JPH07281187A - Production of liquid crystal display element - Google Patents

Production of liquid crystal display element

Info

Publication number
JPH07281187A
JPH07281187A JP1952495A JP1952495A JPH07281187A JP H07281187 A JPH07281187 A JP H07281187A JP 1952495 A JP1952495 A JP 1952495A JP 1952495 A JP1952495 A JP 1952495A JP H07281187 A JPH07281187 A JP H07281187A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
manufacturing
alignment
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1952495A
Other languages
Japanese (ja)
Other versions
JP2773794B2 (en
Inventor
Yasuo Toko
康夫 都甲
Hiyakuei Chiyou
百英 張
Takashi Sugiyama
貴 杉山
Kiyoshi Ando
潔 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP1952495A priority Critical patent/JP2773794B2/en
Publication of JPH07281187A publication Critical patent/JPH07281187A/en
Application granted granted Critical
Publication of JP2773794B2 publication Critical patent/JP2773794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To make direct rubbing treatment on one substrate unnecessary and to prevent damages in an element or deterioration of characteristics due to static electricity of rubbing by preparing a mother substrate having an oriented structure on its surface by orienting treatment and interposing a primary liquid crystal material between the mother substrate and a slave substrate not subjected to orienting treatment so as to transfer the oriented state of the mother substrate to the slave substrate. CONSTITUTION:A substrate 1 on which a photoresist film 3 and an oriented film 2 are formed is rubbed with a rubbing roller 4 rotated to subject the oriented film 2 to rubbing treatment. Then the photoresist film 3 is removed and a new photoresist film is applied. This photoresist film is patterned to form a photoresist pattern. Then the substrate 1 is rubbed with the rubbing roller 4 rotated in the counter direction so that the oriented film 2 subjected to orienting treatment corresponding to bisected subpixel regions PXa and PXb in opposite orienting directions to each other is formed on the substrate 1. Thus, the mother substrate as a master plate is obtd. and then the oriented state is transferred from the mother substrate to a slave substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示素子の製造方法
に関し、特にラビング処理がされない基板で液晶表示素
子を作成することができる新規な配向処理技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal display device, and more particularly to a novel alignment treatment technique capable of producing a liquid crystal display device on a substrate which is not subjected to rubbing treatment.

【0002】[0002]

【従来の技術】液晶表示ディスプレイ等に使用される液
晶表示素子いわゆる液晶セルは、液晶の特定な分子配列
を電界等の外部からの作用によって別の異なる分子配列
に状態変化させて、その間の光学的特性の変化を視覚的
な変化として表示に利用している。液晶分子をある特定
の配列状態にするために液晶をはさむガラス基板の表面
には配向処理を行うのが普通である。
2. Description of the Related Art A liquid crystal display element used in a liquid crystal display or the like, a so-called liquid crystal cell, changes a specific molecular arrangement of liquid crystal into another different molecular arrangement by an action from the outside such as an electric field, and transmits an optical signal between them. The change in the physical characteristics is used as a visual change for display. In order to bring the liquid crystal molecules into a particular alignment state, it is usual to perform an alignment treatment on the surface of the glass substrate that sandwiches the liquid crystal.

【0003】従来のツイストネマチック(TN)型液晶
セルなどでは、配向処理として、液晶を挟むガラス基板
全体にポリイミド等の配向膜を形成し、配向膜上をラビ
ング布で一方向に擦るいわゆるラビング法が採用されて
いる。
In a conventional twisted nematic (TN) type liquid crystal cell or the like, as an alignment treatment, an alignment film such as polyimide is formed on the entire glass substrate sandwiching the liquid crystal, and the alignment film is rubbed with a rubbing cloth in one direction so-called rubbing method. Has been adopted.

【0004】たとえば図9に示すように、綿布のような
ラビング布を表面に巻いたラビングローラ10を基板1
1上の配向膜11aに触れさせつつそれを矢印A方向に
回転させながら基板面上を移動すると配向膜面全体に均
一に矢印B方向に配向処理ができる。
For example, as shown in FIG. 9, a rubbing roller 10 having a rubbing cloth such as cotton cloth wound on the surface thereof is used as a substrate 1.
If the alignment film 11a on 1 is touched and moved on the substrate surface while rotating it in the direction of arrow A, the alignment process can be uniformly performed in the direction of arrow B on the entire surface of the alignment film.

【0005】TN型液晶セルでは図10に示すように液
晶セルの上下の基板12、13間で液晶分子14の基板
面内配向方向が互いに直交するようにラビング処理を行
う。基板に接している液晶分子14は基板の配向方向に
従って配向する。
In the TN type liquid crystal cell, as shown in FIG. 10, rubbing treatment is performed so that the in-plane orientation directions of the liquid crystal molecules 14 are orthogonal to each other between the upper and lower substrates 12 and 13 of the liquid crystal cell. The liquid crystal molecules 14 in contact with the substrate are aligned according to the alignment direction of the substrate.

【0006】液晶セルがネガ表示の場合にはセルを挟む
平行ニコル配置の偏光板15、16をその偏光軸が一方
のラビング方向と平行になるように配置し、またポジ表
示の場合には、直交ニコル配置の偏光板をその偏光軸が
隣接基板のラビング方向と平行になるように配置する。
When the liquid crystal cell is a negative display, the polarizing plates 15 and 16 arranged in parallel Nicols sandwiching the cell are arranged so that their polarization axes are parallel to one rubbing direction, and in the case of a positive display, Polarizing plates in the crossed Nicols arrangement are arranged so that their polarization axes are parallel to the rubbing direction of the adjacent substrate.

【0007】[0007]

【発明が解決しようとする課題】アクティブ駆動方式を
採用する液晶セルで、TFT(薄膜トランジスタ)やM
IM(Metal Insulator Metal
Diode)などの駆動素子や配線が表面に形成された
基板をラビングする場合には、図9のように全面同時に
ラビングを施すと、それらの素子も同時にラビングされ
ることは避けられない。その場合、ラビングによる静電
気によって素子やその配線が破壊されたり特性が劣化す
るという可能性がある。また、ラビングは細かなダスト
を発生しやすい。これらのダストが基板面上に付着する
と、完全に除去することは容易ではない。
A liquid crystal cell adopting an active driving system, such as a TFT (thin film transistor) or an M
IM (Metal Insulator Metal)
In the case of rubbing a substrate having drive elements such as a diode and wiring formed on the surface, if the entire surface is rubbed simultaneously as shown in FIG. 9, it is inevitable that those elements are rubbed at the same time. In that case, static electricity due to rubbing may damage the element or its wiring or deteriorate the characteristics. Also, rubbing tends to generate fine dust. If these dusts adhere to the substrate surface, it is not easy to completely remove them.

【0008】また従来のラビングで配向処理をした場
合、液晶分子の配向方向が一様なために、観測者から画
面を見たときの表示が見やすい角度(視察方向)が特定
の角度範囲に制限される視角特性が生じる。
Further, when the alignment treatment is carried out by the conventional rubbing, since the alignment direction of the liquid crystal molecules is uniform, the angle (observation direction) at which the observer can easily see the display is limited to a specific angle range. A viewing angle characteristic is generated.

【0009】たとえば、従来のツイストネマチック型液
晶表示セル(TN−LCD)の視角特性を表す等コント
ラスト曲線を測定すると、コントラストの高い視角領域
は特定の角度領域に偏っている。したがって、このよう
な液晶セルはある方向からは見えやすく、別の方向から
は見えにくいといった視角依存性を持つことになる。
For example, when an isocontrast curve representing the viewing angle characteristics of a conventional twisted nematic liquid crystal display cell (TN-LCD) is measured, the viewing angle region with high contrast is biased to a specific angle region. Therefore, such a liquid crystal cell has a viewing angle dependency that it is easy to see from one direction and hard to see from another direction.

【0010】このような視角依存性をもつ液晶セルを表
示装置として利用した場合には、表示画面に対してある
角度ではコントラストが極端に低下し、甚だしい場合に
は表示の明暗が反転してしまう。
When a liquid crystal cell having such a viewing angle dependency is used as a display device, the contrast is extremely lowered at a certain angle with respect to the display screen, and in extreme cases, the contrast of the display is reversed. .

【0011】液晶セルが視角特性を持つ原因の一つは、
ラビングによって液晶分子にプレチルトが生じるからで
ある。液晶分子がプレチルトを持つ方向は、ラビングす
るベクトル方向に一致する。
One of the causes of the liquid crystal cell having the viewing angle characteristic is
This is because the liquid crystal molecules are pretilted by rubbing. The direction in which the liquid crystal molecules have a pretilt corresponds to the vector direction for rubbing.

【0012】図9に示すラビング方法ではすべての液晶
分子が同一方向にプレチルト角を有した状態で配向す
る。液晶層に垂直に電圧を印加すると図10に示すよう
にすべての液晶分子14が同一方向に立ち上がる。従っ
て観測者17の見る方向(矢印で示す視角)によって液
晶分子の立ち具合が異なるために視角依存性が生ずる。
In the rubbing method shown in FIG. 9, all liquid crystal molecules are aligned in the same direction with a pretilt angle. When a voltage is applied vertically to the liquid crystal layer, all the liquid crystal molecules 14 rise in the same direction as shown in FIG. Therefore, since the standing state of the liquid crystal molecules varies depending on the viewing direction (viewing angle indicated by the arrow) of the observer 17, viewing angle dependence occurs.

