic Rubber Co., Ltd.) is offset-printed and heated at 170 ° C. for 1 hour. A polyimide alignment film 9b was formed. At this time, the thickness of the polyimide alignment film 9b was about 800 °. The rubbing treatment was performed in such a direction that a homogeneous orientation was obtained when the substrate 8b was bonded to the substrate 8a having electrodes.

【0017】そして、ポリスチレン配向膜9aとポリイ
ミド配向膜9bが向かい合うように基板8a,8bを対
向させ、スペーサとして直径4μmのガラスビーズ11
を介して貼合わせた。このパネルに屈折率異方性Δnが
0.075、N−I点(ネマティック−アイソトロピッ
ク転移点)が105℃のネマティック液晶を真空注入法
にて封入した。このパネルをN−I点より高温の120
℃で1時間アニール処理を行った。その結果、液晶パネ
ル全面で均一なホモジニアス配向が得られた。このパネ
ルの配向状態を偏光顕微鏡下で観察した結果、配線付近
もほぼ均一に配向しており、ノーマリーブラック状態で
の光抜けもほとんど見られなかった。
The substrates 8a and 8b are opposed to each other so that the polystyrene alignment film 9a and the polyimide alignment film 9b face each other, and glass beads 11 having a diameter of 4 μm are used as spacers.
And pasted together. A nematic liquid crystal having a refractive index anisotropy Δn of 0.075 and an NI point (nematic-isotropic transition point) of 105 ° C. was sealed in the panel by a vacuum injection method. This panel is heated to a temperature higher than the NI point.
Annealing was performed at 1 ° C. for 1 hour. As a result, uniform homogeneous alignment was obtained over the entire surface of the liquid crystal panel. As a result of observing the orientation state of this panel under a polarizing microscope, the vicinity of the wiring was almost uniformly oriented, and almost no light leakage in a normally black state was observed.

【0018】以上のようにして作製された液晶パネルの
両側に偏光板をクロスニコルになるように貼り付け、ノ
ーマリーブラックモードの液晶表示素子を得た。このと
きの偏光板の貼り方は、ガラス基板8a側のラビング方
向10と偏向板の吸収軸を平行となるようにした。この
液晶表示素子の電圧−透過率特性を測定した結果、最大
コントラスト比が200と良好な結果を得た。
A polarizing plate is attached to both sides of the liquid crystal panel manufactured as described above so as to be in a crossed Nicols state, and a normally black mode liquid crystal display device is obtained. At this time, the polarizing plate was attached such that the rubbing direction 10 on the glass substrate 8a side was parallel to the absorption axis of the polarizing plate. As a result of measuring the voltage-transmittance characteristics of this liquid crystal display element, a good result was obtained with a maximum contrast ratio of 200.

【0019】比較のために、ガラス基板8aにも8bと
同じポリイミド配向膜を形成してラビング処理を行い、
その他は上記と同一の構成の液晶パネルを作製した。こ
の液晶パネルの配向状態を偏光顕微鏡下で観察した結
果、配線付近に非配向領域があり、ノーマリーブラック
状態で光抜けが見られた。この液晶パネルの両側に上記
と同様な貼り方で偏光板をクロスニコルになるように貼
り付け、ノーマリーブラックモードの液晶表示素子を得
た。この液晶表示素子の最大コントラストは150であ
った。
For comparison, the same polyimide alignment film as that of 8b was formed on the glass substrate 8a, and a rubbing treatment was performed.
Otherwise, a liquid crystal panel having the same configuration as above was manufactured. As a result of observing the alignment state of the liquid crystal panel under a polarizing microscope, there was a non-alignment region near the wiring, and light leakage was observed in a normally black state. A polarizing plate was attached to both sides of the liquid crystal panel in the same manner as described above so as to be in a crossed Nicols state, thereby obtaining a normally black mode liquid crystal display element. The maximum contrast of this liquid crystal display device was 150.

【0020】上記のような測定結果を得た理由について
説明する。電極等により段差の大きい基板をラビング処
理する場合ラビング方向によっては段差近傍ではラビン
グ布の繊維が触れず、ラビング処理がされない部分が生
じる。その結果、段差近傍は非配向領域となって光り抜
けを起こしやすい。一方、段差のほとんど無い基板で
は、ほぼ全面に均一なラビング処理が施される。全面に
均一なラビング処理がなされている基板と、ラビング処
理がなされていない部分のある基板の組み合わせの場
合、液晶封入後のアニール処理によって配向が基板界面
から広がる際に、全面に均一な配向処理がなされている
基板の側から一方的に広がっていくことが均一な配向に
つながる。
The reason why the above measurement results are obtained will be described. When rubbing a substrate having a large step with an electrode or the like, fibers of the rubbing cloth do not touch near the step depending on the rubbing direction, and there is a portion where the rubbing treatment is not performed. As a result, the vicinity of the step becomes a non-aligned region, and light leakage easily occurs. On the other hand, on a substrate having almost no step, a uniform rubbing treatment is performed on almost the entire surface. In the case of a combination of a substrate that has undergone uniform rubbing on the entire surface and a substrate that has a portion that has not been subjected to rubbing, when the orientation spreads from the substrate interface by annealing after liquid crystal sealing, uniform alignment is performed on the entire surface. Unidirectionally spreading from the side of the substrate where the separation is performed leads to uniform orientation.

