JPS58176623A - Electrooptic device - Google Patents

Electrooptic device

Info

Publication number
JPS58176623A
JPS58176623A JP5815882A JP5815882A JPS58176623A JP S58176623 A JPS58176623 A JP S58176623A JP 5815882 A JP5815882 A JP 5815882A JP 5815882 A JP5815882 A JP 5815882A JP S58176623 A JPS58176623 A JP S58176623A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
crystal layer
energizing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5815882A
Other languages
Japanese (ja)
Inventor
Fumio Nakano
文雄 中野
Masato Isogai
正人 磯貝
Kishiro Iwasaki
岩崎 紀四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5815882A priority Critical patent/JPS58176623A/en
Publication of JPS58176623A publication Critical patent/JPS58176623A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To control a background part and to speed up response, by using a ferroelectric smectic liquid crystal having a liquid-crystal layer whose molecular axes are arrayed in a specific direction nearly parallel to a substrate surface, and providing an electrode for energizing the whole liquid-crystal layer and an electrode for energizing the layer partially. CONSTITUTION:Smectic liquid crystal is applied with orienting process over the surface of the substrate to obtain a single domain. Transparent substrates 1 and 1' are provided with entire-surface electrode films 2 and 2' for energizing the whole liquid crystal and patterned partial electrode films 2 and 2' for energizing only specific parts; and insulating films 5 and 5' are sandwiched between the both. A surface contacting the liquid crystal is applied with orienting process. A polarizer is used on an external-surface side of the substrate when necessary. A DC voltage is applied to the entire-surface electrode to form a uniform background. Then, a DC voltage having the opposite polarity is applied to the partial electrode according to a display pattern to obtain different display from the background. The polarity of the applied voltage is selected to obtain positive or negative display.

Description

【発明の詳細な説明】 本発明は、強誘電性液晶を用いた電気光学装置に係り、
時に表示装置として好適な電気光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electro-optical device using ferroelectric liquid crystal,
The present invention relates to an electro-optical device that is sometimes suitable as a display device.

従来よシ、ネマティック液晶、コレステリック液晶等の
液晶材料が、表示装置としての応用を主とする電気光学
装置に用いられている。かかる表示装置として応用され
る電気光学装置は、第1図(1)に示すように、所望の
表示をしようとするパターンに応じた電極パターン2.
2′を形成した基板1.1’〜〕に液晶層3を挾持し、
第1図(2)に示すように2枚の基板の電極パターンが
重なった部分に電界を加えることによって、背景部分と
異なる状態を作り、パターンを表示するものである。
Conventionally, liquid crystal materials such as nematic liquid crystals and cholesteric liquid crystals have been used in electro-optical devices mainly used as display devices. As shown in FIG. 1(1), an electro-optical device used as such a display device has an electrode pattern 2. corresponding to a pattern for desired display.
The liquid crystal layer 3 is sandwiched between the substrates 1.1' and 2' formed thereon;
As shown in FIG. 1 (2), by applying an electric field to the overlapping part of the electrode patterns of the two substrates, a state different from the background part is created and the pattern is displayed.

しかし、かかる従来の電気光学装置においては、背景部
分に電界を印加することができないため、背景部分の状
態を制御することができないと共に、電気信号の切換え
に対する光学的応答速度が、発光ダイオード、エレクト
ロルミネセンス等に比較して遅い、という問題点がある
However, in such conventional electro-optical devices, it is not possible to apply an electric field to the background portion, so the state of the background portion cannot be controlled, and the optical response speed to switching of electrical signals is The problem is that it is slow compared to luminescence and the like.

また、スメクテイツク液晶も、熱エネルギによって書込
み、消去を行う熱光学型ディバイスとしての応用が提案
されているが、光学的応答速度はmiJ述の電気光学装
置と同程度であシ、装置が高価になる、という問題があ
る。
Smectic liquid crystals have also been proposed for application as thermo-optical devices that write and erase data using thermal energy, but the optical response speed is comparable to the electro-optical device described in miJ, and the device is expensive. There is a problem.