【0013】視角依存性を少なくして視野角を拡大する
ために、分割配向を行うことが提案されている。たとえ
ば1画素を複数の小領域に分割して互いの小領域の配向
方向を逆にしたり異ならせることにより画素全体として
実質的に等方的な視角特性を得ようとする配向処理技術
である。
In order to reduce the viewing angle dependency and widen the viewing angle, it has been proposed to perform a split orientation. For example, it is an alignment processing technique in which one pixel is divided into a plurality of small regions and the orientation directions of the small regions are reversed or different to obtain substantially isotropic viewing angle characteristics as the entire pixel.

【0014】図11と図12に2分割配向の例を示す
(たとえば、Japan Display 1992年 591
頁参照)。図11は上下基板20、21の1画素領域で
プレチルト角の大きい配向膜22と小さい配向膜23と
を選択的に露出させた例である。全面に配向膜23を形
成した後、選択的に配向膜22を形成した場合を示した
が、配向膜22、23を逆の関係にしたり、それぞれを
パターニングしてもよい。
11 and 12 show examples of two-divided orientation (for example, Japan Display 1992 591).
See page). FIG. 11 shows an example in which the alignment film 22 having a large pretilt angle and the alignment film 23 having a small pretilt angle are selectively exposed in one pixel region of the upper and lower substrates 20 and 21. Although the case where the alignment film 22 is selectively formed after the alignment film 23 is formed on the entire surface is shown, the alignment films 22 and 23 may have an inverse relationship or may be patterned.

【0015】図12は2分割した1画素領域で互いに異
なる方向にラビングを行ったものである。上基板20上
には全面に配向膜23を形成し、同一方向のラビングを
行なう。下基板21上には全面に配向膜22を形成し、
各画素を2分割して互いに逆方向のラビングを行なう。
FIG. 12 shows a case where rubbing is performed in different directions in one divided pixel area. An alignment film 23 is formed on the entire surface of the upper substrate 20, and rubbing in the same direction is performed. An alignment film 22 is formed on the entire surface of the lower substrate 21,
Each pixel is divided into two and rubbing in opposite directions is performed.

【0016】図11と図12で示すような分割配向処理
は、フォトレジストを用いたフォトリソグラフィ工程な
どにより分割小領域のパターニングを基板毎に行う必要
があるために、液晶セルの製造工程が増加し、コスト増
加の原因となっていた。
In the divided alignment treatment as shown in FIGS. 11 and 12, since it is necessary to pattern the divided small regions for each substrate by a photolithography process using a photoresist, the manufacturing process of the liquid crystal cell is increased. However, it was a cause of cost increase.

【0017】また、分割配向の場合には2分割よりも4
分割の方がより等方的な視角特性が得られるために良い
と考えられる。しかし、図11の方法では2分割が限界
である。さらに図12の方法では配向処理工程が通常の
倍となるために実際には実現が困難である。
In the case of split orientation, it is 4 rather than 2 split.
It is considered that the division is better because a more isotropic viewing angle characteristic can be obtained. However, the method of FIG. 11 has a limit of two divisions. Further, in the method of FIG. 12, the alignment treatment step is twice as many as usual, so that it is actually difficult to realize.

【0018】本発明の目的は、液晶セルを構成する基板
の少なくとも一方に直接ラビング処理をすることを不要
として、ラビングの際の静電気による素子損傷や特性劣
化を避けることができる液晶表示素子の製造方法を提供
することである。
An object of the present invention is to manufacture a liquid crystal display device which does not require rubbing treatment directly on at least one of substrates constituting a liquid crystal cell and can avoid device damage and characteristic deterioration due to static electricity during rubbing. Is to provide a method.

【0019】本発明の他の目的は、製造工程を複雑にす
ることなく等方的な視角特性が得られる分割配向処理が
実現可能な液晶表示素子の製造方法を提供することであ
る。
Another object of the present invention is to provide a method for manufacturing a liquid crystal display device capable of realizing a split alignment process which can achieve isotropic viewing angle characteristics without complicating the manufacturing process.

【0020】[0020]

【課題を解決するための手段】本発明による液晶表示素
子の製造方法は、配向処理を施した配向構造を表面に有
する母基板を用意する工程と、配向処理を施していない
子基板と前記母基板との間に1次液晶材料を挟み、前記
母基板の配向状態に対応した配向状態を前記子基板上に
転写する転写工程とを有する。
A method of manufacturing a liquid crystal display device according to the present invention comprises a step of preparing a mother substrate having an alignment structure subjected to an alignment treatment on its surface, a child substrate not subjected to the alignment treatment and the mother substrate. And a transfer step of interposing a primary liquid crystal material between the substrate and the substrate and transferring an alignment state corresponding to the alignment state of the mother substrate onto the daughter substrate.

【0021】[0021]

【作用】原版となる母基板側にあらかじめ所望の配向処
理を施しておく。実際の液晶セルに使用する子基板と配
向処理をした母基板とを対向配置して、両基板間に1次
液晶材料を注入する。1次液晶は母基板の配向処理に従
って配向し子基板の界面にも液晶分子が配向するので、
子基板側に特に配向処理をしなくとも母基板の配向状態
に対応した配向状態が転写されることになる。一度転写
した配向状態は母基板と子基板とを分離しても子基板の
界面に吸着した液晶分子により保存(メモリ効果)され
る。従って、一つの母基板をあらかじめ作っておけば,
配向状態の転写によりラビング処理の不要な子基板が大
量に製作できる。一旦作製した子基板を次の母基板とし
て用いてもよい。
The desired orientation treatment is performed on the mother substrate side, which is the original plate, in advance. A sub-substrate used for an actual liquid crystal cell and a mother substrate subjected to an alignment treatment are arranged to face each other, and a primary liquid crystal material is injected between both substrates. Since the primary liquid crystal is aligned according to the alignment treatment of the mother substrate and the liquid crystal molecules are aligned at the interface of the child substrate,
The alignment state corresponding to the alignment state of the mother substrate is transferred to the child substrate side without any particular alignment treatment. The orientation state once transferred is stored (memory effect) by the liquid crystal molecules adsorbed on the interface of the child substrate even if the mother substrate and the child substrate are separated. Therefore, if you make one mother board in advance,
By transferring the orientation state, a large number of child substrates that do not require rubbing can be manufactured. The once prepared sub-substrate may be used as the next mother substrate.

【0022】[0022]

【実施例】図1Aから図4Bを参照して本発明の実施例
による液晶表示素子の製造方法について説明する。な
お、本実施例では図1Cに示すような2分割配向の場合
を例にとって説明する。液晶表示装置LCDは行列状に
配置された多数の画素PXを含む。各画素PXは、たと
えば正方形等の矩形であり、配向方向が逆の2つのサブ
画素領域PXa、PXbからなる。
EXAMPLE A method of manufacturing a liquid crystal display device according to an example of the present invention will be described with reference to FIGS. 1A to 4B. In the present embodiment, the case of a two-divided orientation as shown in FIG. 1C will be described as an example. The liquid crystal display device LCD includes a large number of pixels PX arranged in a matrix. Each pixel PX is, for example, a rectangle such as a square, and includes two sub-pixel regions PXa and PXb whose orientation directions are opposite to each other.

【0023】図1A、1Bは、原版となるべき母基板を
製作する工程を示す。ガラス基板1の上に直接配向膜2
を形成する。さらに配向膜2の上に一方のサブ画素領域
PXaを覆い、他方のサブ画素領域PXbを露出するフ
ォトレジストパターン3を形成する。
1A and 1B show a process of manufacturing a mother substrate to be an original plate. Alignment film 2 directly on glass substrate 1
To form. Further, a photoresist pattern 3 that covers one sub-pixel region PXa and exposes the other sub-pixel region PXb is formed on the alignment film 2.

【0024】配向膜2やフォトレジストパターン3の形
成は公知の方法で行える。たとえば、配向膜2は、ポリ
イミド、ポリアミド、ポリペプチドアルコール等の膜を
スピンコートや印刷法で形成できる。フォトレジストパ
ターン3は、一般的なフォトレジスト、たとえば東京応
化製OFPR800をスピンコートやロールコートで基
板上に塗布し、露光、現像により不要領域を除去して形
成できる。
The alignment film 2 and the photoresist pattern 3 can be formed by a known method. For example, the alignment film 2 can be formed of a film of polyimide, polyamide, polypeptide alcohol, or the like by spin coating or printing. The photoresist pattern 3 can be formed by applying a general photoresist, for example, OFPR800 manufactured by Tokyo Ohka Co., Ltd. on the substrate by spin coating or roll coating, and removing unnecessary regions by exposure and development.

【0025】まず、図1Aで示すように、ラビングロー
ラ4を矢印R1の方向(時計回り方向)に回転しながら
フォトレジスト膜3と配向膜2とが形成された基板1上
を擦り、ラビングローラ4と基板1を相対的に矢印T1
の方向に移動させ、配向膜2にラビング処理を行なう。
First, as shown in FIG. 1A, the rubbing roller 4 is rubbed on the substrate 1 on which the photoresist film 3 and the alignment film 2 are formed while rotating the rubbing roller 4 in the direction of arrow R1 (clockwise direction). 4 and substrate 1 relative to each other by arrow T1
Then, the alignment film 2 is rubbed.

【0026】ラビングローラ4はローラの表面に綿布の
ようなラビング布を張りつけたものである。ラビングロ
ーラ4を使用するラビング処理は公知の方法が利用でき
る。図1Aのラビング工程では、フォトレジスト膜3で
覆われず、配向膜2の露出した領域のみが図の右から左
に向かう方向を配向方向としてラビングされる。
The rubbing roller 4 is formed by sticking a rubbing cloth such as cotton cloth on the surface of the roller. A known method can be used for the rubbing treatment using the rubbing roller 4. In the rubbing process of FIG. 1A, only the exposed region of the alignment film 2 which is not covered with the photoresist film 3 is rubbed with the direction from right to left in the drawing as the alignment direction.