【0021】TNモードでは、液晶分子が上下の基板間
で90゜ねじれて配向しているので、両方の基板表面で
それぞれの方向に制御された配向性を有する必要があ
る。液晶分子を基板面にほぼ水平な方向で動かし、電界
制御複屈折効果により光透過率をコントロールする表示
モードでは、ホモジニアス配向を用いている。ホモジニ
アス配向の場合、一方の基板表面が一定の方向に制御さ
れた液晶配向性を有していて、他方の基板がN−I点以
下の温度で配向力を消失していれば、アニール処理後に
液晶配向性を有する基板の側から配向が広がって均一な
配向が得られる。
In the TN mode, the liquid crystal molecules are oriented by being twisted by 90 ° between the upper and lower substrates. Therefore, it is necessary that both the substrate surfaces have controlled orientation in each direction. In a display mode in which liquid crystal molecules are moved in a direction substantially horizontal to the substrate surface and light transmittance is controlled by an electric field control birefringence effect, homogeneous alignment is used. In the case of homogeneous alignment, if one substrate surface has a controlled liquid crystal alignment in a certain direction and the other substrate has lost the alignment force at a temperature equal to or lower than the NI point, after the annealing treatment, The alignment spreads from the side of the substrate having liquid crystal alignment, and uniform alignment is obtained.

【0022】したがって、基板表面に配向性をもたせる
ための方法として基板にラビング処理を行う場合は、段
差の大きい基板側がN−I点以下で配向力を消失するよ
うにした方が好ましい。N−I点以下の温度で配向力を
消失する材料としては、TgがN−I点以下の熱可塑性
ポリマーが、特に効果がある。この実施の形態では、熱
可塑性ポリマーとしてTgが98℃のポリスチレン配向
膜9aを用い、N−I点が105℃のネマティック液晶
を用いている。
Therefore, when a rubbing process is performed on a substrate as a method for imparting orientation to the substrate surface, it is preferable that the substrate side having a large step loses the alignment force below the NI point. As a material that loses the alignment force at a temperature equal to or lower than the NI point, a thermoplastic polymer having a Tg equal to or lower than the NI point is particularly effective. In this embodiment, an oriented polystyrene film 9a having a Tg of 98 ° C. and a nematic liquid crystal having an NI point of 105 ° C. are used as the thermoplastic polymer.

【0023】すなわち、熱可塑性ポリマーはTg以上の
温度では、分子鎖のミクロブラウン運動によりゴム弾性
状態となるが、Tg以下ではミクロブラウン運動が凍結
された状態でプラスティック状態となる。したがってラ
ビング処理によって得られるポリスチレン配向膜9aの
膜表面の配向力は、Tg以上の温度になってゴム弾性状
態になると消失し、Tg以下になっても戻らない。液晶
のN−I点が熱可塑性ポリマーのTgより高いと、配向
を均一にするためのアニール処理時にゴム弾性状態とな
っており、N−I点直下で液晶分子が配向し始めると
き、熱可塑性ポリマー表面は配向力が消失した状態とな
っている。その結果、配向力を有する基板8bの側から
配向が広がり、パネル全面に均一なホモジニアス配向が
得られる。
That is, at a temperature higher than Tg, the thermoplastic polymer is in a rubber elastic state due to the micro Brownian motion of the molecular chain, but at a temperature lower than Tg, it is in a plastic state with the frozen Micro Brownian motion. Therefore, the orientation force on the surface of the polystyrene orientation film 9a obtained by the rubbing treatment disappears when the temperature becomes equal to or higher than Tg and enters a rubber elastic state, and does not return even when the temperature falls below Tg. When the NI point of the liquid crystal is higher than the Tg of the thermoplastic polymer, the liquid crystal is in a rubber elastic state during the annealing treatment for making the alignment uniform. The polymer surface is in a state where the alignment force has disappeared. As a result, the orientation spreads from the side of the substrate 8b having the orientation force, and uniform homogeneous orientation is obtained over the entire panel.