本発明は上記問題点を解消すべく成されたもので、電気
信号に対して速やかに応答すると共に、背景部分の状態
を制御し得る機能を有する電気光学装置を提供すること
を目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an electro-optical device that quickly responds to an electric signal and has a function of controlling the state of a background portion.

上記目的を達成するために本発明の構成は、透明電極を
備えかつ透明電極が対向するように配置された2枚の透
明基板間に液晶層を挾持し、この液晶層に電界を印加す
る手段を設けた電気光学装置において、前記液晶層を、
分子軸が前記基板面に略平行でかつ略一定方向に配列さ
れた強誘電性を示すスメクテイツク液晶を含む組成物で
構成すると共に、前記透明電極を、液晶層全体を励起す
る電極膜と液晶層の所定部分のみ励起する電極膜とから
構成したものである。この電極膜間゛には絶縁膜が挾持
される。
In order to achieve the above object, the present invention has a means for sandwiching a liquid crystal layer between two transparent substrates having transparent electrodes and disposed so that the transparent electrodes face each other, and applying an electric field to the liquid crystal layer. In the electro-optical device provided with the liquid crystal layer,
The transparent electrode is composed of a composition containing a smectic liquid crystal exhibiting ferroelectricity whose molecular axes are substantially parallel to the substrate surface and aligned in a substantially constant direction, and the transparent electrode includes an electrode film that excites the entire liquid crystal layer and a liquid crystal layer. It consists of an electrode film that excites only a predetermined portion of the electrode. An insulating film is sandwiched between the electrode films.

本発明に使用される強誘電性を示すスメクテイツク液晶
に龜、カイラルスメクテイツクC相およびカイラルスメ
クテイツクH相がある。このスメクテイツク液晶は、ス
メクテイック液晶に共通した層状構造を有しているが、
層毎に液晶分子軸の方向が変化しておシ、あたかも層に
垂直な方向に螺旋軸を有する螺旋を描く様な分子配列を
示しているとされており、この螺旋構造が強誘電性を示
すと考えられている。強誘′畦性を示す材料は、直流電
界に対して強誘電体としての応答を示し、電界の向きに
応じて自発分極の向きを反転させて再配列することは、
強誘電性結晶の例によって知られている通りである。ス
メクティック液晶の場合は、上述した螺旋軸がとけて、
液晶分子長軸が電界方向に対して垂直に、かつ、励起さ
れる前の螺旋軸に対して材料固有の角(以下傾き角θと
する)に相当する角で再配列する。なお、傾き角θは、
電界の向きによって方向が逆転する。本発明に使用され
るスメクティパツク液晶は、主として下記に示すような
シッフ塩基型液晶である。
Smectic liquid crystals exhibiting ferroelectricity used in the present invention include a chiral smectic C phase and a chiral smectic H phase. This smectic liquid crystal has a layered structure common to smectic liquid crystals, but
It is said that the direction of the liquid crystal molecular axes changes in each layer, and the molecules are arranged as if they were drawn in a spiral with the helical axis perpendicular to the layer, and this helical structure gives rise to ferroelectricity. It is thought that it shows. A material exhibiting ferroelectric ridges responds to a direct current electric field as a ferroelectric material, and reversing the direction of spontaneous polarization and rearranging it according to the direction of the electric field is
This is well known from the example of ferroelectric crystals. In the case of smectic liquid crystal, the above-mentioned helical axis dissolves,
The long axes of the liquid crystal molecules are rearranged perpendicular to the direction of the electric field and at an angle corresponding to the material-specific angle (hereinafter referred to as tilt angle θ) with respect to the helical axis before being excited. Note that the tilt angle θ is
The direction is reversed depending on the direction of the electric field. The smectipack liquid crystal used in the present invention is mainly a Schiff base type liquid crystal as shown below.