【0027】次に、図1Aのフォトレジスト膜3を除去
して、新たなフォトレジスト膜を塗布する。図1Bに示
すようにすでにラビングを行ったサブ画素領域PXbを
覆い、他のサブ画素領域PXaを露出するようにフォト
レジスト膜をパターニングしてフォトレジストパターン
3’を形成する。
Next, the photoresist film 3 in FIG. 1A is removed and a new photoresist film is applied. As shown in FIG. 1B, the photoresist film is patterned so as to cover the already rubbed sub-pixel region PXb and expose the other sub-pixel regions PXa to form a photoresist pattern 3 ′.

【0028】今度はラビングローラ4を矢印R2で示す
逆方向(反時計回り方向)に回転しながら基板1上を擦
り、基板1とラビングローラ4とを矢印T2で示す方向
に相対的に移動させ、配向膜2を擦って行く。図1Bの
ラビング工程では、フォトレジストパターン3’に覆わ
れず、配向膜2の露出した領域のみが図の左から右に向
かう方向を配向方向としてラビングされる。
This time, the rubbing roller 4 is rubbed on the substrate 1 while rotating in the opposite direction (counterclockwise direction) indicated by the arrow R2, and the substrate 1 and the rubbing roller 4 are relatively moved in the direction indicated by the arrow T2. Then, the alignment film 2 is rubbed. In the rubbing process of FIG. 1B, only the exposed region of the alignment film 2 that is not covered with the photoresist pattern 3 ′ is rubbed with the direction from left to right in the drawing as the alignment direction.

【0029】配向膜2上のフォトレジストパターン3’
を除去すると、基板1上には図1Cに示すような配向方
向が互いに逆向きの2分割サブ画素領域PXa,PXb
に対応する配向処理した配向膜2ができる。これで原版
となる母基板ができる。
Photoresist pattern 3'on the alignment film 2
Is removed, the two-divided sub-pixel regions PXa and PXb whose orientation directions are opposite to each other are formed on the substrate 1 as shown in FIG. 1C.
The alignment film 2 subjected to the alignment treatment corresponding to is formed. With this, a mother substrate to be an original plate is formed.

【0030】なお、母基板は、ガラス基板1上に配向膜
2を直接形成するので、一旦基板上に電極や能動素子等
を形成し、その上に配向膜を形成する場合と較べて製造
工程はより簡単である。また、平坦な表面が得られるの
で、一様なラビングを実現しやすい。
Since the alignment film 2 is directly formed on the glass substrate 1 as the mother substrate, a manufacturing process is different from the case where the electrodes, active elements, etc. are once formed on the substrate and the alignment film is formed thereon. Is easier. Further, since a flat surface can be obtained, it is easy to realize uniform rubbing.

【0031】なお、配向方向が互いに異なる2つのサブ
画素領域が配向処理の不要な領域で仕切られて互いに離
れて配置されるパターンの場合には、配向処理の不要な
領域をフォトレジストパターンで覆い、サブ画素領域毎
にラビングローラ4の回転方向を制御するだけで配向方
向を変化することも可能であろう。この場合は、フォト
レジストパターンの形成は1回で済むであろう。
In the case of a pattern in which two sub-pixel regions having different alignment directions are separated from each other by a region that does not require alignment treatment and are spaced apart from each other, the region that does not require alignment treatment is covered with a photoresist pattern. It is also possible to change the orientation direction only by controlling the rotation direction of the rubbing roller 4 for each sub-pixel area. In this case, the photoresist pattern may be formed only once.

【0032】また、ラビングローラ4によるラビング領
域の位置制御精度がかなり高ければ、フォトレジストパ
ターンは用いずに、ラビングローラ4の位置制御によっ
て、直接分割配向処理を行なうことも可能であろう。も
ちろん、ラビングローラ4以外の手段で配向膜2を擦っ
てラビング処理をしてもかまわない。
If the position control accuracy of the rubbing area by the rubbing roller 4 is considerably high, it is possible to directly perform the split alignment process by controlling the position of the rubbing roller 4 without using the photoresist pattern. Of course, rubbing treatment may be performed by rubbing the alignment film 2 with a means other than the rubbing roller 4.

【0033】こうして作製した母基板は、子基板にパタ
ーンを転写するために用いられ、実際のLCDに組み合
わされるわけではない。したがって、母基板は原理的に
は何回でも使用することができる。そのため、液晶セル
作製コスト中の母基板作製コストを低減することができ
る。
The mother substrate thus manufactured is used for transferring a pattern to the daughter substrate and is not combined with an actual LCD. Therefore, in principle, the mother substrate can be used any number of times. Therefore, the cost for manufacturing the mother substrate in the cost for manufacturing the liquid crystal cell can be reduced.

【0034】図1Dに示すような4分割配向等、2分割
配向に限らず、それ以上の多分割配向を行なったり、ラ
ビング以外のそれほど量産性に優れない方法(斜方蒸着
膜、ラングミュア・ブロジェット(LB膜)、光配向
膜、延伸高分子膜等)を用いて母基板の配向構造を作製
しても、実際の生産性にはほとんど影響を与えないよう
にすることもできる。
The method is not limited to the two-divided orientation such as the four-divided orientation shown in FIG. 1D, and more multi-divided orientation is performed, or a method other than rubbing which is not so mass-producible (oblique vapor deposition film, Langmuir-Bloat film). Even if the alignment structure of the mother substrate is produced using a jet (LB film), a photo-alignment film, a stretched polymer film, etc., it is possible to make the actual productivity hardly affected.

【0035】次に、図2A−2Cを参照して母基板から
子基板に配向状態を転写する工程を説明する。図2Aで
示すように、図1A、1Bの工程で作成した母基板1と
転写したい子基板5とを対向配置させる。子基板5の上
には配向処理のしてない配向膜6が形成されている。配
向膜6は、たとえばポリイミド膜、ポリアミド膜、ポリ
ビニールアルコール膜やSiO2 膜、ITO(インジウ
ム−錫−酸化物)膜等で形成される。子基板5は、液晶
表示装置に用いられる基板であり、表示に必要な電極構
造等を有する。
Next, the process of transferring the alignment state from the mother substrate to the daughter substrate will be described with reference to FIGS. 2A-2C. As shown in FIG. 2A, the mother substrate 1 created in the steps of FIGS. 1A and 1B and the child substrate 5 to be transferred are arranged to face each other. An alignment film 6 which is not subjected to the alignment treatment is formed on the child substrate 5. The alignment film 6 is formed of, for example, a polyimide film, a polyamide film, a polyvinyl alcohol film, a SiO 2 film, an ITO (indium-tin-oxide) film, or the like. The child substrate 5 is a substrate used for a liquid crystal display device and has an electrode structure and the like necessary for display.

【0036】図1Cは、子基板の構成例を示す。ガラス
基板5a上に配線または電極W、画素電極P、薄膜トラ
ンジスタQが形成されている。配線WはトランジスタQ
を介して画素電極Pに接続される。たとえば、配線Wと
画素電極PはITOで形成し、薄膜トランジスタの電極
部はドープドポリシリコン、チャンネル部はポリシリコ
ン、ゲート絶縁膜はシリコン酸化膜で形成する。
FIG. 1C shows a structural example of the child board. Wirings or electrodes W, pixel electrodes P, and thin film transistors Q are formed on the glass substrate 5a. Wiring W is transistor Q
Is connected to the pixel electrode P via. For example, the wiring W and the pixel electrode P are made of ITO, the electrode portion of the thin film transistor is made of doped polysilicon, the channel portion is made of polysilicon, and the gate insulating film is made of a silicon oxide film.

【0037】母基板1と子基板5間はシール材等で固定
封止する必要はない。この場合、両基板間のギャップ間
隔は特に制限はないが、きれいな転写を行うためには出
来るだけ狭く、かつ均一な間隔が望ましい。
It is not necessary to fix and seal the space between the mother substrate 1 and the daughter substrate 5 with a sealing material or the like. In this case, the gap between the substrates is not particularly limited, but it is desirable that the gap be as narrow and uniform as possible in order to perform a clean transfer.

【0038】そして、カイラル剤を含まないネマティッ
ク液晶材料7を加熱してアイソトロピック状態とし、対
向配置した母基板1と子基板5間に注入する。基板間へ
の液晶注入は、真空注入、毛細管注入等の方法によって
行なえる。また、一方の基板上に液晶をたらし、その上
に他方の基板を重ねてもよい。
Then, the nematic liquid crystal material 7 containing no chiral agent is heated to be in an isotropic state, and is injected between the mother substrate 1 and the daughter substrate 5 arranged opposite to each other. The liquid crystal can be injected between the substrates by a method such as vacuum injection or capillary injection. Alternatively, the liquid crystal may be poured on one substrate and the other substrate may be stacked thereon.

【0039】液晶材料7の注入後、液晶材料7を相転移
温度以下(たとえば室温)まで徐々に冷却し、ネマティ
ック相に相転移させる。すると、図2Bで示すように、
母基板の界面上の液晶分子8aは母基板1の配向処理方
向に従って配向する。左右のサブ画素領域PXa、PX
bでは互いに逆のチルト角で配向する。配向は次第に液
晶層の全厚さに及ぶ。母基板1に対向する子基板5の配
向膜6の界面の液晶分子8も同様に配向する。これによ
って、母基板1の配向状態が子基板5に転写されたこと
になる。なお、母基板1を子基板5より低温になるよう
に保って徐冷してもよい。よりよい配向が得易い。
After the liquid crystal material 7 is injected, the liquid crystal material 7 is gradually cooled to a temperature below the phase transition temperature (for example, room temperature) to cause a phase transition to a nematic phase. Then, as shown in FIG. 2B,
The liquid crystal molecules 8a on the interface of the mother substrate are aligned according to the alignment treatment direction of the mother substrate 1. Left and right sub-pixel regions PXa, PX
In b, they are oriented with opposite tilt angles. The orientation gradually extends over the entire thickness of the liquid crystal layer. The liquid crystal molecules 8 at the interface of the alignment film 6 of the daughter substrate 5 facing the mother substrate 1 are similarly aligned. As a result, the alignment state of the mother substrate 1 is transferred to the daughter substrate 5. The mother substrate 1 may be gradually cooled while being kept at a temperature lower than that of the daughter substrate 5. It is easy to obtain a better orientation.