【0024】なお、この実施の形態において、熱可塑性
ポリマーのとしてポリスチレン配向膜を用いたがポリメ
チルメタクリレート等のポリエステルやポリ塩化ビニル
等でも良く、Tgが液晶のN−I点より低い熱可塑性ポ
リマーであれば同様の効果が得られる。また、液晶表示
素子に用いる熱可塑性ポリマーのTgは、液晶表示素子
が通常使用される環境でのパネル温度が、バックライト
等の影響で約40℃であること、および配向安定性等を
考慮すると最低50℃は必要である。信頼性まで考慮す
ると80℃以上が好ましい。
In this embodiment, a polystyrene oriented film is used as the thermoplastic polymer, but polyester such as polymethyl methacrylate or polyvinyl chloride may be used, and the thermoplastic polymer having a Tg lower than the NI point of the liquid crystal. Then, the same effect can be obtained. Further, the Tg of the thermoplastic polymer used for the liquid crystal display element is, considering that the panel temperature in an environment where the liquid crystal display element is usually used is about 40 ° C. due to the influence of the backlight and the like and the alignment stability and the like. A minimum of 50 ° C is required. In consideration of reliability, 80 ° C. or higher is preferable.

【0025】また、この実施の形態では液晶配向性を有
する基板8bにラビング処理を施したポリイミド配向膜
9bを用いているが、他のポリマーにラビング処理を施
したものや、あるいは光による配向処理等でも良い。し
かしながら、アニール処理後の冷却時に片側の基板8b
から配向が広がっていくことを考慮すると、その基板8
bの表面の配向規制力は強い程良いため、この点でポリ
イミド配向膜9bを用いるのが好ましい。
Further, in this embodiment, the polyimide alignment film 9b obtained by rubbing the substrate 8b having liquid crystal alignment is used. And so on. However, at the time of cooling after the annealing process, one side of the substrate 8b
Considering that the orientation spreads from
Since the stronger the alignment regulating force on the surface of b, the better, the polyimide alignment film 9b is preferably used in this regard.

【0026】また、共通電極6と画素電極7をともに基
板8aに形成しているが、共通電極6は対向する基板8
bに形成することにより、基板面に対して水平方向に電
界が生じるようにしてもよい。この場合、より段差部の
多いアクティブ素子を有する基板の表面が、上記のよう
に液晶のN−I点より低い温度で液晶配向力を消失する
ようにする。
The common electrode 6 and the pixel electrode 7 are both formed on the substrate 8a.
An electric field may be generated in the horizontal direction with respect to the substrate surface by forming it in b. In this case, the surface of the substrate having the active element having more step portions loses the liquid crystal alignment force at a temperature lower than the NI point of the liquid crystal as described above.

【0027】この発明の第2の実施の形態の液晶表示素
子を図3に基づいて説明する。図3はこの発明の実施の
形態の液晶表示素子の断面図である。第1の実施の形態
と同じ構成で電極が形成されたガラス基板に8a上に、
固形分濃度6重量%のポリウレタン溶液(例えば、三菱
重工業株式会社製WF009)をオフセット印刷し、1
50℃で1時間加熱してポリウレタン配向膜12を形成
した。このときのポリウレタン配向膜12の膜厚は約8
00Åであった。このポリウレタン配向膜12は形状記
憶効果を有し、そのTgは93℃である。この基板8a
をレーヨン布を用い、電極配線に平行な方向と約5゜の
角度をなすような方向10にラビング処理を行った。
A liquid crystal display device according to a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a sectional view of the liquid crystal display device according to the embodiment of the present invention. On a glass substrate on which an electrode is formed in the same configuration as in the first embodiment,
A polyurethane solution having a solid content of 6% by weight (for example, WF009 manufactured by Mitsubishi Heavy Industries, Ltd.) is offset-printed, and
By heating at 50 ° C. for 1 hour, a polyurethane alignment film 12 was formed. At this time, the thickness of the polyurethane alignment film 12 is about 8
It was 00 $. This polyurethane alignment film 12 has a shape memory effect, and its Tg is 93 ° C. This substrate 8a
Using a rayon cloth, a rubbing treatment was performed in a direction 10 at an angle of about 5 ° with a direction parallel to the electrode wiring.