p−hexyloxybenzylidene−p’−
amino−2−methylbutyl−cinna
mate(HOBAMBC) p−oc ty 1oxybenzyl 1dene−
p’−am 1no1−2−methylbutyl−
cinnamate(COBAMBC) p−decy 1oxybenzy11dene−p’
−amino−2−methylbutyl−cinn
amateCDOBAMBC) p−dodecy 1oxybenzy 11dene
−p’−amino−2−methylbutyl−c
innamate(DDOBAMBC) p−tetridecyloxybenxy目dene
−p’−ami no−2−methylbutyl−
clnnamate(TDOBAMBC) 本発明のスメクティック液晶には、液晶の螺旋軸方向を
一定方向に揃える、いわゆるシングルドメイン化が加え
られる。このようにすることによって、強誘電的再配列
が大きな光学的変化を生み出し得る。これによって、変
調度の大きな装置が実現され、多くの分野に適用し得る
。上記のように螺旋軸方向をある面積に亘って一定方向
に揃えるシングルドメイン化するには、液晶が接する基
板表面に配向処理を施すことによって達成できる。
p-hexyloxybenzylidene-p'-
amino-2-methylbutyl-cinna
mate (HOBAMBC) p-octy 1oxybenzyl 1dene-
p'-am 1no1-2-methylbutyl-
cinnamate (COBAMBC) p-decy 1oxybenzy11dene-p'
-amino-2-methylbutyl-cinn
amateCDOBAMBC) p-dodecy 1oxybenzy 11dene
-p'-amino-2-methylbutyl-c
innate (DDOBAMBC) p-tetridecyloxybenxy order dene
-p'-ami no-2-methylbutyl-
clnnnamate (TDOBAMBC) The smectic liquid crystal of the present invention is subjected to so-called single domain formation in which the helical axis direction of the liquid crystal is aligned in a certain direction. By doing so, ferroelectric rearrangement can produce large optical changes. As a result, a device with a large modulation degree can be realized and can be applied to many fields. A single domain in which the helical axis direction is aligned in a constant direction over a certain area as described above can be achieved by performing alignment treatment on the surface of the substrate in contact with the liquid crystal.

本元明者等の実験によれば、従来のネマチック液晶、コ
レステリック液晶の配向制御に用いられた方法のいくつ
かは、本発明の分子軸を基板面に平行に配列させるシン
グルドメイン化に通用し得ることが確認されている。本
発明においては、基板表面をやわらかくラビング処理し
、ラビング方向が平行になるように2枚の基板を組合せ
ることによって、液晶分子を基板に平行に配列させた。
According to experiments by Akira Motomoto et al., some of the methods used to control the alignment of conventional nematic liquid crystals and cholesteric liquid crystals are applicable to the single domain structure of the present invention, in which the molecular axes are aligned parallel to the substrate surface. It is confirmed that you will get it. In the present invention, liquid crystal molecules are arranged parallel to the substrates by subjecting the surfaces of the substrates to a soft rubbing treatment and combining two substrates so that the rubbing directions are parallel to each other.

この場合、予め基板表面にポリイミド系の薄膜を設けて
おくことにより、配向の均一度を高めることができた。
In this case, by providing a polyimide thin film on the substrate surface in advance, the uniformity of orientation could be improved.

上記に例示した液晶材料は、いずれも液晶分子長軸に垂
直な方向に自発分極を持っているため、電界が作用した
ときの液晶分子長軸の向きは電界方向に対して圭直にな
る。従って、螺旋軸全基板に平行に配列させ、液晶を横
動る様な電界を与えることによって起る成品分子の変位
は、率に分子軸の方向を同一平面内で変化させるだけで
良いため、低′に圧で動作し、かつ高速で応答し得る。
The liquid crystal materials exemplified above all have spontaneous polarization in a direction perpendicular to the long axis of the liquid crystal molecules, so when an electric field is applied, the direction of the long axis of the liquid crystal molecules is perpendicular to the direction of the electric field. Therefore, the displacement of the product molecules by arranging the helical axes parallel to all the substrates and applying an electric field that moves the liquid crystal laterally only requires changing the direction of the molecular axes within the same plane. It can operate at low pressure and respond quickly.