【0040】この場合には、カイラル剤を含まない液晶
材料7を使用したために、液晶分子8は厚さ方向でねじ
れずに、母基板1の配向状態と実質的に同じ状態が子基
板5側に転写されることになる。但し、図2Bから明ら
かなようにチルト角は逆になる。子基板上に所望のチル
ト角が得られるように母基板を準備することが好まし
い。
In this case, since the liquid crystal material 7 containing no chiral agent was used, the liquid crystal molecules 8 were not twisted in the thickness direction, and the state substantially the same as the orientation of the mother substrate 1 was found on the child substrate 5 side. Will be transferred to. However, as apparent from FIG. 2B, the tilt angles are opposite. It is preferable to prepare the mother substrate so that a desired tilt angle can be obtained on the daughter substrate.

【0041】なお、一旦作製した子基板を2代目の母基
板とし、配向処理していない基板を2代目子基板として
配向状態をさらに転写してもよい。この場合は2代目母
基板とする基板は、母基板同様、電極や駆動素子を有さ
ないものでよい。2代目子基板ではチルト角は1代目母
基板と同等に戻る。
The orientation state may be further transferred by using the once-prepared child substrate as the second-generation mother substrate and the un-oriented substrate as the second-generation child substrate. In this case, the substrate as the second-generation mother substrate may have no electrodes or drive elements, like the mother substrate. The tilt angle of the second generation substrate returns to that of the first generation mother substrate.

【0042】カイラル剤を適量ネマチック液晶材料に添
加してアイソトロピック相で注入してもよい。添加量や
ギャップ間隔に応じたねじれ角が液晶分子に生じるので
母基板1の配向状態にそのねじれ角を加味した配向状態
が子基板5側に転写されることになる。
A chiral agent may be added to the nematic liquid crystal material in an appropriate amount and injected in the isotropic phase. Since a twist angle is generated in the liquid crystal molecules according to the amount of addition and the gap interval, the alignment state in which the twist angle is added to the alignment state of the mother substrate 1 is transferred to the child substrate 5 side.

【0043】カイラル剤を含む液晶を用いる場合、転写
時のセル厚が均一でないと子基板上の液晶配向方向が場
所により異なってしまう。従って、カイラル剤を含む液
晶を用いる場合にはギャップ間隔を厳密に制御管理する
ことが好ましい。
When a liquid crystal containing a chiral agent is used, if the cell thickness at the time of transfer is not uniform, the orientation direction of the liquid crystal on the daughter substrate will vary depending on the location. Therefore, when using a liquid crystal containing a chiral agent, it is preferable to strictly control and manage the gap interval.

【0044】界面の液晶分子は、一旦基板表面に吸着さ
れると容易には動かなくなる性質を有する。これを一般
にメモリ効果という。従って、こうして製作された子基
板5の界面付近の液晶は基板上の配向膜6に吸着され、
その初期配向状態は保存(メモリ効果)される。
The liquid crystal molecules at the interface have the property of not easily moving once they are adsorbed on the substrate surface. This is generally called a memory effect. Therefore, the liquid crystal near the interface of the child substrate 5 thus manufactured is adsorbed by the alignment film 6 on the substrate,
The initial orientation state is saved (memory effect).

【0045】図3Bに示すように、母基板1と子基板5
とを分離して余分な液晶材料7を取り除くと、基板上に
は液晶層が残る。子基板5上に残った液晶分子8は配向
膜に吸着されたまま図2Bで配向した状態を保つ。新た
な液晶材料を子基板5に接触させると、残った液晶分子
8は配向構造として働く。
As shown in FIG. 3B, the mother substrate 1 and the daughter substrate 5
When and are separated and the excess liquid crystal material 7 is removed, the liquid crystal layer remains on the substrate. The liquid crystal molecules 8 remaining on the child substrate 5 are kept adsorbed by the alignment film and remain aligned as shown in FIG. 2B. When a new liquid crystal material is brought into contact with the child substrate 5, the remaining liquid crystal molecules 8 act as an alignment structure.

【0046】しかし、この分離を液晶がネマチック状態
もしくは低温状態で行なうと転写した基板上の液晶配向
状態が乱れることがある。そこで、図3Aに示すよう
に、一旦液晶を高温状態、特にN−I点以上に加熱して
界面以外の液晶を等方相にしてから、図3Bの分離を行
なうと、転写基板上の液晶配向状態はほとんど乱れるこ
となく分離できることが分かった。
However, if this separation is performed in a nematic state or a low temperature state of the liquid crystal, the liquid crystal alignment state on the transferred substrate may be disturbed. Therefore, as shown in FIG. 3A, once the liquid crystal is heated to a high temperature, in particular, at or above the NI point to make the liquid crystal other than the interface into an isotropic phase, and then the separation of FIG. It was found that the orientation states can be separated with almost no disturbance.

【0047】この原因は転写基板上の液晶配向のアンカ
リングエネルギ、特に方位角方向のアンカリングが弱い
ためと考えられ、分離時に基板を動かすときのバルクの
液晶の動きに影響され、転写基板上の配向が乱れるもの
と考えられる。高温になるに従い、液晶の粘度や弾性定
数は低下し、特にN−I点以上では液晶の弾性定数は急
激に小さくなる。このため、分離時にバルクの液晶が動
いても転写基板上の液晶配向には液晶を及ぼさなくなる
ものと考えられる。
It is considered that this is because the anchoring energy of the liquid crystal orientation on the transfer substrate, especially the anchoring in the azimuth direction is weak, and is influenced by the movement of the bulk liquid crystal when the substrate is moved during separation, and It is considered that the orientation of is disturbed. As the temperature rises, the viscosity and elastic constant of the liquid crystal decrease, and the elastic constant of the liquid crystal sharply decreases especially above the NI point. Therefore, it is considered that even if the bulk liquid crystal moves during separation, the liquid crystal does not affect the liquid crystal orientation on the transfer substrate.

【0048】また、図に示したように基板界面付近の液
晶分子は、バルクの液晶がアイソトロピック状態になる
温度に達しても基板に吸着した状態のまま(ネマチック
状態)であると考えられる。しかし、それよりさらに加
熱すると、やがて界面の液晶分子も熱振動により動き始
め、転写した配向状態が乱れてしまうことがある。その
ため、分離時の液晶はN−I点以上ある範囲内の温度範
囲とすることが好ましい。
Further, as shown in the figure, it is considered that the liquid crystal molecules near the substrate interface remain adsorbed on the substrate (nematic state) even when the temperature of the bulk liquid crystal reaches the isotropic state. However, if heating is further performed than that, liquid crystal molecules at the interface may start to move due to thermal vibration, and the transferred alignment state may be disturbed. Therefore, it is preferable that the liquid crystal at the time of separation has a temperature range within the range of NI points or more.

【0049】転写する子基板に形成する表面膜と転写に
用いる液晶(1次液晶)には熱等に対し、結合力の強い
材料を用いることが望ましい。たとえば、ポリイミド表
面膜としてSE−510(日産化学製)、液晶としてS
R−9152(チッソ製、N−I点108℃)を用い
た。これらの材料の場合、160℃以上に加熱したとき
転写子基板上の配向の乱れが生じる。したがって、10
8〜160℃の範囲で分離工程を行なうことが望まし
い。
For the surface film formed on the child substrate to be transferred and the liquid crystal (primary liquid crystal) used for transfer, it is desirable to use a material having a strong binding force against heat or the like. For example, SE-510 (manufactured by Nissan Chemical) as a polyimide surface film and S as a liquid crystal.
R-9152 (manufactured by Chisso, NI point 108 ° C.) was used. In the case of these materials, when heated to 160 ° C. or higher, the orientation disorder on the transfer element substrate occurs. Therefore, 10
It is desirable to perform the separation step in the range of 8 to 160 ° C.

【0050】こうして得られた子基板5を2枚、図4A
で示すように所定間隔で対向配置してセルを製作する。
配向膜6はラビングされていないが、吸着した液晶分子
が配向構造を形成している。次にそれら2枚の子基板間
に液晶材料9を注入すると図4Bで示すようにプレチル
ト角が異なる2分割配向ができる。
Two sub-boards 5 thus obtained are shown in FIG. 4A.
A cell is manufactured by arranging the cells facing each other at a predetermined interval as shown in FIG.
The alignment film 6 is not rubbed, but the adsorbed liquid crystal molecules form an alignment structure. Next, when the liquid crystal material 9 is injected between the two child substrates, a two-divided orientation with different pretilt angles is formed as shown in FIG. 4B.

【0051】図4Bの液晶セルはチルト角が液晶層内で
変化している。これは、鏡面対称な配向方向を有する2
枚の基板を組合わせたためである。2種類の母基板を作
り、それぞれから転写した転写基板を用いれば、チルト
角が液晶層の厚さ方向で一定な液晶セルを形成すること
ができる。
In the liquid crystal cell of FIG. 4B, the tilt angle changes within the liquid crystal layer. It has a mirror-symmetrical orientation direction 2
This is because the substrates are combined. If two types of mother substrates are prepared and transferred from each of them, a liquid crystal cell in which the tilt angle is constant in the thickness direction of the liquid crystal layer can be formed.