【0028】もう一方の透明なガラス基板8bには、固
形分濃度6重量%のポリイミドワニス(例えばオプトマ
ーAL−5417:日本合成ゴム株式会社製)をオフセ
ット印刷し、170℃で1時間加熱してポリイミド配向
膜9bを形成した。このときのポリイミド配向膜9bの
膜厚は約800Åであった。基板8bを電極を有する基
板8aと貼り合わせたときにホモジニアス配向となるよ
うな方向にラビング処理を行い、ポリウレタン配向膜1
2とポリイミド配向膜9bが向かい合うように基板8a
と対向させ、スペーサとして直径4μmのガラスビーズ
11を介して貼合わせた。このパネルに屈折率異方性Δ
nが0.075、N−I点が100℃のネマティック液
晶を真空注入法にて封入した。このパネルをN−I点よ
り高温の120℃で1時間アニール処理を行った。その
結果、液晶パネル全面で均一なホモジニアス配向が得ら
れた。このパネルの配向状態を偏光顕微鏡下で観察した
結果、配線付近もほぼ均一に配向しており、ノーマリー
ブラック状態での光抜けもほとんど見られなかった。以
上のようにして作製された液晶パネルの両側に偏光板を
クロスニコルになるように貼り付け、ノーマリーブラッ
クモードの液晶表示素子を得た。このときの偏光板の貼
り方は、ガラス基板8a側のラビング方向10と偏向板
の吸収軸を平行となるようにした。この液晶表示素子の
電圧−透過率特性を測定した結果、最大コントラスト比
が220と良好な結果を得た。また、この液晶表示素子
の応答速度を測定した結果、立ち上がりの応答時間が6
0msec、立ち下がりの応答時間が55msecであ
り、前記比較例の液晶表示素子の測定結果と、全く同じ
であった。したがって、ポリウレタン配向膜12の表面
は、Tg以下の温度で、非常に良好な状態で保持されて
いる。
On the other transparent glass substrate 8b, a polyimide varnish having a solid content of 6% by weight (for example, Optmer AL-5417: manufactured by Nippon Synthetic Rubber Co., Ltd.) is offset-printed and heated at 170 ° C. for 1 hour. A polyimide alignment film 9b was formed. At this time, the thickness of the polyimide alignment film 9b was about 800 °. The rubbing treatment is performed in such a direction that a homogeneous alignment is obtained when the substrate 8b is bonded to the substrate 8a having electrodes.
2 and polyimide alignment film 9b so that substrate 8a
And bonded together via a glass bead 11 having a diameter of 4 μm as a spacer. This panel has a refractive index anisotropy Δ
A nematic liquid crystal having an n of 0.075 and an NI point of 100 ° C. was sealed by a vacuum injection method. This panel was annealed at 120 ° C. higher than the NI point for 1 hour. As a result, uniform homogeneous alignment was obtained over the entire surface of the liquid crystal panel. As a result of observing the orientation state of this panel under a polarizing microscope, the vicinity of the wiring was almost uniformly oriented, and almost no light leakage in a normally black state was observed. Polarizing plates were attached to both sides of the liquid crystal panel manufactured as described above so as to be in a crossed Nicols state, and a normally black mode liquid crystal display element was obtained. At this time, the polarizing plate was attached such that the rubbing direction 10 on the glass substrate 8a side was parallel to the absorption axis of the polarizing plate. As a result of measuring the voltage-transmittance characteristics of this liquid crystal display element, a good result was obtained with a maximum contrast ratio of 220. Also, as a result of measuring the response speed of this liquid crystal display element, the response time at the rise was 6 times.
The response time at the falling edge was 0 msec and the falling response time was 55 msec, which was exactly the same as the measurement result of the liquid crystal display element of the comparative example. Therefore, the surface of the polyurethane alignment film 12 is maintained in a very good state at a temperature equal to or lower than Tg.

【0029】形状記憶効果を有するポリウレタンとして
特開平2−116102号公報に提案されている構造式
の一例を下記式(化1)に示す。
An example of a structural formula proposed in JP-A-2-116102 as a polyurethane having a shape memory effect is shown in the following formula (Formula 1).

【0030】[0030]

【化1】 形状記憶効果を有するポリウレタンはソフトセグメント
とハードセグメントからなるため部分結晶化している。
そのため、配向膜として用いた場合に、液晶で溶解や膨
潤することもなく、また電圧保持率の低下もないため、
この信頼性の点から見ても非常に良好な材料である。し
たがって、この形状記憶効果を有するポリウレタン配向
膜を用いた液晶表示素子の信頼性も良好なものとなる。
Embedded image Polyurethane having a shape memory effect is partially crystallized because it comprises a soft segment and a hard segment.
Therefore, when used as an alignment film, there is no dissolution or swelling in the liquid crystal, and there is no decrease in the voltage holding ratio.
It is a very good material in view of this reliability. Therefore, the reliability of the liquid crystal display device using the polyurethane alignment film having this shape memory effect is also improved.

【0031】この発明の第3の実施の形態の液晶表示素
子を説明する。第2の実施の形態と同じ構成で、ポリウ
レタン配向膜12にラビング処理をせずに液晶パネルを
作製した。このパネルを偏光板で挟んで液晶注入直後の
配向状態を観察すると、液晶注入時の流れに沿って流動
配向が見られた。この液晶パネルをN−I点より高温の
120℃で1時間アニール処理を行った。その結果、液
晶パネル全面で均一なホモジニアス配向が得られた。こ
のパネルの配向状態を偏光顕微鏡下で観察した結果、配
線付近もほぼ均一に配向しており、ノーマリーブラック
状態での光抜けもほとんど見られなかった。以上のよう
にして作製された液晶パネルの両側に偏光板をクロスニ
コルになるように貼り付け、ノーマリーブラックモード
の液晶表示素子を得た。この液晶表示素子の電圧−透過
率特性を測定した結果、最大コントラスト比が200と
良好な結果を得た。
A liquid crystal display device according to a third embodiment of the present invention will be described. A liquid crystal panel having the same configuration as that of the second embodiment was manufactured without subjecting the polyurethane alignment film 12 to rubbing treatment. When this panel was sandwiched between polarizing plates and the alignment state immediately after liquid crystal injection was observed, flow alignment was observed along the flow at the time of liquid crystal injection. This liquid crystal panel was annealed for 1 hour at 120 ° C. higher than the NI point. As a result, uniform homogeneous alignment was obtained over the entire surface of the liquid crystal panel. As a result of observing the orientation state of this panel under a polarizing microscope, the vicinity of the wiring was almost uniformly oriented, and almost no light leakage in a normally black state was observed. Polarizing plates were attached to both sides of the liquid crystal panel manufactured as described above so as to be in a crossed Nicols state, and a normally black mode liquid crystal display element was obtained. As a result of measuring the voltage-transmittance characteristics of this liquid crystal display element, a good result was obtained with a maximum contrast ratio of 200.