上記の液晶は、必歎な場合には二色性色素と混合して用
いられる。このような二色性色素としては、従来ネマテ
ィック液晶、コレステリック液晶でゲストホスト効果と
総称される電気光学効果に用いられてきた素材が用いら
れ、例えば、アントラキノ/誘導体、アゾ誘導体、ジア
ゾ誘導体、メロシアニン誘導体、テトラジン誘導体等が
あシ、1種または2種以上混合して用いられる。
The above liquid crystal is used in combination with a dichroic dye if necessary. As such dichroic dyes, materials that have conventionally been used in nematic liquid crystals and cholesteric liquid crystals for the electro-optic effect collectively called the guest-host effect are used, such as anthraquino/derivatives, azo derivatives, diazo derivatives, and merocyanine. Derivatives, tetrazine derivatives, etc. may be used alone or in combination of two or more.

以下図面を参照して本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図に本発明の一実施例を示す。なお、第2図におい
て第1図と対応する部分には同一符号を付す。
FIG. 2 shows an embodiment of the present invention. In FIG. 2, parts corresponding to those in FIG. 1 are given the same reference numerals.

透明基板1,1′の各々には、液晶全体を励起するため
の全面電極膜4.4′および表示パターンに応じてパタ
ーン化され液晶の所定部分のみ励起するための部分電極
膜2,2′が設けられており、全面11iL憔膜と部分
電極膜との間には絶縁膜5゜5′が挾持されている。絶
縁膜および電極膜の液晶に接する面ニ、ラビング処理な
どの平行配向処理が施されるか、または配向制御膜が設
けられる。
Each of the transparent substrates 1, 1' includes a full-surface electrode film 4, 4' for exciting the entire liquid crystal, and a partial electrode film 2, 2' patterned according to the display pattern for exciting only a predetermined portion of the liquid crystal. An insulating film 5.degree. 5' is sandwiched between the entire surface 11iL thin film and the partial electrode film. A parallel alignment process such as a rubbing process is performed on the surfaces of the insulating film and the electrode film that are in contact with the liquid crystal, or an alignment control film is provided.

上記のような液晶セルは、次のようにして製造した。ま
ず、ガラス製の透明基板上に、酸化インジウム、酸化す
ず(ITO)透明電極膜等を設け、ポリイミド系高分子
膜であるPIQ(ポリイミドイソインドロキナゾリンジ
オン)膜(日立化成社製、商品名)をITO透明′畦極
が設けられた透明基板上に設け、一定方向にラビングし
た。形成条件は、P I Q 3.5%NMP(N−メ
チル−2−ピロリドン)溶液を約350Or、p、mで
回転するスピンナで回転塗布し、250Cで1時間焼成
した。
The liquid crystal cell as described above was manufactured as follows. First, an indium oxide, tin oxide (ITO) transparent electrode film, etc. is provided on a glass transparent substrate. ) was placed on a transparent substrate provided with ITO transparent ridge electrodes, and rubbed in a certain direction. The formation conditions were as follows: A 3.5% P I Q NMP (N-methyl-2-pyrrolidone) solution was applied by rotation using a spinner rotating at about 350 Or, p, m, and baked at 250 C for 1 hour.

このときの膜厚は、800λ程度である。The film thickness at this time is about 800λ.

続いて、2枚の基板のラビング方向が平行になるように
すると共に、基板間に6μmのガラスファイバをスペー
サとして挾持して液晶セルを組立て、液晶を輿望封入し
た。液晶材料としては、上記のDOBAMBCを用いた
。封入した後、等方性液体温度まで加熱し、強酵電性を
示すカイラルスメクテイツクC相温度まで徐冷(o、s
C/m、程度)して螺旋軸が揃った索子を侍友。
Subsequently, the rubbing directions of the two substrates were made parallel to each other, a 6 μm glass fiber was sandwiched between the substrates as a spacer, a liquid crystal cell was assembled, and the liquid crystal was transparently sealed. The above-mentioned DOBAMBC was used as the liquid crystal material. After encapsulation, it was heated to the isotropic liquid temperature and gradually cooled (o, s
C/m, degree) and the helical axis is aligned.

なお、基板の外面側には、心安に応じて偏光索子が1枚
あるいは2枚用いられる。
Note that one or two polarizing cables may be used on the outer surface of the substrate depending on safety.