【0052】また、図1Cに示すように母基板の配向構
造が周期的な繰り返しパターンであり、かつ画素内のサ
ブ画素領域が面内で線対称な場合、1サブ画素領域分ず
らして2種類の転写基板を作成することによっても同様
の効果を達成できる。
In addition, as shown in FIG. 1C, when the alignment structure of the mother substrate is a periodic repeating pattern and the sub-pixel regions in the pixels are line-symmetric in the plane, two types are shifted by one sub-pixel region. The same effect can be achieved by producing the transfer substrate of.

【0053】図5A、5Bはこのような転写基板を用い
た液晶セルの組み立て工程を示す。図5Aに示すよう
に、転写基板5aと別の転写基板5bと重ね合わせ、液
晶(2次液晶)を望ましくはアイソトロピック相で注入
する。
5A and 5B show a process of assembling a liquid crystal cell using such a transfer substrate. As shown in FIG. 5A, the transfer substrate 5a and another transfer substrate 5b are superposed and liquid crystal (secondary liquid crystal) is injected preferably in an isotropic phase.

【0054】基板5a上の液晶の配向構造8aと他の基
板6b上の液晶の配向構造8bとは互に並進の関係にあ
る。等方相の液晶層9がこれらの配向構造8a、8b間
のギャップを満たす。配向構造8a、8b内の液晶分子
は配向膜6a、6bに吸着しているので、N−I点以上
でも所定の温度範囲内では自由な運動を行なわず、配向
状態を保つ。
The liquid crystal alignment structure 8a on the substrate 5a and the liquid crystal alignment structure 8b on the other substrate 6b are in translation relation with each other. The isotropic phase liquid crystal layer 9 fills the gap between the alignment structures 8a and 8b. Since the liquid crystal molecules in the alignment structures 8a and 8b are adsorbed to the alignment films 6a and 6b, they do not move freely within a predetermined temperature range and maintain the alignment state even at the NI point or higher.

【0055】図5Bに示すように、液晶セルを徐冷する
と、液晶層9がネマチック相となって配向構造8a、8
bに従って配向し、所定の液晶配向状態を有するLCD
を作製することができる。
As shown in FIG. 5B, when the liquid crystal cell is gradually cooled, the liquid crystal layer 9 becomes a nematic phase and the alignment structures 8a, 8 are formed.
LCD aligned according to b and having a predetermined liquid crystal alignment state
Can be produced.

【0056】なお、液晶はネマチック相で注入してもか
まわないが転写された配向はアンカリングエネルギが充
分強くないため欠陥が生じることがある。この点から
は、上述のようにアイソトロピック相で注入することが
好ましい。
The liquid crystal may be injected in the nematic phase, but the transferred orientation may have defects because the anchoring energy is not sufficiently strong. From this point, it is preferable to inject in the isotropic phase as described above.

【0057】この例では、カイラル剤を添加していない
ネマチック液晶を注入し、均一な配向のアンチパラレル
セルを作製することができた。ねじれネマチックセル
(TNまたはSTN−LCD)を作製するときは対向基
板の配向方向を所定の向きに合わせ、適量のカイラル剤
を添加すればよい。また、1次液晶と2次液晶とは同一
のものでも別のものでもかまわない。
In this example, a nematic liquid crystal containing no chiral agent was injected to produce an antiparallel cell with uniform alignment. When manufacturing a twisted nematic cell (TN or STN-LCD), the orientation direction of the counter substrate may be adjusted to a predetermined direction and an appropriate amount of chiral agent may be added. Further, the primary liquid crystal and the secondary liquid crystal may be the same or different.

【0058】液晶セルを構成する一対の基板の内、一方
の基板のみを母基板の配向状態を転写した子基板で構成
してもよい。その場合には図4Bの他方の基板は配向膜
に配向処理を行ってない基板としても、配向膜を持たな
い基板としてよい。あるいは、図4Bの一方の基板のみ
を母基板の配向状態を転写した子基板で構成し、他方の
基板を通常のラビング処理を行った基板で構成してもよ
い。その場合には、子基板にTFTなどの能動素子や幅
狭の電極を形成し、ラビングを行なう基板はこれら静電
気に弱い構造を有さない基板とすることが好ましい。
Of the pair of substrates forming the liquid crystal cell, only one of the substrates may be a sub-substrate formed by transferring the alignment state of the mother substrate. In that case, the other substrate in FIG. 4B may be a substrate in which the alignment film is not subjected to the alignment treatment or a substrate having no alignment film. Alternatively, only one of the substrates shown in FIG. 4B may be composed of a daughter substrate on which the orientation of the mother substrate is transferred, and the other substrate may be composed of a substrate subjected to a normal rubbing treatment. In that case, it is preferable that an active element such as a TFT or a narrow electrode is formed on the child substrate, and the substrate for rubbing is a substrate that does not have a structure vulnerable to static electricity.

【0059】図6A、6Bは、他の実施例による液晶表
示装置の製造方法を示す。図6Aに示すように、前述の
実施例同様に作製した配向構造8aを有する転写基板5
aと、全く配向処理を行なっていない基板5cとを対向
させ、液晶セルを形成する。この液晶セル内に、2次液
晶としての液晶をアイソトロピック相で注入し、基板間
の液晶層9を形成する。
6A and 6B show a method of manufacturing a liquid crystal display device according to another embodiment. As shown in FIG. 6A, the transfer substrate 5 having the alignment structure 8a manufactured in the same manner as the above-mentioned embodiment.
The liquid crystal cell is formed by making a and the substrate 5c which has not been subjected to any alignment treatment face each other. A liquid crystal as a secondary liquid crystal is injected into this liquid crystal cell in an isotropic phase to form a liquid crystal layer 9 between the substrates.

【0060】図6Bに示すように、液晶セルを徐冷する
と、液晶層9は基板5a上の配向構造8aに従って配向
し、その配向状態は他の基板5c上の配向膜6c界面に
まで及ぶ。このようにして、配向した液晶層を有する液
晶セルを作成することができる。
As shown in FIG. 6B, when the liquid crystal cell is gradually cooled, the liquid crystal layer 9 is aligned according to the alignment structure 8a on the substrate 5a, and the alignment state extends to the interface of the alignment film 6c on another substrate 5c. In this way, a liquid crystal cell having an oriented liquid crystal layer can be prepared.

【0061】なお、本実施例において液晶をネマチック
相で注入すると、流動配向欠陥が生じやすい。上述のよ
うにアイソトロピック相で液晶を注入することが好まし
い。また、ネマチック液晶を注入する場合を説明した
が、カイラルネマチック液晶を注入することもできる。
適量のカイラル剤をネマチック液晶に添加し、液晶セル
内に注入後、徐冷すれば、カイラル剤の添加量に従って
液晶層はツイストを示し、ツイステドネマチック(T
N)またはスーパツイステドネマチック(STN)液晶
表示セルを作成することができる。
When liquid crystal is injected in the nematic phase in this embodiment, flow alignment defects are likely to occur. It is preferable to inject the liquid crystal in the isotropic phase as described above. Although the case of injecting the nematic liquid crystal has been described, the chiral nematic liquid crystal can be injected.
If an appropriate amount of chiral agent is added to the nematic liquid crystal, and the mixture is injected into the liquid crystal cell and then slowly cooled, the liquid crystal layer shows a twist according to the added amount of the chiral agent, and the twisted nematic (T
N) or super twisted nematic (STN) liquid crystal display cells can be made.

【0062】このとき、配向構造を有さない基板5c側
には液晶分子の方向を決める力が全くないため、液晶中
に添加するカイラル剤のピッチと基板間隔によって基板
5cの上の配向方向が決められる。たとえば、90°ツ
イストのTN−LCDを作成したい場合には、セル厚d
とカイラルピッチpの関係がd/p≒1/4になるよう
に調整する。
At this time, since there is no force for determining the direction of the liquid crystal molecules on the side of the substrate 5c having no alignment structure, the alignment direction on the substrate 5c depends on the pitch of the chiral agent added to the liquid crystal and the substrate spacing. Can be decided For example, to make a 90 ° twisted TN-LCD, the cell thickness d
And the chiral pitch p are adjusted so that d / p≈1 / 4.

【0063】カイラルネマチック液晶を用いる場合に
は、1次液晶と2次液晶とを同一材料とするほうが好ま
しい。配向構造を構成する液晶層の厚さがツイスト角度
に影響しなくなる。したがって、d/pのコントロール
が容易になる。ただし、1次液晶と2次液晶を必ずしも
同一材料で作る必要はない。
When the chiral nematic liquid crystal is used, it is preferable that the primary liquid crystal and the secondary liquid crystal are made of the same material. The thickness of the liquid crystal layer forming the alignment structure does not affect the twist angle. Therefore, the control of d / p becomes easy. However, the primary liquid crystal and the secondary liquid crystal do not necessarily have to be made of the same material.

【0064】転写に使用する母基板1には電極や能動素
子を形成する必要はない。母基板は一度製作しておけ
ば、配向構造を維持できる限り半永久的に使用できる。
1枚の母基板1のみを用いて、子基板5への転写が実質
的に何度でも可能である。したがって、フォトリソグラ
フィ等を用い、1画素内に複数の配向領域を有するよう
な母基板を作製しても、コスト的な負担は軽くできる。
It is not necessary to form electrodes or active elements on the mother substrate 1 used for transfer. Once the mother substrate is manufactured, it can be used semipermanently as long as the oriented structure can be maintained.
By using only one mother substrate 1, the transfer onto the daughter substrate 5 can be performed virtually any number of times. Therefore, even if a mother substrate having a plurality of alignment regions in one pixel is manufactured by using photolithography or the like, the cost burden can be reduced.