【0032】Tgが液晶のN−I点より低い熱可塑性ポ
リマーの膜を配向膜として用いた場合、熱可塑性ポリマ
ーの膜表面はラビング処理により延伸されて液晶配向力
を有していたとしてもTgを越えた時点でそれまでの表
面状態が消失するため、ラビング処理をしなくても、ア
ニールにより反対側の基板界面からホモジニアスの配向
状態が広がるため均一な配向が得られる。そのため、一
方の基板のみ配向処理を施せばよいため、工数が削減で
きてコストダウンにつながる。またラビング処理に係わ
る配向不良等の問題も低減できる。
When a film of a thermoplastic polymer having a Tg lower than the NI point of the liquid crystal is used as an alignment film, even if the surface of the film of the thermoplastic polymer is stretched by a rubbing treatment and has a liquid crystal aligning force, the Tg is obtained. Since the surface state up to that point disappears at that point, even if rubbing treatment is not performed, a homogeneous alignment state is obtained since the homogeneous alignment state is spread from the opposite substrate interface by annealing. Therefore, since only one of the substrates needs to be subjected to the alignment treatment, the number of steps can be reduced and the cost can be reduced. In addition, problems such as poor alignment related to the rubbing treatment can be reduced.

【0033】この発明の第4の実施の形態の液晶表示素
子の製造方法を説明する。第2の実施の形態と同じ構成
の液晶パネルを作製し、ステンレス製蓋付きバットの中
にポリウレタン配向膜12が形成された基板8a側を上
にして液晶パネルを入れ、120℃の恒温槽中で1時間
アニール処理した。この後、120℃から室温への冷却
時に、ステンレス製蓋付きバットに入ったまま液晶パネ
ルを取り出し、ステンレスブロックの上に置いた。この
ときの上側の基板8aの冷却速度は、−8℃/minで
あった。このとき、ポリイミド配向膜9bが形成された
基板8bの冷却速度は、ポリウレタン配向膜12が形成
された基板8aより速く、その結果、液晶パネル全面で
均一なホモジニアス配向が得られた。このパネルの配向
状態を偏光顕微鏡下で観察した結果、配線付近も均一に
配向しており、ノーマリーブラック状態での光抜けも見
られなかった。以上のようにして作製された液晶パネル
の両側に偏光板をクロスニコルになるように貼り付け、
ノーマリーブラックモードの液晶表示素子を得た。この
液晶表示素子の電圧−透過率特性を測定した結果、最大
コントラスト比が230と良好な結果を得た。
A method for manufacturing a liquid crystal display device according to a fourth embodiment of the present invention will be described. A liquid crystal panel having the same configuration as that of the second embodiment is manufactured, and the liquid crystal panel is placed in a bat with a stainless steel lid with the substrate 8a on which the polyurethane alignment film 12 is formed facing upward, and placed in a thermostat at 120 ° C. For 1 hour. Thereafter, at the time of cooling from 120 ° C. to room temperature, the liquid crystal panel was taken out while being kept in the bat with a stainless steel lid, and placed on a stainless block. At this time, the cooling rate of the upper substrate 8a was −8 ° C./min. At this time, the cooling rate of the substrate 8b on which the polyimide alignment film 9b was formed was faster than that of the substrate 8a on which the polyurethane alignment film 12 was formed. As a result, uniform homogeneous alignment was obtained over the entire liquid crystal panel. As a result of observing the orientation state of this panel under a polarizing microscope, the vicinity of the wiring was uniformly oriented, and no light leakage was observed in a normally black state. A polarizing plate is attached on both sides of the liquid crystal panel manufactured as described above so as to be in a cross Nicol state,
A normally black mode liquid crystal display device was obtained. As a result of measuring the voltage-transmittance characteristics of this liquid crystal display element, a good result was obtained with a maximum contrast ratio of 230.