本実施例によってパターンを表示させるには次のように
行なわれる。まず、全面電極膜に一定極性の直流電圧(
例えば、正方向とする)を印加し、均一な背景を作る。
Displaying a pattern according to this embodiment is performed as follows. First, a DC voltage of constant polarity (
(for example, in the positive direction) to create a uniform background.

この状態は永続的に記憶される場合もあるが、適当な時
間間隔で励起を続ける心安が生じる場合もめる。次に、
表示に用いられるパターンに応じ°たパターンを形成さ
せた部分電極膜に、入力信号に従って上述と反対極性(
例えば、負方向)の直流電圧を印加す°ることによって
、背景と異なる状態を実現させることによってパターン
が表示される。例えば、背景を透過状態にすれば第3図
のような表示がなされ、背景を光吸収状態にすれば第4
図のような表示がなされる。
This state may be permanently memorized, but there are also cases where it is safe to continue excitation at appropriate time intervals. next,
The polarity opposite to that described above (
For example, by applying a direct current voltage (for example, in the negative direction), a pattern is displayed by realizing a state different from the background. For example, if the background is set to a transparent state, a display like the one shown in Figure 3 will be created, and if the background is set to a light-absorbing state, the display shown in Figure 4 will be displayed.
A display like the one shown is displayed.

上6じのように本実施例によれば、印加する電圧の極性
を選別することによって、第3図、第4図のいずれのタ
イプの表示も可能になる、という効果が得られる。
According to this embodiment, as shown in Figure 6 above, by selecting the polarity of the applied voltage, it is possible to display either type of display as shown in FIGS. 3 and 4.

以上説明したように本発明によれは、背景を制御できる
と共に、応答速度の速い電気光学装置が侍られる、とい
う効果がある。
As described above, the present invention has the advantage that the background can be controlled and an electro-optical device with a fast response speed can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1) 、 (2)に、従来の電気光学−装置を
示す断面図、第2図は、本発明の一実施例を示す断面図
、第3図および第4図は、上記実施例によるパターン表
示例を示す線図である。 1.1′・・・透明電極、2.2′・・・部分電極膜、
3・・・液晶層、4.4′・・・全体電極膜、5,5′
絶縁v5)図 哨4図
FIGS. 1 (1) and (2) are cross-sectional views showing a conventional electro-optical device, FIG. 2 is a cross-sectional view showing an embodiment of the present invention, and FIGS. FIG. 4 is a diagram illustrating an example of a pattern display according to an example. 1.1'...transparent electrode, 2.2'...partial electrode film,
3...Liquid crystal layer, 4.4'... Whole electrode film, 5,5'
Insulation v5) sentinel 4

Claims (1)

【特許請求の範囲】 1、透明電極を備えかつ該透明電極が対向するように配
置された2枚の透明基板と、前記透明電極間に挾持され
た液晶層と、前記透明電極に接続されて前記液晶層に電
界を印加する手段とを含む電気光学装置において、前記
液晶層は分子軸が前記基板に略平行でかつ略一定方向に
配列された強誘電性を示すスメクテイツク液晶を含む組
成物であシ、前記透明電極は前記液晶層全体を励起する
電極膜と前記液晶層の所定部分のみを励起する電極膜と
から構成されていることを特徴とする電気光膜 の所定部分のみ励起する電極層との間に絶縁膜が挾持さ
れている特許請求の範囲第1項記載の電気光学装置。
[Claims] 1. Two transparent substrates provided with transparent electrodes and arranged so that the transparent electrodes face each other, a liquid crystal layer sandwiched between the transparent electrodes, and a liquid crystal layer connected to the transparent electrodes. and a means for applying an electric field to the liquid crystal layer, wherein the liquid crystal layer is made of a composition containing a smectic liquid crystal exhibiting ferroelectricity whose molecular axes are substantially parallel to the substrate and aligned in a substantially constant direction. A. An electrode that excites only a predetermined portion of the electro-optical film, wherein the transparent electrode is composed of an electrode film that excites the entire liquid crystal layer and an electrode film that excites only a predetermined portion of the liquid crystal layer. 2. The electro-optical device according to claim 1, wherein an insulating film is sandwiched between the layers.
JP5815882A 1982-04-09 1982-04-09 Electrooptic device Pending JPS58176623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5815882A JPS58176623A (en) 1982-04-09 1982-04-09 Electrooptic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5815882A JPS58176623A (en) 1982-04-09 1982-04-09 Electrooptic device