【0065】上記の実施例においては、転写工程におい
ては液晶材料7をアイソトロピック相で注入したが、ネ
マティック相(液晶相)で液晶材料7を注入することも
できる。その場合には流動パターンを除去するため熱処
理などによる再配向処理を行なうことが好ましい。
In the above embodiment, the liquid crystal material 7 is injected in the isotropic phase in the transfer process, but the liquid crystal material 7 may be injected in the nematic phase (liquid crystal phase). In that case, it is preferable to perform re-orientation treatment by heat treatment or the like in order to remove the flow pattern.

【0066】図7Aは、ラビング等により配向構造を形
成した配向膜2を有する母基板1と、配向膜6を有する
が配向構造を有さない子基板5とを対向して液晶セルを
構成し、カイラル剤を含まないネマチック液晶、もしく
は適量のカイラル剤を添加したネマチック液晶7をネマ
チック相で注入した状態を示す。
In FIG. 7A, a mother substrate 1 having an alignment film 2 having an alignment structure formed by rubbing or the like and a sub-substrate 5 having an alignment film 6 but having no alignment structure face each other to form a liquid crystal cell. Shows a state in which a nematic liquid crystal containing no chiral agent or a nematic liquid crystal 7 containing an appropriate amount of chiral agent is injected in a nematic phase.

【0067】ネマチック相の液晶を注入するため、注入
時の液晶の流れがそのまま流動配向Fとなって残る。こ
の流動配向は、配向膜6と液晶分子との間のメモリ効果
によって容易には消えない。
Since the liquid crystal of the nematic phase is injected, the flow of the liquid crystal at the time of injection remains in the flow orientation F as it is. This flow alignment is not easily erased by the memory effect between the alignment film 6 and the liquid crystal molecules.

【0068】しかしながら、配向膜6界面の液晶分子に
その結合力よりも高い熱等のエネルギを与えると、配向
膜6界面上の液晶分子がある程度自由に動けるようにな
る。なお、液晶分子に与えるエネルギは熱に限る必要は
なく、光、超音波等であっても液晶分子に充分な運動エ
ネルギを与えることのできるものであればよい。
However, when energy such as heat higher than the binding force is applied to the liquid crystal molecules on the interface of the alignment film 6, the liquid crystal molecules on the interface of the alignment film 6 can move to some extent. The energy applied to the liquid crystal molecules need not be limited to heat, and may be light, ultrasonic waves, or the like as long as it can give sufficient kinetic energy to the liquid crystal molecules.

【0069】前述の実施例で説明した材料(SE−51
0、SR−9152)の場合、160℃以上の加熱によ
り液晶分子を再配向することができる。図7Bは、この
ように液晶層を加熱し、液晶分子を再配向させた状態を
示す。この状態では流動配向は消滅している。
The materials described in the above examples (SE-51
0, SR-9152), the liquid crystal molecules can be realigned by heating at 160 ° C. or higher. FIG. 7B shows a state in which the liquid crystal layer is heated and the liquid crystal molecules are realigned in this way. In this state, the flow orientation disappears.

【0070】その後、液晶セルを徐冷すると、図2Bに
示すように液晶層7が基板1上の配向構造に従って配向
し、基板5上の界面にも液晶分子が配向した配向構造が
得られる。その後は前述の実施例同様の工程を行なえば
よい。
Then, when the liquid crystal cell is gradually cooled, an alignment structure in which the liquid crystal layer 7 is aligned according to the alignment structure on the substrate 1 and liquid crystal molecules are aligned at the interface on the substrate 5 is obtained as shown in FIG. 2B. After that, the same steps as those in the above-described embodiment may be performed.

【0071】なお、母基板から子基板を作成する際にネ
マチック相で注入し、その後メモリ効果を消滅させる場
合を説明したが、液晶表示装置を作成する際に同様の方
法を行なうこともできる。
Although the case of injecting in the nematic phase when forming the child substrate from the mother substrate and then extinguishing the memory effect has been described, the same method can be performed when forming the liquid crystal display device.

【0072】図8Aは、前述の実施例同様の方法によっ
て作成した配向構造8aを転写した基板5aと、全く配
向構造を有さない基板5cとを対向し、液晶セルを形成
し、その間にネマチック液晶またはカイラル剤を添加し
たネマチック液晶9をネマチック相で注入した状態を示
す。ネマチック相の液晶を注入したため、液晶セル内に
は流動配向が生じている。
In FIG. 8A, a substrate 5a on which an alignment structure 8a formed by the same method as that of the above-mentioned embodiment is transferred and a substrate 5c having no alignment structure are opposed to each other to form a liquid crystal cell, and a nematic is formed therebetween. A state in which a liquid crystal or a nematic liquid crystal 9 added with a chiral agent is injected in a nematic phase is shown. Since the liquid crystal of the nematic phase was injected, the flow alignment was generated in the liquid crystal cell.

【0073】液晶分子にエネルギを与え、メモリ効果を
消滅させれば流動配向を消滅させることができる。しか
し、メモリ効果により配向構造8aを形成した配向膜6
a上の配向状態も消えてしまう恐れがある。したがっ
て、基板5a上の転写した配向構造は乱されず、基板5
c上の流動配向を再配向させる条件で再配向処理を行な
う必要がある。
By applying energy to the liquid crystal molecules to eliminate the memory effect, the flow orientation can be eliminated. However, the alignment film 6 having the alignment structure 8a formed by the memory effect
The orientation state on a may also disappear. Therefore, the transferred alignment structure on the substrate 5a is not disturbed, and the substrate 5
It is necessary to perform the re-orientation treatment under the condition that the flow orientation on c is re-oriented.

【0074】具体的には、それぞれの基板上の配向膜を
変えることにより、この処理を行なうことができる。子
基板5aに上述の表面膜(SE−510)を用いた場
合、孫基板5cの表面膜6cとしては液晶材料(SR−
9152)に対し、160℃未満で再配向する膜を用い
ればよい。
Specifically, this treatment can be performed by changing the alignment film on each substrate. When the above-mentioned surface film (SE-510) is used for the child substrate 5a, the liquid crystal material (SR-
9152), a film that reorients at less than 160 ° C. may be used.

【0075】一般に、再配向温度は表面膜の表面エネル
ギ(極性)が小さくなると低くなる。子基板5aの表面
膜(SE−510)の表面エネルギ(52dyn/c
m)より表面エネルギが小さい表面膜、たとえば表面エ
ネルギ(48dyn/cm)のポリイミドSE−150
(日産化学製)を用いる。
In general, the reorientation temperature becomes lower as the surface energy (polarity) of the surface film becomes smaller. The surface energy (52 dyn / c) of the surface film (SE-510) of the child substrate 5a.
m), a surface film having a smaller surface energy, for example, polyimide SE-150 having a surface energy (48 dyn / cm).
(Manufactured by Nissan Kagaku) is used.

【0076】この表面膜材料は、液晶材料SR−915
2に対し、140℃以上で再配向する。したがって、2
次再配向処理の温度を140℃以上160℃未満にし、
その後徐冷すれば子基板5a上の配向を損なうことな
く、基板5c上の流動配向を消去することができる。
This surface film material is a liquid crystal material SR-915.
2 reorients at 140 ° C. or higher. Therefore, 2
The temperature of the next reorientation treatment is set to 140 ° C or higher and lower than 160 ° C,
Then, if it is slowly cooled, the flow orientation on the substrate 5c can be erased without impairing the orientation on the child substrate 5a.

【0077】さらに、ガラス転移点や極性の低い材料を
用いれば、2次再配向処理温度範囲はもっと広くでき
る。極性が23dyn/cmのポリイミドを用いた場
合、110℃以下で再配向できることが判った。
Further, if a material having a low glass transition point or low polarity is used, the temperature range of the secondary reorientation treatment can be widened. It was found that when a polyimide having a polarity of 23 dyn / cm was used, reorientation was possible at 110 ° C. or lower.

【0078】また、転写工程で注入した液晶材料7を母
基板1を子基板5から引き離した後もそのまま使用して
液晶セルを製作してもよい。さらには、子基板5を対向
させる方向や位置を変えたり、注入する液晶にカイラル
剤を添加したりすることによりTN型液晶セルやSTN
型液晶セルなど異なる種類の液晶表示素子が製造でき
る。
Also, the liquid crystal cell may be manufactured by using the liquid crystal material 7 injected in the transfer step as it is even after the mother substrate 1 is separated from the child substrate 5. Furthermore, by changing the direction and position of the sub substrates 5 facing each other or adding a chiral agent to the injected liquid crystal, a TN type liquid crystal cell or STN
Different kinds of liquid crystal display devices such as a liquid crystal cell can be manufactured.