【0034】N−I点以上の温度から冷却する際に、配
向性を有する基板8bの方から冷却することにより、そ
の基板界面からネマティック相が出現し始め、反対側の
基板界面に向かってその配向が広がって行くため片側の
基板8aが配向性をもたなくても均一な配向が得られる
こととなる。片側の基板8bから配向状態が広がるよう
にするには、両基板8a,8bの温度差が大きいほど良
い。そのためには、片側の基板8bから急冷することが
効果的である。
By cooling from the oriented substrate 8b at the time of cooling from a temperature higher than the NI point, a nematic phase starts to appear at the substrate interface, and the nematic phase starts to move toward the opposite substrate interface. Since the orientation spreads, a uniform orientation can be obtained even if one substrate 8a does not have the orientation. In order to spread the orientation state from the substrate 8b on one side, the larger the temperature difference between the two substrates 8a and 8b, the better. For that purpose, it is effective to rapidly cool the substrate 8b on one side.

【0035】なお、この実施の形態では、配向性を有す
る基板8bの温度が反対側の基板8aより低い温度とな
るように制御したが、両基板8a,8bが同じ冷却速度
であっても、均一な配向が得られる。
In this embodiment, the temperature of the oriented substrate 8b is controlled to be lower than the temperature of the opposite substrate 8a. However, even if both substrates 8a and 8b have the same cooling rate, Uniform orientation is obtained.

【0036】[0036]

【発明の効果】この発明の液晶表示素子によれば、電極
間に電圧が印加された際に、基板面に対して水平方向に
電界が生じるようにして、液晶分子を基板に水平な方向
に動かすモードで、画素内に配線段差を有する場合で
も、一方の基板が制御された液晶配向性を有し、他方の
基板がN−I点(ネマティック−アイソトロピック転移
点)以下で液晶配向力を消失する性質を有することで、
アニール処理により、配向性を有する一方の基板側から
液晶分子の配向状態が広がり、配線段差のある他方の基
板でも段差部近傍まで均一なホモジニアス配向が得ら
れ、コントラストが高く、視野角の広い液晶表示素子を
提供できる。
According to the liquid crystal display device of the present invention, when a voltage is applied between the electrodes, an electric field is generated in the horizontal direction with respect to the substrate surface, so that the liquid crystal molecules are moved in the horizontal direction with respect to the substrate. In the moving mode, even if there is a wiring step in the pixel, one substrate has a controlled liquid crystal alignment, and the other substrate has a liquid crystal alignment force below the NI point (nematic-isotropic transition point). By having the property of disappearing,
Due to the annealing treatment, the alignment state of the liquid crystal molecules spreads from one of the substrates having alignment properties, and even on the other substrate having a wiring step, a uniform homogeneous alignment can be obtained up to the vicinity of the step, the liquid crystal having a high contrast and a wide viewing angle. A display element can be provided.

【0037】請求項2では、他方の基板表面にTg(ガ
ラス転移温度)が液晶のネマティック−アイソトロピッ
ク転移点以下の熱可塑性ポリマーの膜を形成したので、
N−I点以下で液晶配向力を消失する材料として特に効
果がある。すなわち、熱可塑性ポリマーはTg以上の温
度では、分子鎖のミクロブラウン運動によりゴム弾性状
態となって液晶配向力が消失するため、Tgを液晶分子
が配向し始めるN−I点以下とすることにより熱可塑性
ポリマーが配向力が消失した状態で配向する。
According to the second aspect, a film of a thermoplastic polymer having a Tg (glass transition temperature) lower than the nematic-isotropic transition point of the liquid crystal is formed on the other substrate surface.
It is particularly effective as a material that loses the liquid crystal alignment force below the NI point. That is, at a temperature higher than Tg, the thermoplastic polymer is in a rubber elastic state due to the micro-Brownian motion of the molecular chain, and the liquid crystal alignment force disappears. Therefore, by setting Tg to be equal to or lower than the NI point at which liquid crystal molecules start to be aligned. The thermoplastic polymer is oriented in a state where the orientation force has disappeared.

【0038】請求項3では、熱可塑性ポリマーのガラス
転移温度が50℃以上にしたので、液晶表示素子が通常
使用される環境でのパネル温度40℃よりも高く、配向
安定性が良好となる。請求項4では、熱可塑性ポリマー
が形状記憶効果を有するポリウレタンの膜であるので、
Tg以下の温度で非常に良好な状態で保持される。すな
わち、形状記憶効果を有するポリウレタンは、ソフトセ
グメントとハードセグメントからなるため部分結晶化し
ており、そのため配向膜として用いた場合に、液晶で溶
解や膨潤することもなく、また電圧保持率の低下もない
ため、信頼性が高い。
In the third aspect, the glass transition temperature of the thermoplastic polymer is 50 ° C. or higher, so that the panel temperature is higher than 40 ° C. in an environment where the liquid crystal display element is usually used, and the alignment stability is good. In claim 4, since the thermoplastic polymer is a polyurethane film having a shape memory effect,
It is kept in very good condition at temperatures below Tg. In other words, polyurethane having a shape memory effect is partially crystallized because it is composed of a soft segment and a hard segment, and therefore, when used as an alignment film, does not dissolve or swell in liquid crystal, and also decreases the voltage holding ratio. Not so, high reliability.