Publications (1)

Publication Number Publication Date
JPS58176623A true JPS58176623A (en) 1983-10-17

Family

ID=13076179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5815882A Pending JPS58176623A (en) 1982-04-09 1982-04-09 Electrooptic device

Country Status (1)

Country Link
JP (1) JPS58176623A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218423A (en) * 1983-05-26 1984-12-08 Hitachi Ltd Optical printer
JPS6115127A (en) * 1984-06-29 1986-01-23 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Liquid crystal bistable memory
US5013137A (en) * 1985-09-04 1991-05-07 Canon Kabushiki Kaisha Ferroelectric liquid crystal device having increased tilt angle
US5061045A (en) * 1988-09-02 1991-10-29 Hitachi, Ltd. Liquid crystal light modulation device and liquid crystal light modulation apparatus
US5076671A (en) * 1988-12-22 1991-12-31 Canon Kabushiki Kaisha Liquid crystal device having two bistable orientation states in the chiral smectic temperature range
US5113273A (en) * 1989-03-20 1992-05-12 Fujitsu Limited Liquid crystal display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218423A (en) * 1983-05-26 1984-12-08 Hitachi Ltd Optical printer
JPS6115127A (en) * 1984-06-29 1986-01-23 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Liquid crystal bistable memory
JPH0623818B2 (en) * 1984-06-29 1994-03-30 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Liquid crystal bistable storage
US5013137A (en) * 1985-09-04 1991-05-07 Canon Kabushiki Kaisha Ferroelectric liquid crystal device having increased tilt angle
US5061045A (en) * 1988-09-02 1991-10-29 Hitachi, Ltd. Liquid crystal light modulation device and liquid crystal light modulation apparatus
US5076671A (en) * 1988-12-22 1991-12-31 Canon Kabushiki Kaisha Liquid crystal device having two bistable orientation states in the chiral smectic temperature range
US5113273A (en) * 1989-03-20 1992-05-12 Fujitsu Limited Liquid crystal display device

Similar Documents

Publication Publication Date Title
EP0091661B1 (en) Liquid crystal optical modulation element
KR20030063656A (en) Liquid crystal display and method of manufacturing thereof
JPH0750272B2 (en) Method for manufacturing ferroelectric smectic liquid crystal electro-optical device
JPS58176623A (en) Electrooptic device
JPH06105332B2 (en) Ferroelectric liquid crystal optical shutter
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JPH10123529A (en) Production for ferroelectric liquid crystal display device
JPS6240428A (en) Manufacture of liquid crystal element
JPS6280625A (en) Production of liquid crystal display element
JPS61219931A (en) Liquid crystal display device
KR100477132B1 (en) Method for manufacturing liquid crystal display of using feroelectric liquid crystal material
JPS63280221A (en) Production of ferroelectric liquid crystal display element
JP3062978B2 (en) Ferroelectric liquid crystal device
JPH01140126A (en) Liquid crystal display device
JP2598276B2 (en) Ferroelectric liquid crystal device
JP2692674B2 (en) Optical shutter device
JPS6370227A (en) Ferroelectric liquid crystal display element
JPS59131913A (en) Liquid crystal electrooptic device
JPH07181495A (en) Ferroelectric liquid crystal element
JPS63163821A (en) Ferroelectric liquid crystal display element
JPH01253716A (en) Ferroelectric liquid crystal panel
JPS61267028A (en) Control method for orientation of liquid crystal
EP0271344A2 (en) Liquid crystal display element and method for driving same
JPS61236526A (en) Optical modulation element
JPS6279427A (en) Liquid crystal device