【0079】基板上に、ポリイミド膜等の配向膜を形成
してラビングにより配向構造を形成する場合を説明した
が、配向構造は他の方法で形成してもよい。たとえば、
配向膜を設けずにラビングをしたり、光偏光記憶膜に選
択的に偏光を照射して配向構造を作ってもよい。配向構
造は、液晶分子を吸着させ易く、吸着させた状態を保つ
メモリ性が高い性質を有し、初期に異方性を持たないこ
とが望ましい。配向膜の形成は、ポリイミド、ポリアミ
ド、ポリビニールアルコール、SiO2 、ITO等の膜
をスピンコート、印刷、スパッタリング等で形成するこ
とができる。ただし、配向膜は必ずしも必要でない。た
とえば、ガラス基板表面をそのまま配向構造に用いるこ
ともできる。
The case where the alignment film such as a polyimide film is formed on the substrate and the alignment structure is formed by rubbing has been described, but the alignment structure may be formed by another method. For example,
The alignment structure may be formed by rubbing without providing the alignment film or selectively irradiating the optical polarization memory film with polarized light. It is desirable that the alignment structure has a property of easily adsorbing liquid crystal molecules, having a high memory property for keeping the adsorbed state, and having no anisotropy in the initial stage. The alignment film can be formed by spin-coating, printing, sputtering or the like a film of polyimide, polyamide, polyvinyl alcohol, SiO 2 , ITO or the like. However, the alignment film is not always necessary. For example, the glass substrate surface can be used as it is for the orientation structure.

【0080】上記実施例は複数分割配向の例であった
が、通常の基板全体の均一配向の場合にも適用できるこ
とは言うまでもないし、図1Dに示す4分割やそれ以外
の分割配向でも母基板1の配向パターンを変えることに
よって子基板に配向構造を転写することが可能である。
Although the above embodiment is an example of a plurality of divided orientations, it is needless to say that the present invention can be applied to the case of the ordinary uniform orientation of the entire substrate, and the mother substrate 1 can be divided into four divisions shown in FIG. 1D and other divided orientations. It is possible to transfer the alignment structure to the child substrate by changing the alignment pattern of the.

【0081】以上説明した実施例の構成、材料等はあく
までも例示であって、本発明はこれに限るものではな
く、種々の変更、改良、組み合わせ等が可能であること
は当業者にとって自明であろう。
It is obvious to those skilled in the art that the configurations, materials and the like of the embodiments described above are merely examples, and the present invention is not limited to these and various changes, improvements, combinations and the like are possible. Let's do it.

【0082】[0082]

【発明の効果】本発明によれば、基本的にセルを構成す
る基板にラビング処理のような配向処理を行なうことは
不要となるか、あるいはTFTやMIMなどの駆動能動
素子を形成した基板にラビングをすることが不要とな
る。従って、ラビング工程での静電気による素子破壊や
特性劣化の問題が低減する。
According to the present invention, it is basically unnecessary to perform an alignment treatment such as a rubbing treatment on a substrate which constitutes a cell, or a substrate on which a driving active element such as a TFT or MIM is formed is unnecessary. It becomes unnecessary to rub. Therefore, the problems of element destruction and characteristic deterioration due to static electricity in the rubbing process are reduced.

【0083】さらに、母基板は一旦作成しておけば、半
永久的に原版として用いることができる。分割配向の場
合には、母基板だけフトリソグラフィなどの工程で配向
処理をしておけば、転写する子基板は転写以外の配向処
理が不要であるので子基板を大量に製作する場合には量
産効果が向上し、コストを低減することができる。
Further, once the mother substrate is prepared, it can be semipermanently used as an original plate. In the case of split orientation, if only the mother substrate is subjected to alignment treatment by a process such as photolithography, the child substrate to be transferred does not require any alignment treatment other than transfer. The effect can be improved and the cost can be reduced.

【0084】また、2分割配向よりも視角特性が優れた
4分割配向も可能となる。
It is also possible to use a four-divided orientation which has better viewing angle characteristics than the two-divided orientation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による2分割配向の母基板を製
作する工程を説明するための断面図である。
FIG. 1 is a cross-sectional view illustrating a process of manufacturing a mother substrate having a two-divided orientation according to an embodiment of the present invention.

【図2】本発明の実施例による2分割配向の母基板から
子基板への配向状態の転写工程を説明するための液晶セ
ルの断面図である。
FIG. 2 is a cross-sectional view of a liquid crystal cell for explaining a process of transferring an alignment state from a mother substrate having a two-division alignment to a child substrate according to an embodiment of the present invention.

【図3】本発明の実施例による転写された子基板の配向
構造を概略的に示す断面図である。
FIG. 3 is a sectional view schematically showing an alignment structure of a transferred child substrate according to an embodiment of the present invention.

【図4】本発明の実施例による液晶表示セルの組立工程
を説明する断面図である。
FIG. 4 is a sectional view illustrating an assembly process of a liquid crystal display cell according to an embodiment of the present invention.

【図5】本発明の実施例による液晶表示セルの組立工程
を説明する断面図である。
FIG. 5 is a cross-sectional view illustrating a process of assembling a liquid crystal display cell according to an embodiment of the present invention.

【図6】本発明の実施例による液晶表示セルの組立工程
を説明する断面図である。
FIG. 6 is a cross-sectional view illustrating an assembly process of a liquid crystal display cell according to an embodiment of the present invention.

【図7】本発明の実施例による液晶表示セルの組立工程
を説明する断面図である。
FIG. 7 is a cross-sectional view illustrating an assembly process of a liquid crystal display cell according to an embodiment of the present invention.

【図8】本発明の実施例による液晶表示セルの組立工程
を説明する断面図である。
FIG. 8 is a cross-sectional view illustrating a process of assembling a liquid crystal display cell according to an embodiment of the present invention.

【図9】従来の技術によるラビング処理の工程を示す斜
視図である。
FIG. 9 is a perspective view showing a rubbing process according to a conventional technique.

【図10】従来の技術により作成された液晶表示素子の
断面図である。
FIG. 10 is a cross-sectional view of a liquid crystal display element manufactured by a conventional technique.

【図11】従来の技術により作成された2分割配向の液
晶表示素子の断面図である。
FIG. 11 is a cross-sectional view of a liquid crystal display device having a two-divided orientation prepared by a conventional technique.

【図12】従来の技術により作成された2分割配向の液
晶表示素子の断面図である。
FIG. 12 is a cross-sectional view of a liquid crystal display device having a two-divided orientation prepared by a conventional technique.

【符号の説明】[Explanation of symbols]

1 母基板 2 配向膜 3,3’ フォトレジスト 4 ラビングローラ 5 子基板 6 配向膜 7 液晶材料 8 液晶分子 9 液晶材料 1 Mother Substrate 2 Alignment Film 3,3 'Photoresist 4 Rubbing Roller 5 Substrate 6 Alignment Film 7 Liquid Crystal Material 8 Liquid Crystal Molecules 9 Liquid Crystal Material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 潔 神奈川県横浜市青葉区荏田西1−3−1 スタンレー電気株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Ando 1-3-1 Eda Nishi, Aoba-ku, Yokohama-shi, Kanagawa Stanley Electric Co., Ltd.