【0039】請求項5では、制御された液晶配向性を有
する基板表面にポリイミドを形成したので、基板表面の
配向規制力が強くなり、反対側の基板へ配向が広がって
いく。請求項6では、他方の基板は配向処理されていな
いので、アニール処理により配向処理された反対側の基
板界面からホモジニアスの配向状態が広がり均一な配向
が得られる。また、一方の基板のみ配向処理を施せばよ
いため、工数が削減できてコストダウンにつながる。
According to the fifth aspect, since polyimide is formed on the surface of the substrate having a controlled liquid crystal orientation, the alignment regulating force on the substrate surface becomes strong, and the orientation spreads to the opposite substrate. In the sixth aspect, since the other substrate is not subjected to the orientation treatment, the homogeneous orientation state is expanded from the interface of the opposite substrate subjected to the orientation treatment by the annealing treatment, and a uniform orientation is obtained. In addition, since it is only necessary to perform the alignment treatment on one of the substrates, the number of steps can be reduced, leading to a cost reduction.

【0040】この発明の請求項7記載の液晶表示素子の
製造方法によれば、表面が制御された液晶配向性を有し
ている一方の基板の温度が、他方の基板の温度以下とな
るように制御しながら冷却することにより、一方の基板
界面からネマティック相が出現し始め、反対側の基板界
面に向かってその配向が広がっていくため、反対側の基
板が配向性を持たなくても均一な配向が得られる。
According to the method of manufacturing a liquid crystal display device of the present invention, the temperature of one substrate having a liquid crystal orientation whose surface is controlled is lower than the temperature of the other substrate. In this way, the nematic phase begins to appear at the interface of one substrate, and its orientation spreads toward the interface of the opposite substrate. A good orientation is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態の液晶表示素子の
平面図である。
FIG. 1 is a plan view of a liquid crystal display device according to a first embodiment of the present invention.

【図2】図1の断面図である。FIG. 2 is a sectional view of FIG.

【図3】この発明の第2の実施の形態の液晶表示素子の
断面図である。
FIG. 3 is a sectional view of a liquid crystal display device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ソース電極 2 ゲート電極 3 ドレイン電極 4 薄膜トランジスタ素子 5 引き出し電極 6 共通電極 7 画素電極 8a,8b ガラス基板 9a ポリスチレン配向膜 9b ポリイミド配向膜 10 ラビング方向 11 ガラスビーズ 12 ポリウレタン配向膜 DESCRIPTION OF SYMBOLS 1 Source electrode 2 Gate electrode 3 Drain electrode 4 Thin film transistor element 5 Leader electrode 6 Common electrode 7 Pixel electrode 8a, 8b Glass substrate 9a Polystyrene alignment film 9b Polyimide alignment film 10 Rubbing direction 11 Glass beads 12 Polyurethane alignment film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一対の基板間に液晶が狭持され、前記基
板の一方に各画素ごとにアクティブ素子を配置し、この
アクティブ素子を有する基板上に少なくとも画素電極が
配置されるように一対以上の線状の画素電極と共通電極
を前記画素内の基板上に形成し、前記電極間に電圧が印
加された際に、基板面に対して水平方向に電界が生じる
ような電圧印加手段を設けた液晶表示素子であって、一
方の基板の表面が制御された液晶配向性を有し、前記電
極による段差が大きい他方の基板の表面が液晶のネマテ
ィック−アイソトロピック転移点より低い温度で液晶配
向力を消失する性質を有することを特徴とする液晶表示
素子。
1. A liquid crystal is sandwiched between a pair of substrates, an active element is disposed for each pixel on one of the substrates, and at least one pixel electrode is disposed on a substrate having the active element. Forming a linear pixel electrode and a common electrode on a substrate in the pixel, and providing a voltage applying means for generating an electric field in a horizontal direction with respect to the substrate surface when a voltage is applied between the electrodes. A liquid crystal display device, wherein the surface of one substrate has a controlled liquid crystal orientation and the surface of the other substrate has a large step due to the electrode, and the surface of the other substrate has a liquid crystal alignment at a temperature lower than the nematic-isotropic transition point of the liquid crystal. A liquid crystal display element having a property of disappearing power.
【請求項2】 他方の基板表面にガラス転移温度が液晶
のネマティック−アイソトロピック転移点以下の熱可塑
性ポリマーの膜を形成した請求項1記載の液晶表示素
子。
2. The liquid crystal display device according to claim 1, wherein a film of a thermoplastic polymer having a glass transition temperature equal to or lower than the nematic-isotropic transition point of the liquid crystal is formed on the other substrate surface.
【請求項3】 熱可塑性ポリマーのガラス転移温度が5
0℃以上の請求項2記載の液晶表示素子。
3. The thermoplastic polymer having a glass transition temperature of 5
3. The liquid crystal display device according to claim 2, wherein the temperature is 0 ° C. or higher.
【請求項4】 熱可塑性ポリマーが形状記憶効果を有す
るポリウレタンの膜である請求項2記載の液晶表示素
子。
4. The liquid crystal display device according to claim 2, wherein the thermoplastic polymer is a polyurethane film having a shape memory effect.
【請求項5】 制御された液晶配向性を有する基板表面
にポリイミドを形成した請求項1記載の液晶表示素子。
5. The liquid crystal display device according to claim 1, wherein polyimide is formed on the surface of the substrate having controlled liquid crystal orientation.
【請求項6】 他方の基板は配向処理されていない請求
項1記載の液晶表示素子。
6. The liquid crystal display device according to claim 1, wherein the other substrate is not subjected to an alignment treatment.
【請求項7】 一方の基板の表面が制御された液晶配向
性を有するように形成し、他方の基板の表面が液晶のネ
マティック−アイソトロピック転移点より低い温度で液
晶配向力を消失する性質を有するように形成した後、一
対の基板間に液晶を封入した液晶パネルを液晶のネマテ
ィック−アイソトロピック転移点以上に温度を上げた後
に冷却する過程で、表面が制御された液晶配向性を有し
ている一方の基板の温度が、他方の基板の温度以下とな
るように制御しながら冷却することを特徴とする液晶表
示素子の製造方法。
7. A structure in which one substrate surface is formed so as to have a controlled liquid crystal alignment property, and the other substrate surface has a property that the liquid crystal alignment force disappears at a temperature lower than the nematic-isotropic transition point of the liquid crystal. After being formed so as to have a liquid crystal panel in which liquid crystal is sealed between a pair of substrates, the surface of the liquid crystal panel has a controlled liquid crystal orientation in a process of cooling after raising the temperature above the nematic-isotropic transition point of the liquid crystal. And cooling the substrate while controlling the temperature of one of the substrates to be equal to or lower than the temperature of the other substrate.
JP32661496A 1996-12-06 1996-12-06 Liquid crystal display element and its production Pending JPH10170920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32661496A JPH10170920A (en) 1996-12-06 1996-12-06 Liquid crystal display element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32661496A JPH10170920A (en) 1996-12-06 1996-12-06 Liquid crystal display element and its production

Publications (1)

Publication Number Publication Date
JPH10170920A true JPH10170920A (en) 1998-06-26

Family

ID=18189778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32661496A Pending JPH10170920A (en) 1996-12-06 1996-12-06 Liquid crystal display element and its production

Country Status (1)

Country Link
JP (1) JPH10170920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088078A (en) * 1997-12-03 2000-07-11 Hyundai Electronics Industries Co., Ltd. Liquid crystal display with horizontal electric field
US6243154B1 (en) 1997-12-11 2001-06-05 Hyundai Electronics Industries Co., Ltd. Liquid crystal display having wide viewing angle without color shift having annular pixel and counter electrodes
JP2011248089A (en) * 2010-05-27 2011-12-08 Lg Display Co Ltd Liquid crystal display element and driving method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088078A (en) * 1997-12-03 2000-07-11 Hyundai Electronics Industries Co., Ltd. Liquid crystal display with horizontal electric field
US6243154B1 (en) 1997-12-11 2001-06-05 Hyundai Electronics Industries Co., Ltd. Liquid crystal display having wide viewing angle without color shift having annular pixel and counter electrodes
JP2011248089A (en) * 2010-05-27 2011-12-08 Lg Display Co Ltd Liquid crystal display element and driving method thereof

Similar Documents

Publication Publication Date Title
US5793459A (en) Liquid crystal display of horizontal field type
JP5256714B2 (en) Liquid crystal display element and manufacturing method thereof
JPH0743689A (en) Information display device and its production
JP3183647B2 (en) Parallel alignment liquid crystal display
JPH07261185A (en) Production of liquid crystal display element
JPH10170920A (en) Liquid crystal display element and its production
JP2003255347A (en) Liquid crystal display and production method thereof
JP3404467B2 (en) Liquid crystal display
JPH0961624A (en) Optical anisotropic element and liquid crystal display element using the element
JPH07281187A (en) Production of liquid crystal display element
JPH09297306A (en) Liquid crystal display element and its production
JP2510823B2 (en) Method of manufacturing optical modulator
JP3063553B2 (en) Liquid crystal panel manufacturing method
JP3055416B2 (en) Liquid crystal element, liquid crystal display panel and method of manufacturing the same
JP2945273B2 (en) Liquid crystal display panel and method of manufacturing the same
JP2766784B2 (en) Ferroelectric liquid crystal display device
JP2548390B2 (en) Method for manufacturing ferroelectric liquid crystal panel
JPH0836186A (en) Production of liquid crystal device
JP2948075B2 (en) Liquid crystal display panel and method of manufacturing the same
JPS61267028A (en) Control method for orientation of liquid crystal
JPH07181491A (en) Production of liquid crystal display element and liquid crystal display element
JPH0862609A (en) Production of liquid crystal display element and liquid crystal display element
JPH07181495A (en) Ferroelectric liquid crystal element
JP2001290150A (en) Liquid crystal element
JPH04107424A (en) Liquid crystal electrooptic device driving method