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 配向処理を施した配向構造を表面に有す
る母基板を用意する工程と、 配向処理を施していない子基板と前記母基板との間に1
次液晶材料を挟み、前記母基板の配向状態に対応した配
向状態を前記子基板上に転写する転写工程とを有する液
晶表示素子の製造方法。
1. A step of preparing a mother substrate having an alignment structure subjected to an alignment treatment on its surface, and 1 between a mother substrate not subjected to the alignment treatment and the mother substrate.
And a transfer step of transferring an alignment state corresponding to the alignment state of the mother substrate onto the daughter substrate with a next liquid crystal material sandwiched therebetween.
【請求項2】 さらに、前記母基板と前記子基板とを分
離する分離工程と、 一対の基板であって、少なくとも一方が前記配向状態が
転写された前記子基板である一対の基板を対向配置して
該一対の基板間に2次液晶材料を注入してセルを作製す
る工程とを有する請求項1記載の液晶表示素子の製造方
法。
2. A separation step of separating the mother substrate and the sub-substrate, and a pair of substrates, at least one of which is the sub-substrate to which the orientation state has been transferred, is arranged to face each other. And a step of injecting a secondary liquid crystal material between the pair of substrates to form a cell, the method of manufacturing a liquid crystal display element according to claim 1.
【請求項3】 前記転写工程において、前記1次液晶材
料をアイソトロピック相で母基板と子基板との間に配置
し、その後に前記1次液晶材料を液晶相に相転移させて
配向させる請求項1記載の液晶表示素子の製造方法。
3. In the transferring step, the primary liquid crystal material is arranged between a mother substrate and a child substrate in an isotropic phase, and then the primary liquid crystal material is phase-transitioned into a liquid crystal phase and aligned. Item 2. A method for manufacturing a liquid crystal display element according to item 1.
【請求項4】 さらに、前記1次液晶材料を予め加熱し
てアイソトロピック相とする工程を含み、その後前記転
写工程において前記アイソトロピック相の1次液晶材料
を対向配置した母基板と子基板間に注入し、相転移温度
以下に徐冷して配向する請求項3記載の液晶表示素子の
製造方法。
4. A mother substrate and a sub-substrate, which further include a step of preheating the primary liquid crystal material to bring it into an isotropic phase, and thereafter, in the transferring step, the primary liquid crystal material of the isotropic phase is arranged to face each other. 4. The method for producing a liquid crystal display device according to claim 3, wherein the liquid crystal display device is injected into the liquid crystal and slowly cooled to a temperature not higher than the phase transition temperature for alignment.
【請求項5】 前記転写工程において、前記1次液晶材
料はカイラル剤を含まない請求項1記載の液晶表示素子
の製造方法。
5. The method of manufacturing a liquid crystal display device according to claim 1, wherein the primary liquid crystal material does not contain a chiral agent in the transferring step.
【請求項6】 前記セルを作製する工程において、前記
2次液晶材料はカイラル剤を含む請求項2記載の液晶表
示素子の製造方法。
6. The method of manufacturing a liquid crystal display device according to claim 2, wherein the secondary liquid crystal material contains a chiral agent in the step of manufacturing the cell.
【請求項7】 前記母基板の配向構造は、実質的に半永
久的に保存されるように配向処理が施されている請求項
1記載の液晶表示素子の製造方法。
7. The method of manufacturing a liquid crystal display device according to claim 1, wherein the alignment structure of the mother substrate is subjected to an alignment treatment so as to be substantially semipermanently preserved.
【請求項8】 前記母基板の配向構造は、複数の異なる
配向方向の領域を有する請求項7記載の液晶表示素子の
製造方法。
8. The method of manufacturing a liquid crystal display device according to claim 7, wherein the alignment structure of the mother substrate has a plurality of regions having different alignment directions.
【請求項9】 前記母基板の配向処理はラビング法によ
り行われる請求項8記載の液晶表示素子の製造方法。
9. The method of manufacturing a liquid crystal display device according to claim 8, wherein the alignment treatment of the mother substrate is performed by a rubbing method.
【請求項10】 前記転写工程で注入する前記1次液晶
材料と、前記セルを作製する工程で注入する2次液晶材
料とは同じ材料を用いる請求項2記載の液晶表示素子の
製造方法。
10. The method of manufacturing a liquid crystal display element according to claim 2, wherein the primary liquid crystal material injected in the transfer step and the secondary liquid crystal material injected in the step of manufacturing the cell are the same material.
【請求項11】 前記分離工程は、液晶をアイソトロピ
ック相に保って行なう請求項2記載の液晶表示素子の製
造方法。
11. The method of manufacturing a liquid crystal display device according to claim 2, wherein the separating step is performed while keeping the liquid crystal in an isotropic phase.
【請求項12】 前記転写工程において、前記1次液晶
材料を液晶相にて対向配置した母基板と子基板との間に
注入し、注入後に液晶材料にエネルギを与えて基板と液
晶分子との間のメモリ効果を消滅させ、その後液晶相に
相転移させて配向させる請求項1記載の液晶表示素子の
製造方法。
12. In the transferring step, the primary liquid crystal material is injected between a mother substrate and a child substrate which are arranged to face each other in a liquid crystal phase, and energy is applied to the liquid crystal material after the injection to form a substrate and liquid crystal molecules. The method for producing a liquid crystal display device according to claim 1, wherein the memory effect between the two is eliminated, and then a phase transition to a liquid crystal phase is performed for orientation.
【請求項13】 前記エネルギが熱である請求項12記
載の液晶表示素子の製造方法。
13. The method of manufacturing a liquid crystal display element according to claim 12, wherein the energy is heat.
【請求項14】 前記転写工程において、前記1次液晶
材料はカイラル剤を含まない請求項11記載の液晶表示
素子の製造方法。
14. The method of manufacturing a liquid crystal display device according to claim 11, wherein the primary liquid crystal material does not include a chiral agent in the transfer step.
【請求項15】 前記セルを作製する工程において、前
記2次液晶材料はカイラル剤を含む請求項11記載の液
晶表示素子の製造方法。
15. The method of manufacturing a liquid crystal display device according to claim 11, wherein the secondary liquid crystal material contains a chiral agent in the step of manufacturing the cell.
【請求項16】 前記母基板の配向構造は、実質的に半
永久的に保存されるように配向処理が施されている請求
項11記載の液晶表示素子の製造方法。
16. The method of manufacturing a liquid crystal display device according to claim 11, wherein the alignment structure of the mother substrate is subjected to an alignment treatment so as to be substantially semipermanently preserved.
【請求項17】 前記母基板の配向処理はラビング法に
より行われることを特徴とする請求項11記載の液晶表
示素子の製造方法。
17. The method of manufacturing a liquid crystal display device according to claim 11, wherein the alignment treatment of the mother substrate is performed by a rubbing method.
【請求項18】 前記セルを作製する工程において、前
記一対の基板が配向状態が転写された前記子基板と配向
処理を施していない他の基板である請求項2記載の液晶
表示素子の製造方法。
18. The method of manufacturing a liquid crystal display element according to claim 2, wherein in the step of manufacturing the cell, the pair of substrates is the sub-substrate to which the alignment state has been transferred and another substrate that has not been subjected to alignment treatment. .
【請求項19】 前記他の基板は、前記子基板の配向構
造に較べ、より低いエネルギで界面における液晶分子の
自由運動を可能とする表面を有する請求項18記載の液
晶表示素子の製造方法。
19. The method of manufacturing a liquid crystal display device according to claim 18, wherein the other substrate has a surface that allows free movement of liquid crystal molecules at an interface with lower energy as compared with the alignment structure of the child substrate.
【請求項20】 前記セルを作製する工程は、前記2次
液晶材料を液晶相で一対の基板間に注入し、注入後に子
基板のメモリ効果を失わずかつ前記他の基板上のメモリ
効果を消滅させるエネルギを液晶に与え、その後徐冷す
ることを含む請求項19記載の液晶表示素子の製造方
法。
20. In the step of manufacturing the cell, the secondary liquid crystal material is injected in a liquid crystal phase between a pair of substrates, the memory effect of the sub-substrate is not lost after the injection, and the memory effect on the other substrate is maintained. 20. The method for manufacturing a liquid crystal display device according to claim 19, further comprising applying energy to extinguish the liquid crystal and then gradually cooling the liquid crystal.
【請求項21】 前記母基板は、電極を有さない請求項
1記載の液晶表示素子の製造方法。
21. The method of manufacturing a liquid crystal display device according to claim 1, wherein the mother substrate has no electrodes.
【請求項22】 前記母基板は、ガラス基板上に直接配
向膜を形成したものである請求項21記載の液晶表示素
子の製造方法。
22. The method of manufacturing a liquid crystal display device according to claim 21, wherein the mother substrate is a glass substrate on which an alignment film is directly formed.
【請求項23】 前記配向膜は、ポリイミド、ポリアミ
ドまたはポリペプチドアルコールの膜であり、配向処理
は配向膜をラビングすることである請求項22記載の液
晶表示素子の製造方法。
23. The method of manufacturing a liquid crystal display device according to claim 22, wherein the alignment film is a film of polyimide, polyamide or polypeptide alcohol, and the alignment treatment is rubbing of the alignment film.
JP1952495A 1994-02-17 1995-02-07 Manufacturing method of liquid crystal display element Expired - Lifetime JP2773794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1952495A JP2773794B2 (en) 1994-02-17 1995-02-07 Manufacturing method of liquid crystal display element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-20620 1994-02-17
JP2062094 1994-02-17
JP1952495A JP2773794B2 (en) 1994-02-17 1995-02-07 Manufacturing method of liquid crystal display element

Publications (2)

Publication Number Publication Date
JPH07281187A true JPH07281187A (en) 1995-10-27
JP2773794B2 JP2773794B2 (en) 1998-07-09

Family

ID=26356361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1952495A Expired - Lifetime JP2773794B2 (en) 1994-02-17 1995-02-07 Manufacturing method of liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2773794B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474131B1 (en) * 1995-10-19 2005-06-08 롤리크 아게 Optical member and manufacturing method thereof
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
JP2010181515A (en) * 2009-02-04 2010-08-19 National Institute Of Advanced Industrial Science & Technology Rewritable liquid crystal aligning surface and method for evaluating alignment memory
WO2014203565A1 (en) * 2013-06-20 2014-12-24 シャープ株式会社 Liquid crystal display device and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3472663B1 (en) * 2016-06-17 2021-01-20 Boe Technology Group Co. Ltd. Rubbing roller and rubbing method utilizing the same for rubbing alignment layer of liquid crystal display substrate, and fabricating method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474131B1 (en) * 1995-10-19 2005-06-08 롤리크 아게 Optical member and manufacturing method thereof
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
JP2010181515A (en) * 2009-02-04 2010-08-19 National Institute Of Advanced Industrial Science & Technology Rewritable liquid crystal aligning surface and method for evaluating alignment memory
WO2014203565A1 (en) * 2013-06-20 2014-12-24 シャープ株式会社 Liquid crystal display device and method for manufacturing same
US9933662B2 (en) 2013-06-20 2018-04-03 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing same

Also Published As

Publication number Publication date
JP2773794B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
JP2572537B2 (en) Liquid crystal display device and manufacturing method thereof
JP3850002B2 (en) Liquid crystal electro-optical device
KR100327611B1 (en) LCD and its manufacturing method
JP4614200B2 (en) Normally black vertical alignment type liquid crystal display device and manufacturing method thereof
US5712696A (en) Manufacture of LCD device by transferring the orientation state from a parent substrate to a child substrate
JPH0961825A (en) Liquid crystal display device
JP2773794B2 (en) Manufacturing method of liquid crystal display element
JPH06194655A (en) Liquid crystal display element and its production
JPH0961822A (en) Liquid crystal display device and its production
JP2565061B2 (en) Liquid crystal display
JP2780942B2 (en) Liquid crystal display device and method of manufacturing the same
JP2638517B2 (en) Liquid crystal display
JP4656526B2 (en) Liquid crystal electro-optical device
JPH08271921A (en) Liquid crystal device and its production
JP2002090751A (en) Liquid crystal display device and method for manufacturing the same
JP3059630B2 (en) Liquid crystal display panel and method of manufacturing the same
JP2002229033A (en) Liquid crystal display
JP3254974B2 (en) Liquid crystal display device
JPH0682787A (en) Liquid crystal display element
JPH0368924A (en) Liquid crystal display device
JP3290731B2 (en) Liquid crystal display device
JPH0943607A (en) Production of liquid crystal display element
KR100477132B1 (en) Method for manufacturing liquid crystal display of using feroelectric liquid crystal material
JP2000075308A (en) Liquid crystal display device and preparation thereof
JPH06214235A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980317